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Parametric evolution for a deformed cavity
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We consider a classically chaotic system that is described by a HamiltonianH(Q,P;x), where (Q,P)
describes a particle moving inside a cavity, andx controls a deformation of the boundary. The quantum
eigenstates of the system areun(x)&. We describe how the parametric kernelP(num)5u^n(x)um(x0)&u2, also
known as the local density of states, evolves as a function ofdx5x2x0. We illuminate the nonunitary nature
of this parametric evolution, the emergence of nonperturbative features, the final nonuniversal saturation, and
the limitations of random-wave considerations. The parametric evolution is demonstrated numerically for two
distinct representative deformation processes.
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I. INTRODUCTION

A. The local density of states

Consider a system that is described by an Hamilton
H(Q,P;x), where (Q,P) are canonical variables andx is a
constant parameter. Our interest in this paper is in the c
where (Q,P) describe the motion of a particle inside a ca
ity, and x controls the deformation of the confining boun
ary. The one-dimensional~1D! version of a cavity, also
known as a ‘‘potential well,’’ is illustrated in Fig. 1. How
ever, we are mainly interested in the case of chaotic cav
in d.1 dimensions. Cavities ind52 dimensions, also
known as billiard systems, are prototype examples in
studies of classical and quantum chaos, and we shall
them for the purpose of numerical illustrations.

The eigenstates of the quantized Hamiltonian areun(x)&
and the corresponding eigenenergies areEn(x). The eigenen-
ergies are assumed to be ordered, and the mean level sp
will be denoted byD. We are interested in the parametr
kernel

P~num!5u^n~x!um~x0!&u25tr~rnrm!. ~1!

In the equation aboverm(Q,P) andrn(Q,P) are the Wigner
functions that correspond to the eigenstatesum(x0)& and
un(x)&, respectively. The trace stands fordQdP/(2p\)d in-
tegration. The differencex2x0 will be denoted bydx. We
assume a dense spectrum, so that our interest is in ‘‘cla
cally small’’ but ‘‘quantum mechanically large’’ energ
scales. It is important to realize that the kernelP(num) has a
well defined classical limit. The classical approximation~see
remark@1#! is obtained by using microcanonical distributio
instead of Wigner functions.

Fixing n, the vectorP(num) describes the shape of th
nth eigenstate in theH05H(Q,P;x0) representation. By av
eraging over several eigenstates one obtains the ave
shape of the eigenstate~ASOE!. We can also identify
P(num) as the local density of states~LDOS!, by regarding it
as a function ofn, wherem is considered to be a fixed re
erence state. In the latter case an average over fewm states is
assumed. We shall denote the LDOS byP(r ), wherer 5(n
2m). The ASOE is justP(2r ). Note that the ASOE and th
1063-651X/2001/63~4!/046207~12!/$20.00 63 0462
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LDOS are given by the same function. One would have to
more careful with these definitions ifH0 were integrable
while H nonintegrable.

A few words are in order regarding the definition of th
LDOS, and its importance in physical applications. T
LDOS, also known as strength function@4–6#, describes an
energy distribution. Conventionally it is defined as follow

r~E!52
1

p
^muIm G~E!um&5(

n
P~num!d~E2En!,

~2!

whereG(E)51/(E2H1 i0) is the retarded Green function
We are interested in chaotic systems, so it should be c
that ourP(r ) is related by trivial change of variable (E°r )
to the above definedr(E). Our P(r ) also incorporates an
average over the reference state. The LDOS is importan
studies of either chaotic or complex conservative quant
systems that are encountered in nuclear physics as well
atomic and molecular physics. Related applications may
found in mesoscopic physics. Going fromH0 to H may sig-
nify a physical change of an external field, or switching on
a perturbation, or a sudden change of an effective interac
~as in molecular dynamics@7#!. The so-called ‘‘line shape’’
of the LDOS is important for the understanding of the as

