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Parametric evolution for a deformed cavity
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We consider a classically chaotic system that is described by a Hamiltét(@nP;x), where Q,P)
describes a particle moving inside a cavity, andontrols a deformation of the boundary. The quantum
eigenstates of the system drgx)). We describe how the parametric kerfgin|m) = |(n(x)|m(xo)}|?, also
known as the local density of states, evolves as a functiafkefx—x,. We illuminate the nonunitary nature
of this parametric evolution, the emergence of nonperturbative features, the final nonuniversal saturation, and
the limitations of random-wave considerations. The parametric evolution is demonstrated numerically for two
distinct representative deformation processes.
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[. INTRODUCTION LDOS are given by the same function. One would have to be
more careful with these definitions i, were integrable
while H nonintegrable.

Consider a system that is described by an Hamiltonian A few words are in order regarding the definition of the
H(Q,P;x), where Q,P) are canonical variables andis a LDOS, and its importance in physical applications. The
constant parameter. Our interest in this paper is in the cadeDOS, also known as strength functips—6], describes an
where Q,P) describe the motion of a particle inside a cav-€nergy distribution. Conventionally it is defined as follows:
ity, and x controls the deformation of the confining bound- 1
ary. The one-dimensionallD) version of a cavity, also p(E)=——(m|Im G(E)|m>zz P(n|m)8(E—E,),
known as a “potential well,” is illustrated in Fig. 1. How- ™ n
ever, we are mainly interested in the case of chaotic cavities 2

in d>1 dimensions. Cavities ird=2 dimensions, also yhereG(E)=1/(E—H+i0) is the retarded Green function.
known as billiard systems, are prototype examples in th§ye are interested in chaotic systems, so it should be clear
studies of classical and quantum chaos, and we shall U§Rat ourP(r) is related by trivial change of variablEr)
them for the purpose of numerical illustrations. to the above defineg(E). Our P(r) also incorporates an
The eigenstates of the quantized Hamiltonian [a(&))  ayerage over the reference state. The LDOS is important in

and the corresponding eigenenergies&y€x). The eigenen- sy dies of either chaotic or complex conservative quantum

ergies are assumed to be ordered, and the mean level spacifigtems that are encountered in nuclear physics as well as in

will be denoted byA. We are interested in the parametric giomic and molecular physics. Related applications may be
kernel found in mesoscopic physics. Going froHy, to H may sig-
_ 2_ nify a physical change of an external field, or switching on of
P(n[m) =Kn(x)[m(xo))*=tr(pnpm). @ a perturbation, or a sudden change of an effective interaction
(as in molecular dynamids’]). The so-called “line shape”

In the equation above,(Q,P) andp,(Q,P) are the Wigner  of the LDOS is important for the understanding of the asso-
functions that correspond to the eigenstategx,)) and

In(x)), respectively. The trace stands W®dP/(27#)? in- V(@)

tegration. The difference&—x, will be denoted bysx. We v ., displaced wall element
assume a dense spectrum, so that our interest is in “classi / dv(QyidQ = f
cally small” but “quantum mechanically large” energy N~
scales. It is important to realize that the kerR¢h|m) has a N ¢ U A
well defined classical limit. The classical approximatisae ;
remark[1]) is obtained by using microcanonical distributions 0
instead of Wigner functions.

A. The local density of states

S . FIG. 1. The shape of a cavity ith dimensions is defined by its
Fixing n, the vectorP(n|m) describes the shape of the d—1 boundary. The confining potential ¥ Q). The figure illus-

nth eigenstate in thélo="(Q,P;Xo) representation. By V- atesv/(Q) for one dimension well. It also can be regarded as a
eraging over several eigenstates one obtains the averaggss section of thd>1 cavity. The kinetic energy of the particle
shape of the eigenstattASOE). We can also identify s g—1m,2 The walls of the cavity exert a field of fordeon the

P(n[m) as the local density of statésDOS), by regarding it pouncing particle. The hard wall limit corresponds ftese and
as a function of, wherem is considered to be a fixed ref- v .. For theoretical considerations it is convenient to assume

erence state. In the latter case an average ovenfetates is  thatf andV, are large but finite. Mathematically it is also conve-
assumed. We shall denote the LDOSB{r), wherer=(n nient to think of the embedding space as having some huge but
—m). The ASOE is jusP(—r). Note that the ASOE and the finite volume(not illustrated.
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ciated dynamics. It is also important to realize that the LDOS TABLE I. The parametric scales in the general theory of PE are
is the Fourier transform of the so-called “survival probabil- listed (left column along with the questions that motivate their

ity amplitude” [7] (see Ref[8] for concise presentation of introduction. The distributiorP(r) may contain perturbative tail
this poiny. regions(for 6x<oxpq), and nonperturbative core regiofer ox

> oxI™). Nonuniversal (system specific features may manifest

themselves in the core structure &= 5, . In generic examples

6x> 6Xg¢ allows a classical approximation f&¥(r). We are going

to explain that only two independent parametric scales survive in
Textbook[9] formulations of perturbation theory can be the hard wall limit.

applied in order to find the LDOS. Partial summations of

B. Parametric evolution

diagrams to infinite order can be used in order to get arsx¢ Is it possible to linearizé{(x+ 5x)?
improved Lorentzian-type approximation. However, mostsxd™ Is it possible to use standard perturbation theory?
textbooks do not illuminate the limitations and the subtletiessx, Do perturbative tail regions survive?

