Breakdown of quantum-to-classical correspondence
for diffusion in high temperature thermal environment
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Brownian motion: Beyond Caldeira-Leggett

Htiotal = HO(wap) + Hbath(Qap) + HX/S

1
Ho(xz,p) = mp2+vo(w) — fox

Hbath = Z + §mawaQa

2Me,

An ¢ = oo environment:

Hx = —x Z CaQa

A finite ¢ environment

Hs = =) caQau(z—za)

Thermal stochastic potential:
f = =0 U(x,t)

Spatial correlation scale ¢

[DC, Phys Rev E (1997); Phys Rev Lett (1997)]




Brownian motion

The stochastic potential U(x,t) features in general a spatial correlation scale /.

In the Caldeira-Leggett model f is independent of x, meaning that /=oc.
The transport coefficients do not depend on /.

) = —ni+ f UL (Xt) = -f(t) x
= —0U(x,1) 0

We assume high temperature Ohmic bath

Model parameters:

v = noise intensity
v

2T

Ww(xt)
= friction coefficient A .-

Transport coefficient (same for Quantum and for Classical):

[mobility]

. . _ ¢ does not affect
[diffusion coefficient] : :
the classical dynamics
and has no signature
Ratio satisfies Einstein relation

in transport coefficients.




Quantum signature of /

¢ determines the lineshape of the stochastic kernel W(k|k’) for scattering from k' to k.
The quantum mechanical width of the kernel is ~27h/¢.

Its second moment is v.

It has implication on the decoherence process (short time transient).

It has no implication on the transport coefficients (central limit theorem).

Quantum decoherence rate:
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Extension to low temperatures: : /
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Tight binding model

Hy = —ccos(ap) — fow, %Z[|aj—|—1><x\—|—|m><aj—l—1|]
na?
2

= dimensionless friction Varitt = M fo
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X: fluctuating homogeneous field with (£ = oo)
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B: bond dissipation - thermally induced hopping
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Low temperature regime analysed e.g. by C. Aslangul, N. Pottier, D. Saint-James, Journal de Physique (1986).
Further motivation comes from recent studies of transport in photosynthetic light-harvesting complexes.

For a detailed list of references see DS and DC, Phys. Rev. Research (2021).




The Ohmic master equation

The dynamics is described by an Ohmic master equation (i.e. high temperature approximation):

dp
dt

= Lp = —i[Ho,p] + L5

The interaction with the bath is written as For X-dissipation:

Hinteraction = — Z Wa by W = =«
a 1
One defines generalized ”velocity” operators: LX) = - Ft) x

= i[Hgy, W4]

The Ohmic dissipator is:
v .
pbath) , za: (5 Wa, W, pl] + 3 ilWa, {Va, p}])
For S-dissipation:

Wao = |za)(zal
Spectrum:

£p = WX t)
~ AQaS7 S = 07 :':1, :':2, cee 5 o
Ago = ivg+ D¢ + O(q”)




The Bloch representation
p(R,7) = (R+71/2|p|R—7/2)
Bloch representation: p(R,r) ~ p(gq;r)

) +sin(q/2) (DL _ Dl)
£vx) —(1/2)7?

,"2.
£nx) COS (q/2)§ (DJ_ —Di)

£vs) —1+ 1]0)(0|

£(ns) = (2‘1/2) (D1 + DL+ [£1)(0] — [0) (1] )

£ws) =2 + 2cos(q) [0)(0] + ([1)(=1] + |-1)(1])

1
£(5) - <05 (¢/2) (D1 +D1)

300s(3Q/2)<\i1><0| - ‘0><i1l)
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Results for the transport coefficients

The exact classical result:

P = {1 - [IO(C}T)]Q} ,

Formal hight temperature expansion:
2

o~ a2

@)~ [1+4(5)] 3
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for <’02>

for X-dissipation

for S-dissipation

general ¢

In the D(T) figure Do, = ¢? /v is fixed.
In the pu(T) figure po = 1/n is fixed.




Effective stochastic picture
p(R,r) = (R+7/2|p|R—1/2)
Wigner representation: p(R,7) ~ pw(R, P)

We obtain an “exact” stochastic approximation for the time evolution of Wigner function.

It is “exact” in the sense that it features the same D to order T 2.

Stochastic-like kernel:

£t (R PRy, Po) = W(P|P) 6(R — Rp)
Width[vv(k|k’)] _ Zmh

S WK ) (k—K)? = v
k

2
L v .
L) zg . X-coupl

2m
%) , S-coupling

At finite temperature:
E(P)—E(FP)
2T ’

W — Wexp {—




Introduction of disorder

Quantum version of Sinai-Derrida-Hatano-Nelson model.
A quantum analysis of random walk in random environment.

Due to disorder (random transition rates) diffusion is suppressed.

We ask: what would be the result if we have both coherent and stochastic transitions in parallel.

We find: counter-intuitive enhancement of the effective disorder due to coherent hopping.

AU(x)

S-dissipation

oy g,

B-dissipation

Recall: for normal diffusive system A\, = ivg + Dq? + O(q?)




Summary

Diffusion in high temperature environment has quantum fingerprints.
The coefficient A is non-universal, and depends on /.
Underlying mechanism for dissipation is reflected.

More results in [2] regarding the effects due to disorder.
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