FIG. 1. The shape of a cavity ind dimensions is defined by its
d21 boundary. The confining potential isV(Q). The figure illus-
tratesV(Q) for one dimension well. It also can be regarded as
cross section of thed.1 cavity. The kinetic energy of the particl
is E5

1
2 mv2. The walls of the cavity exert a field of forcef on the

bouncing particle. The hard wall limit corresponds tof→` and
V0→`. For theoretical considerations it is convenient to assu
that f and V0 are large but finite. Mathematically it is also conv
nient to think of the embedding space as having some huge
finite volume~not illustrated!.
©2001 The American Physical Society07-1
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DORON COHEN, ALEX BARNETT, AND ERIC J. HELLER PHYSICAL REVIEW E63 046207
ciated dynamics. It is also important to realize that the LD
is the Fourier transform of the so-called ‘‘survival probab
ity amplitude’’ @7# ~see Ref.@8# for concise presentation o
this point!.

B. Parametric evolution

Textbook @9# formulations of perturbation theory can b
applied in order to find the LDOS. Partial summations
diagrams to infinite order can be used in order to get
improved Lorentzian-type approximation. However, mo
textbooks do not illuminate the limitations and the subtlet
which are involved in using the conventional perturbat
schemes. It is therefore interesting to take a somewhat
ferent approach to the study of LDOS. The roots of t
alternate approach can be traced back to the work of Wig
@10# regarding a simple banded random matrix~BRM! model
H5E1dxB. Here E is a diagonal matrix whose elemen
are the ordered energies$En%, andB is a banded matrix. The
study of this model can be motivated by the realization t
in generic circumstances it is possible to writeH(Q,P;x)
'H0(Q,P)1dxF(Q,P). Using a simple semiclassical a
gument@11# it turns out that the matrix representation of a
genericF, in the eigenbasis that is determined by the chao
HamiltonianH0, is a banded matrix.

The important ingredient~from our point of view! in the
original work by Wigner, is the emphasis on the paramet
evolution~PE! of the LDOS. The LDOS describes an ener
distribution: Fordx50 the kernelP(r ) is simply a Kroneker
delta function. Asdx becomes larger, the width as well a
the whole profile of this distribution ‘‘evolves.’’ Wigner ha
realized that for his BRM model there are three parame
regimes. For very smalldx we have the standard perturbativ
structure where most of the probability is concentrated ir
50. For largerdx we have a Lorentzian lineshape. But th
Lorentzian line shape does not persist if we further incre
dx. Instead we get a semicircle line shape. Many wo
about the LDOS have followed@4–6#, but the issue of PE
has not been further discussed there. The emphasis in t
works is mainly on the case whereH0 is an integrable or
noninteracting system, whileH is possibly~but not necessar
ily ! chaotic due to some added perturbation term.

The line of study which is pursued in the present work h
been originated and motivated by studies of quantum di
pation@12–14#. Understanding PE can be regarded as a p
liminary stage in the analysis of the energy spreading proc
in driven mesoscopic systems. Note that the LDOS gives
energy redistribution due to a ‘‘sudden’’~very fast! change
of the Hamiltonian. Unlike the common approach for stud
of LDOS, we assume bothH and H0 to be chaotic. Both
correspond to the same parametrically dependent Ha
tonianH(Q,P;x), and there is nothing special in choosing
particular valuex5x0 as a starting point for the PE analysi

C. Main results

The theory of PE, as discussed in general in Refs.@12–14#
and in particular in Refs.@8,15# takes us beyond the random
matrix-theory considerations of Wigner. There appear fi
04620
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~rather than two! different parametric scales~see remark@2#!.
These are summarized by Table I.