which are involved in using the conventional perturbative s, Do nonuniversal core features show up?
schemes. It is therefore interesting to take a somewhat difsy,. Is it possible to use semiclassical approximation?

ferent approach to the study of LDOS. The roots of this
alternate approach can be traced back to the work of Wigner ] .
[10] regarding a simple banded random matBRM) model ~ (rather than twpdifferent parametric scalésee remark2]).
H=E+ 6xB. HereE is a diagonal matrix whose elements These are summarized by Table I.

are the ordered energiég,,}, andB is a banded matrix. The In the prt_asent paper we consider cavities with hard walls.
study of this model can be motivated by the realization thafV& are going to explain that because of the “hard wall
in generic circumstances it is possible to writ§Q,P:x) limit” there are onlytwo independent parametric scales: One

~Ho(Q,P)+ 8xF(Q,P). Using a simple semiclassical ar- is oxd™ and the othergsee remark3]) coincide with Sxyy -
gument11] it turns out that the matrix representation of any Assuming thawxd™ and éxyy are well separated, it follows
genericF, in the eigenbasis that is determined by the chaoti¢hat there arehreedistinct parametric regimes in the PE of
Hamiltonian,, is a banded matrix. our system. These are the standard perturbative regéixe (
The important ingredienfrom our point of view in the ~ <dxI™), the core-tail regime dx; "< ox<dx™), and the
original work by Wigner, is the emphasis on the parametricnonuniversal regimedx> 6xyy).
evolution(PE) of the LDOS. The LDOS describes an energy  The exploration of the three parametric regimes in the PE
distribution: Foréx=0 the kerneP(r) is simply a Kroneker of a deformed cavity with hard walls is the main issue of the
delta function. Aséx becomes larger, the width as well as present paper. To the best of our knowledge such detailed
the whole profile of this distribution “evolves.” Wigner has exploration has not been practical in the past. We owe our
realized that for his BRM model there are three parametri@bility to carry out this task to a powerful technique for find-
regimes. For very smalix we have the standard perturbative ing clusters of billiard eigenstatg49,20. There are also
structure where most of the probability is concentrated in Some secondary issues that we are going to address.
=0. For largerdx we have a Lorentzian lineshape. But this ~ (a) In the strict limit of hard walls the PE becomes non-
Lorentzian line shape does not persist if we further increasgnitarity. We shall use the 1D well example in order to shed
5x. Instead we get a semicircle line shape. Many workdight on this confusing issue. In particular we demonstrate
about the LDOS have followef4—6], but the issue of PE that any truncation of the PE equation leads to false unitarity
has not been further discussed there. The emphasis in thogdege to a finite-size edge effect.

works is mainly on the case whef, is an integrable or (b) For special deformations, namely, those that constitute
noninteracting system, whil is possibly(but not necessar- linear combination of translations, rotations, and dilations,
ily) chaotic due to some added perturbation term. the parametric scalesx™ and 5xy coincide. Consequently

The line of study which is pursued in the present work haghere is no longer distinct core-tail regime, and the PE fea-
been originated and motivated by studies of quantum dissitures a quite sharp transition from the standard perturbative
pation[12—14. Understanding PE can be regarded as a preregime to the nonuniversal regime.
liminary stage in the analysis of the energy spreading process (c) In the nonuniversal regime we demonstrate that our
in driven mesoscopic systems. Note that the LDOS gives theumerical results are in accordance with our theoretical ex-
energy redistribution due to a “sudder(Very fas) change pectation[8]. Namely, the width of the LDOS profile is de-
of the Hamiltonian. Unlike the common approach for studiestermined by time-domain semiclassical considerations, rather
of LDOS, we assume both{ and H, to be chaotic. Both then by phase-space or random-wave considerations.
correspond to the same parametrically dependent Hamil- (d) The last section puts our specific study in a larger
tonian4(Q,P;x), and there is nothing special in choosing acontext. We explain why Wigner's scenario of PE is not
particular valuex=x, as a starting point for the PE analysis. followed once hard walls are considered.

C. Main results Il. CAVITY SYSTEM

The theory of PE, as discussed in general in Raf2-14 We consider a particle moving inside dadimensional
and in particular in Refd8,15] takes us beyond the random- cavity whose volume i¥. The kinetic energy of the particle
matrix-theory considerations of Wigner. There appear fiveis E=1muv?, wherem s its mass, and is its velocity. It is
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assumed that this motion is classically chaotic. The ballistic Equation(4) is a possible starting point for constructing a
mean free path i$,. One can use the estimaltg~V/A, perturbation theory for the PE d®(r) (see Ref.[14] for
where A is the total area of the walls. The associated timemore details As an input for this equation we need the
scale isty, =y /v. matrix elements obH/Jx. These can be calculated using a

The penetration distance upon a collisioh#sE/f, where  simple boundary integral formula 6] whose simplest deri-
f is the force that is exerted by the wall. Upon quantizationvation[14] is as follows: The position of the particle in the
we have an additional length scale, which is the De Broglievicinity of a wall element iSQ=(z,s), wheres is a surface
wavelengthAg=277%/(mv). We shall distinguish between coordinate and is a perpendicular “radial” coordinate. We
the hard walls case where we assunmhel\g<<l,, andsoft takef=o so that
walls for which Ag<<|. Note that takingz— 0 implies soft
walls. IH

