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Brownian motion: Beyond Caldeira-Leggett
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Htotal = H0(x,p) + Hbath(Q,P ) + HX/S
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An ` =∞ environment:

HX = −x
∑
α

cαQα

A finite ` environment

HS = −
∑
α

cαQαu(x−xα)

Thermal stochastic potential:

f = −∂xU(x, t)

Spatial correlation scale `

[DC, Phys Rev E (1997); Phys Rev Lett (1997)]



Brownian motion

The stochastic potential U(x, t) features in general a spatial correlation scale `.

In the Caldeira-Leggett model f is independent of x, meaning that `=∞.

The transport coefficients do not depend on `.

ṗ = −ηẋ+ f

f = −∂xU(x, t)

We assume high temperature Ohmic bath

Model parameters:

ν = noise intensity

η =
ν

2T
= friction coefficient

Transport coefficient (same for Quantum and for Classical):

µ =
1

η
, [mobility]

D =
ν

2η2
, [diffusion coefficient]

Ratio satisfies Einstein relation

` does not affect

the classical dynamics

and has no signature

in transport coefficients.



Quantum signature of `

` determines the lineshape of the stochastic kernel W(k|k′) for scattering from k′ to k.

The quantum mechanical width of the kernel is ∼2π~/`.
Its second moment is ν.

It has implication on the decoherence process (short time transient).

It has no implication on the transport coefficients (central limit theorem).

Quantum decoherence rate:(
1

τϕ

)
X

=
νL2

~2
[L is e.g. distance between the slits](

1

τϕ

)
S

=
ν`2

~2
[` is the spatial correlation scale]

Extension to low temperatures:
[1] DC, J. Phys. A (1998).

[2] DC, Y. Imry, Phys. Rev. B (1999).

[3] D.C, J. von Delft, F. Marquardt, Y. Imry, Phys. Rev. B (2009).
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Tight binding model

H0 = −c cos(ap)− f0x, [a = 1], cos(p) =
1

2

∑
x

[
|x+1〉〈x|+ |x〉〈x+1|

]

α =
ηa2

2π
= dimensionless friction

θ =
T

c
= dimensionless temperature

vdrift = µ f0

µ(cl) =

[
1− 1

[I0(1/θ)]2

]
1

η

X: fluctuating homogeneous field with (` = ∞)

S: site dissipation - fluctuating potential (` = a)

B: bond dissipation - thermally induced hopping
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Low temperature regime analysed e.g. by C. Aslangul, N. Pottier, D. Saint-James, Journal de Physique (1986).

Further motivation comes from recent studies of transport in photosynthetic light-harvesting complexes.

For a detailed list of references see DS and DC, Phys. Rev. Research (2021).



The Ohmic master equation

The dynamics is described by an Ohmic master equation (i.e. high temperature approximation):

dρ

dt
= Lρ = −i[H0, ρ] + L(bath)ρ

The interaction with the bath is written as

Hinteraction = −
∑
α

WαFα

One defines generalized ”velocity” operators:

Vα ≡ i[H0,Wα]

The Ohmic dissipator is:

L(bath)ρ = −
∑
α

(ν
2

[Wα, [Wα, ρ]] +
η

2
i[Wα, {Vα, ρ}]

)

Spectrum:

Lρ = −λρ
; λq,s, s = 0,±1,±2, ...

λq,0 = ivq +Dq2 +O(q3)

For X-dissipation:

W = x

V =
1

M
p

For S-dissipation:

Wα = |xα〉〈xα|



The Bloch representation

ρ(R, r) ≡ 〈R+ r/2|ρ|R− r/2〉
Bloch representation: ρ(R, r) ; ρ(q; r)

L(c) = + sin(q/2)
(
D⊥ −D†⊥

)
L(νX ) = −(1/2)r̂2

L(ηX ) = cos (q/2)
r̂

2

(
D⊥ −D†⊥

)
L(νS) = −1 + 1 |0〉〈0|

L(ηS) =
cos (q/2)

2

(
D⊥ +D†⊥ + |±1〉〈0| − |0〉〈±1|

)
L(νB) = −2 + 2 cos(q) |0〉〈0|+

(
|1〉〈−1|+ |−1〉〈1|

)
L(ηB) =

1

2
cos (q/2)

(
D⊥ +D†⊥

)
+

1

2
cos(3q/2)

(
|±1〉〈0| − |0〉〈±1|

)
+

1

2
cos(q/2)

(
|∓2〉〈±1| − |±1〉〈∓2|

)

D⊥ =
∑
r

|r+1〉〈r|



Results for the transport coefficients

The exact classical result:

D(X) =

[
1− 1

[I0(c/T )]2

]
T

η

Formal hight temperature expansion:

D ≈
[
1 +A

( c
T

)2] c2
ν〈

v2
〉
≈
[
1 +A

( c
T

)2] c2
2

A =



−1/8 for
〈
v2
〉

−5/16 for X-dissipation

+1/16 for S-dissipation

− 5
16

(
1− 6

5

(
a
`

)2)
general `

In the D(T ) figure D∞ = c2/ν is fixed.

In the µ(T ) figure µ0 = 1/η is fixed.



Effective stochastic picture

ρ(R, r) ≡ 〈R+ r/2|ρ|R− r/2〉
Wigner representation: ρ(R, r) ; ρw(R,P )

We obtain an “exact” stochastic approximation for the time evolution of Wigner function.

It is “exact” in the sense that it features the same D to order T−2.

Stochastic-like kernel:

L(bath)(R,P |R0, P0) = W(P |P0) δ(R−R0)

Width
[
W(k|k′)

]
=

2π~
`∑

k

W(k|k′)(k − k′)2 = ν

W(P |P0) =


(
L
2π

)2
ν
2
δP,P0±(2π/L) , X-coupling(

ν
L

)
, S-coupling

At finite temperature:

W 7→ W exp

[
−E(P )−E(P0)

2T

]
, E(P ) = −c cos(P )



Introduction of disorder

Quantum version of Sinai-Derrida-Hatano-Nelson model.

A quantum analysis of random walk in random environment.

Due to disorder (random transition rates) diffusion is suppressed.

We ask: what would be the result if we have both coherent and stochastic transitions in parallel.

We find: counter-intuitive enhancement of the effective disorder due to coherent hopping.
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Recall: for normal diffusive system λq = ivq +Dq2 +O(q3)



Summary

• Diffusion in high temperature environment has quantum fingerprints.

• The coefficient A is non-universal, and depends on `.

• Underlying mechanism for dissipation is reflected.

• More results in [2] regarding the effects due to disorder.
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