In the present paper we consider cavities with hard wa
We are going to explain that because of the ‘‘hard w
limit’’ there are onlytwo independent parametric scales: O
is dxc

qm and the others~see remark@3#! coincide withdxNU .
Assuming thatdxc

qm anddxNU are well separated, it follows
that there arethreedistinct parametric regimes in the PE o
our system. These are the standard perturbative regimedx
!dxc

qm), the core-tail regime (dxc
NU!dx!dxqm), and the

nonuniversal regime (dx@dxNU).
The exploration of the three parametric regimes in the

of a deformed cavity with hard walls is the main issue of t
present paper. To the best of our knowledge such deta
exploration has not been practical in the past. We owe
ability to carry out this task to a powerful technique for fin
ing clusters of billiard eigenstates@19,20#. There are also
some secondary issues that we are going to address.

~a! In the strict limit of hard walls the PE becomes no
unitarity. We shall use the 1D well example in order to sh
light on this confusing issue. In particular we demonstr
that any truncation of the PE equation leads to false unita
due to a finite-size edge effect.

~b! For special deformations, namely, those that constit
linear combination of translations, rotations, and dilatio
the parametric scalesdxc

qm anddxNU coincide. Consequently
there is no longer distinct core-tail regime, and the PE f
tures a quite sharp transition from the standard perturba
regime to the nonuniversal regime.

~c! In the nonuniversal regime we demonstrate that
numerical results are in accordance with our theoretical
pectation@8#. Namely, the width of the LDOS profile is de
termined by time-domain semiclassical considerations, ra
then by phase-space or random-wave considerations.

~d! The last section puts our specific study in a larg
context. We explain why Wigner’s scenario of PE is n
followed once hard walls are considered.

II. CAVITY SYSTEM

We consider a particle moving inside ad-dimensional
cavity whose volume isV. The kinetic energy of the particle
is E5 1

2 mv2, wherem is its mass, andv is its velocity. It is

TABLE I. The parametric scales in the general theory of PE
listed ~left column! along with the questions that motivate the
introduction. The distributionP(r ) may contain perturbative tai
regions~for dx!dxprt), and nonperturbative core regions~for dx
.dxc

qm). Nonuniversal ~system specific! features may manifes
themselves in the core structure fordx@dxNU . In generic examples
dx@dxSC allows a classical approximation forP(r ). We are going
to explain that only two independent parametric scales survive
the hard wall limit.

dxc
cl Is it possible to linearizeH(x1dx)?

dxc
qm Is it possible to use standard perturbation theory?

dxprt Do perturbative tail regions survive?
dxNU Do nonuniversal core features show up?
dxSC Is it possible to use semiclassical approximation?
7-2
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PARAMETRIC EVOLUTION FOR A DEFORMED CAVITY PHYSICAL REVIEW E63 046207
assumed that this motion is classically chaotic. The balli
mean free path isl bl . One can use the estimatel bl;V/A,
whereA is the total area of the walls. The associated ti
scale istbl5 l bl /v.

The penetration distance upon a collision isl 5E/ f , where
f is the force that is exerted by the wall. Upon quantizat
we have an additional length scale, which is the De Brog
wavelengthlB52p\/(mv). We shall distinguish betwee
the hard walls case where we assumel ,lB! l bl , and soft
walls for which lB! l . Note that taking\→0 implies soft
walls.

There is a class of special deformations that are sh
preserving. These are generated by translations, rotat
and dilations of the cavity. A general deformation need
preserve the billiard shape nor its volume. We can spe
any deformation by a functionD(s), wheres specifies the
location of a wall element on the boundary~surface! of the
cavity, andD(s)dx is the normal displacement of this wa
element. In many practical cases it is possible to use
conventionuD(s)u;1. With this conventiondx has units of
length, and its value has the meaning of typical wall d
placement.