There is a class of special deformations that are shape ox ~ DEVod(2). )
preserving. These are generated by translations, rotations,
and dilations of the cavity. A general deformation need noffhe logarithmic derivative of the wave function on the
preserve the billiard shape nor its volume. We can specifypoundary ise(S)/ ¢/(S), whereg(s)=n-V, andn is a unit
any deformation by a functio®(s), wheres specifies the vector in thez direction. Forz>0 the wave function(Q) is
location of a wall element on the boundasurface of the  a decaying exponential. N, is large enough, then the ex-
cavity, andD(s) 8x is the normal displacement of this wall ponential decay is fast, and we can treat the boundary as if it
element. In many practical cases it is possible to use theere locally flat. It follows that the logarithmic derivative of
convention|D(s)|~1. With this conventionsx has units of the wave function on the boundary should be equal to
length, and its value has the meaning of typical wall dis-—+2mVy/%. Consequently one obtains the following ex-

placement. pression for the matrix elements:
The eigenenergies of a particle inside the cavity are in y i2
general x dependent, and can be written ag, 4 _
= (fk,)?/(2m). The mean level spacing is (W)nm_ ~2m § en(9en(s)D(s)ds. @)
A=ho XZ_W l)\dfl 3) In the one-dimensional case the boundary integral is replace
Q4 VB by the sumZ¢¢,(S)em(s)D(s) wheres=1,2 are the two
turning points of the potential well.
whereQy=2m,4m, ..., ford=2,3,... . In ournumerical
study we shall consider a quarter stadium with curved edge IV. HARD WALLS AND NONUNITARITY
of radius 1 and straight edge of length 1. The “volume” of
the quarter stadium i¥=1+ /4. The “area” of its bound- For the purpose of the following argumentation it is con-

ary A=4+ 7/2 is just the perimeter. We shall look on the venient to takef =, but to keepV, large but finite. Math-

parametric evolution of eigenstates aroknd400 where the ematically it is also convenient to think of the embedding
mean level spacing ik units is & = A/(#v)~0.0088. space as having some huge but finite volume. We would like

to illuminate a subtlety which is associated with the hard

wall limit Vog—oo. For any finiteV, the parametric kernel
IIl. PARAMETRIC EVOLUTION

satisfies
Consider the quantum-mechanical stdte |[m(xy)). We
ca_n write ¢=Enan(x)|n(x)2>. The parametric kern_el can be 2 P(n|M)= Pl (8)
written asP(n|m) =|a,(x)|*. It is a standard exercise to ob- n
tain (from dy/dx=0 and differentiating by partsthe fol- . . .
lowing equation for the amplitudes: with py=1. This follows from the fact thain(x)) is a
complete orthonormal basis for any However, for hard
da, walls (Vg=x) this statement is not true. This implies that

i
% Z Wom(X)am. (4) for hard walls the PE is nonunitary. We are going to explain
m this point below.
Let us denote the volume of the original cavity By and
of the deformed cavity by. The volume shared by the de-
formed and the undeformed cavities will be denoted by
VNV and we shall use the notatiop= (V,NV)/V,. For the

dx

In order to getP(n|m) one should solve this equation with
the initial conditionsa,(Xq) = 8,,,- The transitions between
levels are induced by the matrix elements

. purpose of the following argument let us consider a reference
ih IH i
== — (5) statem whose energy,, is well belowV,. Let us also as-
En—Eml ox/ sume that the wall displacement is large compared to De

Broglie wavelength. Consequently the expression for
and we use the “gauge” conventiow,,=0 for n=m. P(n|m) has the following semiclassical structure:
(Only one parameter is being changed and therefore Berry’s
phase is not an issye. P(njm)~ X f(E,—E)+(1— ) Xg(E,—E¢), (9
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whereE .= (Vy+ E,)) ~V,. The above result can be deduced

by assuming that the wave functions look ergodic in space

but still that they are characterized by a well-defirledal
wavelength. An equivalent derivation is obtained by using 50
the phase-space picture of Rg8]. Bothf andg in the above
expression have unit normalization, and therefpgg,=1

for any finite V,. However, for hard walls¥,=) we have 100
E.=c and thereforg,y,= 7. We may say the the operation
of taking the hard wall limit does not commute with the
summation in Eq(8). An analogous statement can be de-
rived regarding the summatian,,P(n|m), with the respec-
tive definition n=(VoNV)/V.

The correctness of the above observation becomes le:
trivial if we consider Eq.(4) with expressiong5) and (7)
substituted for the matrix elements. Looking at E5). with d
Eq. (7) it seems as if the matriW,,, is Hermitian, and 50 100 150 200 250
therefore should generate unitary PE. But this statement i (a) m
mathematically correct only fofany finite truncationN of
the PE equation. FON= the matrixW,,, becomes non-
Hermitian. It turns out that for any finitd, there is a pile-up
of probability in the edges of the spreading profile, due to
finite-size effect. We shall demonstrate this effect in the nex 1071
section using a simple 1D example. In other words, if we
solve Eq.(4) for hard-walled cavity, we get as a result Eq.
(9) with Ec=Ey. For N== we getE.= and therefore z107
Pwota= 77 iN accordance with the conclusion of the previous £
paragraph. &