The eigenenergies of a particle inside the cavity are
general x dependent, and can be written asEn
5(\kn)2/(2m). The mean level spacing is

D5\v3
2p

Vd

1

VlB
d21 ~3!

whereVd52p,4p, . . . , for d52,3, . . . . In ournumerical
study we shall consider a quarter stadium with curved e
of radius 1 and straight edge of length 1. The ‘‘volume’’
the quarter stadium isV511p/4. The ‘‘area’’ of its bound-
ary A541p/2 is just the perimeter. We shall look on th
parametric evolution of eigenstates aroundk;400 where the
mean level spacing ink units is D̃5D/(\v)'0.0088.

III. PARAMETRIC EVOLUTION

Consider the quantum-mechanical statec5um(x0)&. We
can writec5(nan(x)un(x)&. The parametric kernel can b
written asP(num)5uan(x)u2. It is a standard exercise to ob
tain ~from dc/dx50 and differentiating by parts! the fol-
lowing equation for the amplitudes:

dan

dx
52

i

\ (
m

Wnm~x!am . ~4!

In order to getP(num) one should solve this equation wit
the initial conditionsan(x0)5dnm . The transitions between
levels are induced by the matrix elements

Wnm5
i\

En2Em
S ]H

]x D
nm

~5!

and we use the ‘‘gauge’’ conventionWnm50 for n5m.
~Only one parameter is being changed and therefore Ber
phase is not an issue.!
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Equation~4! is a possible starting point for constructing
perturbation theory for the PE ofP(r ) ~see Ref.@14# for
more details!. As an input for this equation we need th
matrix elements of]H/]x. These can be calculated using
simple boundary integral formula@16# whose simplest deri-
vation @14# is as follows: The position of the particle in th
vicinity of a wall element isQ5(z,s), wheres is a surface
coordinate andz is a perpendicular ‘‘radial’’ coordinate. We
take f 5` so that

]H
]x

52D~s!V0d~z!. ~6!

The logarithmic derivative of the wave function on th
boundary isw(s)/c(s), wherew(s)5n•¹c, andn is a unit
vector in thez direction. Forz.0 the wave functionc(Q) is
a decaying exponential. IfV0 is large enough, then the ex
ponential decay is fast, and we can treat the boundary as
were locally flat. It follows that the logarithmic derivative o
the wave function on the boundary should be equal
2A2mV0/\. Consequently one obtains the following e
pression for the matrix elements:

S ]H
]x D

nm

52
\2

2m R wn~s!wm~s!D~s!ds. ~7!

In the one-dimensional case the boundary integral is rep
by the sum(swn(s)wm(s)D(s) where s51,2 are the two
turning points of the potential well.

IV. HARD WALLS AND NONUNITARITY

For the purpose of the following argumentation it is co
venient to takef 5`, but to keepV0 large but finite. Math-
ematically it is also convenient to think of the embeddi
space as having some huge but finite volume. We would
to illuminate a subtlety which is associated with the ha
wall limit V0→`. For any finiteV0 the parametric kerne
satisfies

(
n

P~num!5ptotal ~8!

with ptotal51. This follows from the fact thatun(x)& is a
complete orthonormal basis for anyx. However, for hard
walls (V05`) this statement is not true. This implies th
for hard walls the PE is nonunitary. We are going to expla
this point below.

Let us denote the volume of the original cavity byV0 and
of the deformed cavity byV. The volume shared by the de
formed and the undeformed cavities will be denoted
V0ùV and we shall use the notationh5(V0ùV)/V0. For the
purpose of the following argument let us consider a refere
statem whose energyEm is well belowV0. Let us also as-
sume that the wall displacement is large compared to
Broglie wavelength. Consequently the expression
P(num) has the following semiclassical structure:

P~num!'h3 f ~En2Em!1~12h!3g~En2Ec!, ~9!
7-3
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DORON COHEN, ALEX BARNETT, AND ERIC J. HELLER PHYSICAL REVIEW E63 046207
whereEc5(V01Em);V0. The above result can be deduc
by assuming that the wave functions look ergodic in spa
but still that they are characterized by a well-definedlocal
wavelength. An equivalent derivation is obtained by us
the phase-space picture of Ref.@8#. Both f andg in the above
expression have unit normalization, and thereforeptotal51
for any finiteV0. However, for hard walls (V05`) we have
Ec5` and thereforeptotal5h. We may say the the operatio
of taking the hard wall limit does not commute with th
summation in Eq.~8!. An analogous statement can be d
rived regarding the summation(mP(num), with the respec-
tive definitionh5(V0ùV)/V.