Thus if eitherVo<ec or N<<ec then we have unitary PE.
But for hard walls, meaning/y= with N=«, we have
nonunitary PE. The lost probability is associated with the n = 100
second term in Eq(9). This term is peaked around a high "
energyE.. For hard wallsE.=% and consequently some
probability is lost. The above picture is supported by the ;

simple pedagogical example of the next section. (b) 0 50 100 " 150 200 250

150

200

V. PARAMETRIC EVOLUTION FOR A 1D BOX FIG. 2. (a) An image of the kerneP(n|m) for 13% expansion
_ _ ~ of the box(i.e., @/a=1.13). The kernel has been calculated nu-
Consider a 1D box with hard walls, where the free motionmerically using Eq.(13) with finite truncationN=256. (b) The

of the particle is within 6<Q<a. The eigenstates of the profile of a representative row d#(n|m). The dashed line is the

Hamiltonian are N=co analytical result using Eq11).
2 parametric evolution is nonunitary, becadsgP(n|m) = 7.
[n(a))—(—1)"\/=sin(k,Q), (100  The profile of P(n|m) for fixed n is illustrated by a dashed
a L P
line in Fig. 2.
) We can restore unitarity by making, large but finite. In
wherek,=nX(m/a) is the wave number, and=1,2,..., such case, a variation of the above calculation leads to the

is the level index. The phase factor- ()" has been intro-  following picture: Consider the overlap of a reference level
duced for convenience. We consider now the parametric evay(a) with the levelsm(ay). As in the case/,=x there is a
lution as a function of. One easily obtains probability 7 which is located in the levels whose energies
areE,,~E, . But now the “lost” probability (1— %) is lo-
o —sin(mgn)  2m cated in the levels whose energies Brg~E,,+ V. Thus we
(n(a)|m(ap)y=(—1)"' p -5 (11 haveX,P(nm)=1 rather thart ,,P(n|m)= 7.

77n"—m We again consider the ca¥g= . The normal derivative
on the boundary isp,(a) =+/(2/a)k,. Hence we can easily
get the following result:

wheren=ay/ais assumed to be smaller than 1, correspond
ing to expansion of the box. The probability kernel is
P(n|m)=|{n|m)|2. One can verify that the parametric evo-
lution in the ay—a direction is unitary, meaning that
> ,P(n|m)=1. On the other hand, in thee—>a, direction the

—i 1 2nm

1 :
anm=m%(a)¢m(a)= Ao

(12
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It is more convenient to usa_zln(a) for paramgtrization_. tions that have the propert¢(w)—0 in the limit w—0.
Hence the equation that describes the parametric evolution j&ny combination of dilations, translations, and rotations is a
special deformation. Around the bouncing frequenay (
di‘”: — 2n_mam. (13) ~1/7,) the functionC(w) typi_cally disp!ays some nopuni—
da m n?>—m? versal (system and deformation specjfistructure. This is
o . . ) . true for any typical deformation, but for some deformations
For any finite truncatioM < this equation manifestly gen- the nonuniversal features are more pronounced. If the cavity
erates unitary parametric evolution. It is only fdr=c that  has bouncing ball modes, we may get also a modifiezh-
it becomes equivalent to the nonunitary evolution of the 1Dynjversal behavior in the small frequency limit. For the pur-
box. Again, one can wonder where the “lost” probability is pose of general discussion it is convenient to assume that the
located ifN<c. The answer is illustrated in Fig. 2. We see interpolation between Eq$17) and (16) is smooth, but in
that the_ lost” probability piles up at the edge of tieun- actual numerical calculation the actu@l{w) is computed
cated tail. (see below.
As a numerical example we have picked the stadium bil-
VI. MATRIX ELEMENTS FOR CHAOTIC CAVITY liard. We have found the eigenstates of a desymmetrized
It is possible to use semiclassical consideratiftsg in  (duartey stadium as described in R¢L7]. We have selected
order to determine the band profile of the matrix E§. The ~ th0se eigenstates whose eigenenergjeare in the vicinity
application to the cavity example has been introduced in Ref0f k=400. Our two representative deformations agerota-

[14], and numerically demonstrated in REL7]. The accu- ton around the stadium center afty) generic(nonspecial
racy of this semiclassical estimate is remarkable. Here wé€formation involving the curved edge. In the latter case the

summarize the recipe. First one should generate a very lorfgt™ved edge of the quarter stadium<(8</2) is pushed

(ergodi trajectory, and define for it the fluctuating quantity Outwards withD(s) =[cos§)T?, while for the straight edges
D(s)=0. (The corners=0 is the 90° intersection of the

IH curved edge with the long straight edg&he respective
Ft)=— W:% 2mu €0 Oco) Deoid(t—teo), (14)  pand profiles are displayed in Fig. 3. The band profile has
been defined as
wheret. is the time of a collisionD, stands forD(s) at )
the point of the collision, and cos(@.,) is the normal com- _ i
ponent of the particle’s velocity. Each delta spifer soft B(x)= aK2 en(Sem(s) D(s)ds ), (18
walls it is actually a narrow rectangular spjkarresponds to
one collision. Now one can calculate the correlation functionynere x = (k,— k) is the distance from the diagonal. Note
C(7) of the fluctuating quantity#(t), and its Fourier trans- that B(x) is just a scaled version of the semiclassi&4ty)

form C(w). The semiclassical estimate for the band profile iSas implied by Eq(15) with (7). The remarkable agreement

JH\ |2 A E_E of B(«) with the semiclassical calculation has been demon-
(_ %_§(u> (15) strated in Refs[17,18.
X/ m 2mh h It is important to realize that in the hard wall linivhich

_ _ ~is assumed heyehe matrix @H/dx),n is not a banded ma-
Referencg 18] contains a systematic study of the function trix. It would become banded if we were assumaugtwalls.