The correctness of the above observation becomes
trivial if we consider Eq.~4! with expressions~5! and ~7!
substituted for the matrix elements. Looking at Eq.~5! with
Eq. ~7! it seems as if the matrixWnm is Hermitian, and
therefore should generate unitary PE. But this statemen
mathematically correct only for~any! finite truncationN of
the PE equation. ForN5` the matrixWnm becomes non-
Hermitian. It turns out that for any finiteN, there is a pile-up
of probability in the edges of the spreading profile, due
finite-size effect. We shall demonstrate this effect in the n
section using a simple 1D example. In other words, if
solve Eq.~4! for hard-walled cavity, we get as a result E
~9! with Ec5EN . For N5` we get Ec5` and therefore
ptotal5h in accordance with the conclusion of the previo
paragraph.

Thus if eitherV0,` or N,` then we have unitary PE
But for hard walls, meaningV05` with N5`, we have
nonunitary PE. The lost probability is associated with t
second term in Eq.~9!. This term is peaked around a hig
energyEc . For hard wallsEc5` and consequently som
probability is lost. The above picture is supported by t
simple pedagogical example of the next section.

V. PARAMETRIC EVOLUTION FOR A 1D BOX

Consider a 1D box with hard walls, where the free moti
of the particle is within 0,Q,a. The eigenstates of th
Hamiltonian are

un~a!&→~21!nA2

a
sin~knQ!, ~10!

wherekn5n3(p/a) is the wave number, andn51,2, . . . ,
is the level index. The phase factor (21)n has been intro-
duced for convenience. We consider now the parametric e
lution as a function ofa. One easily obtains

^n~a!um~a0!&5~21!nAh
sin~phn!

p

2m

h2n22m2
, ~11!

whereh[a0 /a is assumed to be smaller than 1, correspo
ing to expansion of the box. The probability kernel
P(num)5u^num&u2. One can verify that the parametric ev
lution in the a0°a direction is unitary, meaning tha
(nP(num)51. On the other hand, in thea°a0 direction the
04620
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parametric evolution is nonunitary, because(mP(num)5h.
The profile ofP(num) for fixed n is illustrated by a dashed
line in Fig. 2.

We can restore unitarity by makingV0 large but finite. In
such case, a variation of the above calculation leads to
following picture: Consider the overlap of a reference lev
n(a) with the levelsm(a0). As in the caseV05` there is a
probability h which is located in the levels whose energie
are Em'En . But now the ‘‘lost’’ probability (12h) is lo-
cated in the levels whose energies areEm'En1V0. Thus we
have(mP(num)51 rather than(mP(num)5h.

We again consider the caseV05`. The normal derivative

on the boundary iswn(a)5A(2/a)kn . Hence we can easily
get the following result:

1

\
Wnm5

2 i

kn
22km

2
wn~a!wm~a!52 i

1

a

2nm

n22m2
. ~12!

FIG. 2. ~a! An image of the kernelP(num) for 13% expansion
of the box ~i.e., a/a051.13). The kernel has been calculated n
merically using Eq.~13! with finite truncationN5256. ~b! The
profile of a representative row ofP(num). The dashed line is the
N5` analytical result using Eq.~11!.
7-4



n

-

1D
is
e

e

w
lo
ty

io

i

n

ld
n
re
v
o

in

ia
-

a
(
-

ns
vity

r-
t the

bil-
zed

the

as

te

t
on-

-

es
la-

f

PARAMETRIC EVOLUTION FOR A DEFORMED CAVITY PHYSICAL REVIEW E63 046207
It is more convenient to usea5 ln(a) for parametrization.
Hence the equation that describes the parametric evolutio

dan

da
52(

m

2nm

n22m2
am . ~13!