C(w). For largew, meaningws-1/7,, one can use For soft wallsC(w) becomes vanishingly small fas>u/I.
The bandwidth in energy units 8,=%v/l, and in dimen-

~ 1 . o
C(w)m2m2v3<|005g|3>]_) é [D(s)]2ds, (16) sionless units it is

where the geometric factor icos@)]®)=1,4/3m, ..., for b= Bo__ V. (19

d=1,2,... . Alengthy calculatio14] reveals that Eq(15) A gt

with (16) substituted, is an exact global result if we could

assume that the cavity eigenfunctions look similar to “ran-Unless stated otherwise we halye «.

dom waves,” and that different wave functions are uncorre-

lated. HOWEVEI’, it turns out that to take this random wave VII. PARAMETRIC EVOLUTION—NUMERICAL

result as a global approximation is an oversimplification. For RESULTS

w<1/r,, using the semiclassical recipe and assuming

strongly chaotic cavity, one obtains The parametric evolution d?(r) for rotation and for ge-
neric deformation of the stadium is illustrated by the images

C(w)~C(®) X (tpw)” (17)  of Fig. 4 and by the plots of Fig. 5 and Fig. 6. The calcula-

tion of eachP(r) profile is carried out as follows: Givedix

with y=4 for dilations and translationg;=2 for rotations, we use the method which is described in R2f)] in order to

andy=0 for normal deformations. We use the term “special calculate the matriXP(n|m). Then we plot the elements of

deformations”[18] in order to distinguish those deforma- P(n|m) versusx=[k,(x) —Kky,(0)]. In order to obtain the
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FIG. 3. Band profiles for deformations of the quarter stadium as
defined by Eq(18) (a) Rotation around the stadium Centéb.) FIG. 4. Each column is an image QKr) versusk for a differ-

Generic (nonspecial deformation involving displacement of the gnt value ofsx. There are 41 columns. The valdx~1 corre-

curved edge. It is important to notice that for the special deformasponds roughly to displacement of the boundarga) is for rota-

tion we haveC(w)—0 in the limit w—0. tion and (b) is for generic deformation. Note that the=0
component is excluded from the image. Instead we have plotted

average profile the plot is smeared using standard procedupser the image an=0 line wherever this component contains more

(see remark[21]). The transformation fromx to r=(n than 50% of the probability. In the lower figure this line cannot be

—m) is done using the relatiosee remark21]): resolved from the developing core region.
KZZ-r—Ekxé—V. (20) this observation. We see that féx<<0.2 most of the prob-
d v ability is well concentrated in=0. This implies that we can

5 use standard perturbation theory in order to estimater the
AboveA is the mean level spacing of thk,} spectrum, and =0 probabilities. On the other hand, f6k>0.2 the pertur-
6V is the volume change that is associated with the deformabative nature ofP(r) is destroyed. NowP(r) becomes
tion (it is approximately proportional téx). If the deforma- smoother, and eventualljor §x>0.5) there is a very good
tion is volume preservingas in the case of rotatipthen the  fitting with Lorentzian(see lower plot in Fig. b
second term equals zero. But for the generic deformation that The qualitative explanation for the Lorentzian profile is as
we have picked in our second numerical example, the volfollows. For 6x>0.5 the typical displacement of the walls is
ume is not preserved, and the systematic “downward” shiftof the order ofAg. Therefore thén(x)) eigenstates become
of the levels should be taken into account. uncorrelated with thém(0)) eigenstates. Consequeniyr)

Looking first at the case of rotation, we clearly see twobecomessx independent. The Lorentzian profile agrees with
parametric regimes: The standard perturbative regide ( the assumption of uncorrelated random waves as explained
<0.2) and the nonuniversal regiméx>>0.2). Let us clarify  in the Appendix.
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----- fitted Lorentzian oo fitted Lorentzian

P(n|m)

FIG. 6. Representative plots ¢¥(r) for the case of generic
deformation.(a) is for 0.0016< 6x=<0.2512. In(b) a fitted Lorent-
zian is overlayed for the purpose of comparison.

FIG. 5. Representative plots &f(r) for the case of rotatior(a)
is for 0.0016= 6x=<0.2512. The =0 component is excluded. (i)
the fitted Lorentzian is indistinguishable from the actual profile.

Let us now look at the case of generic deformation. Heregprobability is well concentrated in=0. For larger deforma-
we clearly see three parametric regimes: The standard petion, namely foréx>0.004, standard perturbation theory is
turbative regime §x<0.004), the core-tail regime (0.004 no longer applicable because them level is mixed non-
< 6x<0.2), and the nonuniversal regiméx>0.2). Let us  perturbatively with otherineighboring levels. As a result
clarify this observation. As in the case of rotation there is aP(r) contains a nonperturbative “core” component. How-
standard perturbative regiméX<0.004) where most of the ever, for 0.004 §x<<0.2 we definitely do not get a Lorent-
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zian. Rather the tails d?(r) keep growing in the same way where /,=vty is the length which is associated with the
as in the standard perturbative regime. Heisenberg time=2xh/A.

In the case of the generic deformation, as in the case of Itis illuminating to use the conventidd(s)~1, such that
rotation, we enter the nonuniversal regime, and eventuallyy)x measures the typical displacement of a wall element.
(for 6x>0.6) we get a smooth Lorentzian-like distribution. With this convention we get from Eq§24),(25) the follow-
However, the Lorentzian-like distribution is not identical to ing:
that of the rotation case. Also the similarity to proper Lorent-
zian is far from being satisfactorsee lower plot in Fig. 6 X" specia™~Ng » (26)
This means that the random-wave picture of the Appendix is

an oversimplification. Nd-1) 12

In the following sections we are going to summarize the XM yeneric= (AB_ X\g, (27)
theoretical consideratior}8] that explain the observed para- eff
metric scenario. In particular we are going to illuminate the
way in which nonperturbative features emerge; to clarify the XM gitfractive™ Mg - (29
crossover to the nonuniversal regime; and to explain the spe-
cific nature of the nonuniversal distribution. In the generic case the effective area of the deformed bound-

ary Ag may be smaller than the total ardaf the boundary.
VIIl. THE STANDARD PERTURBATIVE REGIME The effective ared; can be formally defined by comparing

) . ) ] Eq. (27) with Eqg. (25). Equation(28) has been added for
Standard perturbation theory gives the following first or-sake of completeness of our presentation. It correspond to

der expression for the LDOS the diffractive limit Aqy— A3, Note that this limit is be-
) yond the scope of the present study. Thus in the generic case,
P(nm)~ &, + 5X2|(3H/07X)nm| 21) the wall displacement needed to mix levels is much smaller
nm

(E,—E)? than \g. In the generic casexdMx#(d*1)2 rather than
oxdMecfi. What happens with perturbation theory beyond

This expression is most straightforwardly obtained by in-5xI™? This is the subject of the next section.

specting Eqs(4) and(5). We can define thé&otal) transition

probability as IX. THE CORE-TAIL REGIME

p(ox)=3 P(r). 22) For ox> oxJ™ standard perturbation theory diverges due
r£0 to the nonperturbative mixing of neighboring levels on small

) ) ) . scale: OnceSx becomes of the order ofx{" several levels

Using Eq.(21) combined with(15) we get the following  are mixed, and asx becomes larger, more levels are being

estimate: mixed nonperturbatively. Consequently it is natural to distin-

- guish betweercore and tail regions[13—15. Most of the
do C(w) ,g  Spreading probability is contained within the core region,
23 which implies a natural extension of first-order perturbation

theory (FOPT): The first step is to transform E@4) into a
Standard perturbation theory is applicable as long(@sx) new basis where transitions within the core are eliminated.
<1. This can be converted into an equivalent inequatity ~ The second step is to use FORT the new basisin order to
< 5xd™. By this definition 5x3™ is the parametric deforma- analyze the core-to-tail transitions. Details of this procedure,
tion which is needed in order to mix the initial levelwith ~ Which is in the spirit of degenerate perturbation theory, were
other levelsn# m. discussed in Ref.14]. The most importantand nontrivia)

If we use Eq(23) for a special deformation, then we have consequence of this procedure is the ob;grvation that mixing
y>1, and consequently the integral is not sensitive to thén Small scales does not affect the transitions on large scales.
exclusion of the|r|<A region. As a result we havéxd™ ;girgf?grm\)'\/: 5xha\{'iénv;n§it:/agfrt?l?éosl:()rsﬂerp\zz:ti?r(lzhr:sfht?éen
*h. Using Eq.(17) with (16) we get numerically illustrated in Ref.15].

12 Following the above reasoning we define thé region

X\g- (29 as consists of those levels whose “occupation” can be cal-
culated using perturbation theory, while tbere is the non-
perturbative component in the vicinity af=0. Assuming
that only one scale characterize the core width, one arrives at
the following practical approximation

1
SX)~ SX°X — — .
P(X) 12 )|ol=am2T 2

1
|bl]_} jg [D(s)]%ds

qm —
5Xc |special_

In the case of generic deformation, E@4) is not valid
because the value of the integral in E23) is predominantly
determined by thev~A/#% lower cutoff rather than by an
effective w~ 1/7,, lower cutoff. As a result one obtains

A ~(En—Em) SX?

—1/2 Poi(r)= C .
X\g, (29 P 2w R [T (60 P+ (Eg—E)? 9

1
&(gm|generic: ( Iy ]_) é [D(S)]st
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It is implicit in this definition that E,— E,,) should be re- 1072
garded as a function of=(n—m). The parametel’ (X) is

determined(for a given 6x) such thatP,(r) has a unit
normalization. One may say th&{(5x) regularizes the be-

— 6x=0.0794
--- prt

havior around =0. For generic deformation we get 10
OX z T
I'(6x)=bgA~| —| XA. (30 <
oxdm T

The core is defined as the regidn<b,, and the outer
(Ir|>by) regions are the tails. Fafx< 8xI™ we getby<1
and the core-tail structure E(R9) becomes equivalent to the

standard perturbative result EQ1). It should be clear that 10t
the core-tail structure is a generalization of Wigner’s Lorent- L :
. - S . P -500 0 500

zian. It is indeed a Lorentzian in the special case of a “flat” (a) r=n-m
band profile. 10

We turn now to analyze our numerical results. We have — x=0.0794
verified (see, e.g., Fig. J7that for 6x<0.2 we have good “oo

. . . . — 5x=0.2512

agreement with perturbation theory irrespective of whether 102ll==" prt

we have a core componegwhich is the case for the generic
deformation or not (which is the case for the rotatinnAs
we come closer t@x~0.2 the agreement becomes worse,

and for 6x>0.3 we have a total collapse of perturbation %10
theory. In Fig. 8 we display the total transition probability &

p(6x) as a function ofsx. This plot should be used in order 1ok

to numerically determine the value 6kJ™, say as the value ‘f)’*

wherep(6x) =1/2.