For any finite truncationN,` this equation manifestly gen
erates unitary parametric evolution. It is only forN5` that
it becomes equivalent to the nonunitary evolution of the
box. Again, one can wonder where the ‘‘lost’’ probability
located ifN,`. The answer is illustrated in Fig. 2. We se
that the ‘‘lost’’ probability piles up at the edge of the~trun-
cated! tail.

VI. MATRIX ELEMENTS FOR CHAOTIC CAVITY

It is possible to use semiclassical considerations@11# in
order to determine the band profile of the matrix Eq.~7!. The
application to the cavity example has been introduced in R
@14#, and numerically demonstrated in Ref.@17#. The accu-
racy of this semiclassical estimate is remarkable. Here
summarize the recipe. First one should generate a very
~ergodic! trajectory, and define for it the fluctuating quanti

F~ t !52
]H
]x

5(
col

2mv cos~ucol!Dcold~ t2tcol!, ~14!

wheretcol is the time of a collision,Dcol stands forD(s) at
the point of the collision, andv cos(ucol) is the normal com-
ponent of the particle’s velocity. Each delta spike~for soft
walls it is actually a narrow rectangular spike! corresponds to
one collision. Now one can calculate the correlation funct
C(t) of the fluctuating quantityF(t), and its Fourier trans-
form C̃(v). The semiclassical estimate for the band profile

K US ]H
]x D

nm
U2L '

D

2p\
C̃S En2Em

\ D ~15!

Reference@18# contains a systematic study of the functio
C̃(v). For largev, meaningv@1/tbl , one can use

C̃~v!'2m2v3^ucosuu3&
1

V R @D~s!#2ds, ~16!

where the geometric factor iŝucos(u)u3&51,4/3p, . . . , for
d51,2, . . . . Alengthy calculation@14# reveals that Eq.~15!
with ~16! substituted, is an exact global result if we cou
assume that the cavity eigenfunctions look similar to ‘‘ra
dom waves,’’ and that different wave functions are uncor
lated. However, it turns out that to take this random wa
result as a global approximation is an oversimplification. F
v!1/tbl , using the semiclassical recipe and assum
strongly chaotic cavity, one obtains

C̃~v!'C̃~`!3~tblv!g ~17!

with g54 for dilations and translations,g52 for rotations,
andg50 for normal deformations. We use the term ‘‘spec
deformations’’ @18# in order to distinguish those deforma
04620
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tions that have the propertyC̃(v)→0 in the limit v→0.
Any combination of dilations, translations, and rotations is
special deformation. Around the bouncing frequencyv
;1/tbl) the functionC̃(v) typically displays some nonuni
versal ~system and deformation specific! structure. This is
true for any typical deformation, but for some deformatio
the nonuniversal features are more pronounced. If the ca
has bouncing ball modes, we may get also a modified~non-
universal! behavior in the small frequency limit. For the pu
pose of general discussion it is convenient to assume tha
interpolation between Eqs.~17! and ~16! is smooth, but in
actual numerical calculation the actualC̃(v) is computed
~see below!.

As a numerical example we have picked the stadium
liard. We have found the eigenstates of a desymmetri
~quarter! stadium as described in Ref.@17#. We have selected
those eigenstates whose eigenenergieskn are in the vicinity
of k5400. Our two representative deformations are~a! rota-
tion around the stadium center and~b! generic~nonspecial!
deformation involving the curved edge. In the latter case
curved edge of the quarter stadium (0,s,p/2) is pushed
outwards withD(s)5@cos(s)#2, while for the straight edges
D(s)50. ~The corners50 is the 90° intersection of the
curved edge with the long straight edge!. The respective
band profiles are displayed in Fig. 3. The band profile h
been defined as

B~k!5
1

4k2 K U R wn~s!wm~s! D~s!dsU2L , ~18!

wherek5(kn2km) is the distance from the diagonal. No
that B(k) is just a scaled version of the semiclassicalC̃(v)
as implied by Eq.~15! with ~7!. The remarkable agreemen
of B(k) with the semiclassical calculation has been dem
strated in Refs.@17,18#.