Figure 8 also displays comparison with the corresponding
perturbative calculationusing Eg. (22) with (29)]. The Y
agreementfor ox<6xJd™ in case of the rotation is remark-

able. For larger values afx one observes a linear drop of (b ~500 r=2—m 500
the total probability due to the nonunitary nature of the evo- (45 B

lution. (This drop is clearly linear in a linear-linear scale N — x=0.0794
which is not displayed.The eventual rise of the total transi- " - g;t_o 2512
tion probability (beyond 1) in case of the generic deforma- 0.1 ‘: ——prt

tion, reflects numerical errors in the determination of the

small k overlaps. See Ref20] for further details. 0.08f )
The lower subfigure in Fig. 8 displays the calculated core _ !

width b, for the generic deformation. Recall thaf is deter- %o.oe- ;

mined, givendx, such thatPp(r) of Eq. (29) is normalized. T '.'

Also calculated is the widtlb, of the region that contains 0.04l !

50% of the probability. The width, is calculated for both '

Por(r) andP(r). Note thatb.=1 in the standard perturba-

tive regime. The determination afx™ for the generic de- 0.02r

formation becomes more convenient by using this plot. Also

the crossovefat dxyy~0.2) to the nonuniversal regime is % 30

most pronounced. (©

FIG. 7. Comparison between the perturbative calculafiggr)
X. NONUNIVERSAL REGIME and the actuaP(r). (a) is for the rotation andb) is for the generic

The validity of Eq.(29) as a global approximation relies deformationc) is th_e same_aéb), giving a zoom over the “birth”
on the assumption that the core is characterized only by On%f the nonperturbative semiclassical saturation profile.
scale(which isbg). But this assumption ceases to be true if
Sx is large enough. We have explained in Réf] that the  marked by the nonuniversal parametric scékg, . For 6x
width of thecoredefines a “window” through which we can larger thanéxy, the nonuniversal structure of the core is
view the “landscape” of the semiclassical analysis. &  exposed.
becomes larger, this “window” becomes wider, and eventu- What is the semiclassical structure of the LDOS? Time-
ally some of semiclassical structure is exposed. This islomain semiclassical consideratid®ee Eq(10) of Ref.[8]
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121 with SEgc=#/ 7. The definition of the collision rate 4/,

is similar to that of 1f,. The former is the collision rate

with the deformed areAy;;, and therefore it may be smaller

than 1/, becauser, is related to the total are&

If, by mistake, we identified, with 7, then we would
get the random wave result which is derived in the Appen-
dix. This would be an over simplification. If it were true, it
would imply that foréx> éxyy we should have got the same
Lorentzian distribution in both casdt¢he rotation and the
generic deformation What we see, as a matter of fact, is that
for the rotation(Fig. 5 we have a reasonably good agree-

i ment with Lorentzian whose width iksc= 1.5, whereas for
- Zig:ﬂg:ﬂg H:g the generic deformatiofiFig. 6) there is rough agreement

— prt. caleulation with Lorentzian whose width isSksc=0.26. The smaller

bt At e 10 10° 10! width in the latter case clearly reflects having larggy. For
(@ dx the generic deformation we also have pronounced non-
Lorentzian features. Actually the global fitting to Lorentzian
is quite bad. Our understanding is that these features are due
to the bouncing-ball trapping: It leads to non-exponential
WSS el decay of the time-dependent survival probabilisee Ref.
[8] for definition of the latter term and hence to the ob-
served non-Lorentzian features of the spreading profile.

We turn now to explain howdxyy is determined. By defi-
nition it is the deformation which is required in order to
expose features of the semiclassical landscape. These fea-
tures start to be exposed onlcédx) ~ SEsc which should be

probability
o o
> o

I
'S
T

—o— excluding r=0
0.2 g

probability
o
(2]

0.4¢ . . :
converted into an equivalent expressido~ oxy - Thus we
excluding r=0 get
0.2 —— excluding |r|<2
—— excluding |r|<3 Adfr 12
. . — prt. caleulation | SXNu= - XNg~\g- (32
10° 107 107" 10° 10’ ef
{b) x , . -
Here Ay is the geometric area of the deformati@n the
10 — b0 sense of scattering cross secjiowhile Ay is the effective

—e— bc of perturbative profile
—— bc of actual profile

area of the deformation. The definition of the latter is implied
by comparing Eq.(27) with Eq. (25. By rescaling
D(9)—aD(s) and dx— éx/a, we can makeA = Ag; by
convention. For special deformatiordy, coincides with
ox3d™ implying that we get into the non-universal regime as
soon as we have a breakdown of standard perturbation
theory.

Our theoretical consideration so far do not imply a total
collapse of perturbation theory. We may have in principle a
coexistence of nonuniversal core component and perturba-
10° dososedoccooo tive tails. Actually we see such coexistence in the lower sub-
figures of Fig. 7, mainly forox=0.2512. The right peak
o 100 10’ aroundx=0 is clearly nonperturbative, while the rest of the
(c) & profile is in reasonabléthough not very googdagreement
with the perturbative calculation. We are going to explain in
the next section that the total collapse of perturbation theory
for 6x>0.3 is actually not related at all to the appearance of
nonuniversal features in the core structure. It is only circum-
stantial that in the hard wall limit this collapse happens as
soon as we enter the nonuniversal regime.

core width
3

FIG. 8. (a) and(b) arep(x) for the rotation and for the generic
deformation respectively(c) is the perturbative calculation of the
core widthb, for the generic deformation. Also displayed is the
calculatedb, for Pp(r), and the actuab. for P(r).

and related discussion théremply that the nonuniversal
structure of the core is
XI. THE COLLAPSE OF PERTURBATION THEORY

1 SoE
P(hn—m)~— SC (31 A good starting for the following discussion is to consider

T SE5c+ (En—Ep)? the classical approximation fét(r). Namely, in Eq.(1) one
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approximatep,(Q,P) andp,,(Q,P) by microcanonical dis- waves is characterized by the correlation function

tributions. A phase-space illustration of the energy surfaces

which supporp,(Q,P) andp,(Q,P) can be found in Fig. 1

of Ref. [8]. The classicalP(n|m) equals to the overlap of

these surfaces. . .
If we were dealing with a generic system we could intro-Where coskr)=(exp(k-r))q is a generalized Bessel func-

duce a linearized version of the Hamiltonign(Q,P;x)  tion (for further details see Appendix D of Refl4]). As-

=Ho(Q,P) + SxF(Q,P; 5x=0), where  F(Q,P;x)  Suming that the wave function i) is uncorrelated with the

= Ml x. By definition this linearization is a good approxi- Wave function offm) one obtains

mation providedsx< 6x¢', where8x¢ is the classical corre-

1
(Yr(X1) Yr(X2))= ]_}COS(k|X2_X1|),

1 2
lation scale of7(Q,P;x) with respect tox. In the classical {([{njm)|?)= —> f f cog Kn|Xo—%q|)
linear regime the classica®(r) has the scaling property v
P(r)=1/8xP(r/5x). See Ref[15] for details. X COF K| Xo— Xg| ) A%, A, .

An equivalent definition of 6x¢ in the quantum- _ o _
mechanical case is obtained by looking on x@ependence The integration is over the whole volume of the cavity. Us-
of the matrix elements off(Q,P;x) in somefixed basis ing the definition of the cos function we can cast this expres-

. : o . . cion i 2y ;
Again we definesx¢ as the respective correlation scale. It is Sion into the form([(n|m)|*)=(f(q)) where the average is

quite clear that for cavity with soft walls we have over the differencey=(k,—k;), with all possible orienta-
tions for |ki|=k,, and for |k,|=k,. The functionf(q) is
ox%=1 [soft wallg], (33  defined as
wherel =E/f has been defined as the penetration distance f(q):f a9 %dx ?
upon collision. From a purely classical point of view the hard '

wall limit [—0 is a nonlinear limit. But this is not true

quantum mechanically. Here we have The functionf(q) depends mainly oq=|q|. We can obtain

an estimate forf(q) by considering a spherical cavily|
8x~\g [hard wall§ (34 <R with the same volume. Using spherical coordinates it is
straightforward to obtain
for /<\g. The terminology “classical correlation scale” 1 2
while referring toox< becomes misleading here, but we shall f(q)w( FT[_(RZ_XZ)(dl)/ZD 1
keep using it anyway. d-1
The theory of the core-tail structufé4] is valid only in . .
the linear reéme?x< ¢ Let us assume for a mome)r/n soft where FT is a Fourier transform fromto g. Forq<1/R we
walls. W N ki§x<<céx°' Hicient condition for hav- have simply f(q)=(V)2. For g>1/R we have f(q)
Walls. e(t:a'I "’:S i '?Tﬁ a suttcier gof. .t? Ot F? . =(V)?(Rg)%"L. This is because of the singularity at
Ing a core-tail structure's The answer 1S definitely not. Fertur— , p "1 average oveg can be done using again spherical
bation theory has a final collapse once the core wWigi{¥x) ; N 2 21 12
becomes of the order of the band width This defines a coordinate. We have=[(Ak)"+ 2k*(1—cosf)] %, where
S Wi IS detines Ak=|k,— K|, and we can transform the integration into
parametric scaleéx,. For ox> X, the LDOS becomes adg integration
purely nonperturbative. In Wigner's theory of random q g

banded matrices this corresponds to the crossover from Oy_»
Lorentzian to semicircle line shape. (f(q)>q=Q—

However, in the limit of hard walls the above mechanism d-1
of collapse becomes irrelevant because the band width is qda( V[q2= (AK)Z[(2K)2— 7] d-3
infinite (b=00). On the other hand we still have to satisfy the f —2< 5 f(q),
inequality ox<< &(g'. Thus, foréx>\g we expect a total col- K 2k

lapse of perturbation theory,

: as indeed observed in the m'{/?/hereﬂd is the solid angle ird dimensions. There is no
merical study.

point in trying to carry an exact integration. Rather, it is
important to observe that a practical approximation for the
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APPENDIX: OVERLAP OF UNCORRELATED RANDOM i
WAVES In the latter expression we have neglected dhdependent

normalization prefactor. It is a “practical” approximation
It is possible to estimate the overlan|m)|? if we as-  since it gives the correct behavior for both small and large
sume thafn) and|m) are uncorrelatedrandom superposi- values ofAk. The interpolation aroundk~1/R cannot be
tions of plane waves: A random superposition of planetrusted.
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