It is important to realize that in the hard wall limit~which
is assumed here! the matrix (]H/]x)nm is not a banded ma
trix. It would become banded if we were assumingsoftwalls.
For soft wallsC̃(v) becomes vanishingly small forv@v/ l .
The bandwidth in energy units isDb5\v/ l , and in dimen-
sionless units it is

b5
Db

D
5

V
llB

d21
. ~19!

Unless stated otherwise we haveb5`.

VII. PARAMETRIC EVOLUTION—NUMERICAL
RESULTS

The parametric evolution ofP(r ) for rotation and for ge-
neric deformation of the stadium is illustrated by the imag
of Fig. 4 and by the plots of Fig. 5 and Fig. 6. The calcu
tion of eachP(r ) profile is carried out as follows: Givendx
we use the method which is described in Ref.@20# in order to
calculate the matrixP(num). Then we plot the elements o
P(num) versusk5@kn(x)2km(0)#. In order to obtain the
7-5
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average profile the plot is smeared using standard proce
~see remark@21#!. The transformation fromk to r 5(n
2m) is done using the relation~see remark@21#!:

k5D̃•r 2
1

d
k3

dV
V . ~20!

AboveD̃ is the mean level spacing of the$kn% spectrum, and
dV is the volume change that is associated with the defor
tion ~it is approximately proportional todx). If the deforma-
tion is volume preserving~as in the case of rotation! then the
second term equals zero. But for the generic deformation
we have picked in our second numerical example, the v
ume is not preserved, and the systematic ‘‘downward’’ sh
of the levels should be taken into account.

Looking first at the case of rotation, we clearly see tw
parametric regimes: The standard perturbative regimedx
,0.2) and the nonuniversal regime (dx.0.2). Let us clarify

FIG. 3. Band profiles for deformations of the quarter stadium
defined by Eq.~18!. ~a! Rotation around the stadium center.~b!
Generic ~nonspecial! deformation involving displacement of th
curved edge. It is important to notice that for the special deform

tion we haveC̃(v)→0 in the limit v→0.
04620
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this observation. We see that fordx,0.2 most of the prob-
ability is well concentrated inr 50. This implies that we can
use standard perturbation theory in order to estimate thr
50 probabilities. On the other hand, fordx.0.2 the pertur-
bative nature ofP(r ) is destroyed. NowP(r ) becomes
smoother, and eventually~for dx.0.5) there is a very good
fitting with Lorentzian~see lower plot in Fig. 5!.

The qualitative explanation for the Lorentzian profile is a
follows. Fordx.0.5 the typical displacement of the walls i
of the order oflB . Therefore theun(x)& eigenstates become
uncorrelated with theum(0)& eigenstates. ConsequentlyP(r )
becomesdx independent. The Lorentzian profile agrees wi
the assumption of uncorrelated random waves as explai
in the Appendix.

s

-

FIG. 4. Each column is an image ofP(r ) versusk for a differ-
ent value ofdx. There are 41 columns. The valuedx;1 corre-
sponds roughly tolB displacement of the boundary.~a! is for rota-
tion and ~b! is for generic deformation. Note that ther 50
component is excluded from the image. Instead we have plot
over the image anr 50 line wherever this component contains mo
than 50% of the probability. In the lower figure this line cannot b
resolved from the developing core region.
7-6
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Let us now look at the case of generic deformation. H
we clearly see three parametric regimes: The standard
turbative regime (dx,0.004), the core-tail regime (0.00
,dx,0.2), and the nonuniversal regime (dx.0.2). Let us
clarify this observation. As in the case of rotation there i
standard perturbative regime (dx,0.004) where most of the

FIG. 5. Representative plots ofP(r ) for the case of rotation.~a!
is for 0.0010<dx<0.2512. Ther 50 component is excluded. In~b!
the fitted Lorentzian is indistinguishable from the actual profile.
04620
e
er-
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probability is well concentrated inr 50. For larger deforma-
tion, namely fordx.0.004, standard perturbation theory
no longer applicable because then5m level is mixed non-
perturbatively with other~neighboring! levels. As a result
P(r ) contains a nonperturbative ‘‘core’’ component. How
ever, for 0.004,dx,0.2 we definitely do not get a Lorent

FIG. 6. Representative plots ofP(r ) for the case of generic
deformation.~a! is for 0.0010<dx<0.2512. In~b! a fitted Lorent-
zian is overlayed for the purpose of comparison.
7-7



y

e
al
n.
to
nt

x

he
-

he
th
sp

r

in

-

e
th

e

nt.

nd-

g
r
d to

ase,
ller

nd

ue
all

ng
in-

n,
on

ed.

re,
ere

xing
ales.

n

al-

s at
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zian. Rather the tails ofP(r ) keep growing in the same wa
as in the standard perturbative regime.

In the case of the generic deformation, as in the cas
rotation, we enter the nonuniversal regime, and eventu
~for dx.0.6) we get a smooth Lorentzian-like distributio
However, the Lorentzian-like distribution is not identical
that of the rotation case. Also the similarity to proper Lore
zian is far from being satisfactory~see lower plot in Fig. 6!.
This means that the random-wave picture of the Appendi
an oversimplification.

In the following sections we are going to summarize t
theoretical considerations@8# that explain the observed para
metric scenario. In particular we are going to illuminate t
way in which nonperturbative features emerge; to clarify
crossover to the nonuniversal regime; and to explain the
cific nature of the nonuniversal distribution.

VIII. THE STANDARD PERTURBATIVE REGIME

Standard perturbation theory gives the following first o
der expression for the LDOS

P~num!'dnm1dx2
u~]H/]x!nmu2

~En2Em!2
. ~21!

This expression is most straightforwardly obtained by
specting Eqs.~4! and~5!. We can define the~total! transition
probability as

p~dx!5(
r 5” 0

P~r !. ~22!

Using Eq. ~21! combined with~15! we get the following
estimate:

p~dx!'dx23
1

\2Euvu.D/\

dv

2p

C̃~v!

v2
. ~23!

Standard perturbation theory is applicable as long asp(dx)
!1. This can be converted into an equivalent inequalitydx
!dxc

qm. By this definitiondxc
qm is the parametric deforma

tion which is needed in order to mix the initial levelm with
other levelsn5” m.

If we use Eq.~23! for a special deformation, then we hav
g.1, and consequently the integral is not sensitive to
exclusion of theur u,D region. As a result we havedxc

qm

}\. Using Eq.~17! with ~16! we get

dxc
qmuspecial5S l bl

1

V R @D~s!#2dsD 21/2

3lB . ~24!

In the case of generic deformation, Eq.~24! is not valid
because the value of the integral in Eq.~23! is predominantly
determined by thev;D/\ lower cutoff rather than by an
effectivev;1/tbl lower cutoff. As a result one obtains

dxc
qmugeneric5S l H

1

V R @D~s!#2dsD 21/2

3lB , ~25!
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where l H5vtH is the length which is associated with th
Heisenberg timetH52p\/D.

It is illuminating to use the conventionD(s);1, such that
dx measures the typical displacement of a wall eleme
With this convention we get from Eqs.~24!,~25! the follow-
ing:

dxc
qmuspecial'lB , ~26!

dxc
qmugeneric5S lB

d21

Aeff
D 1/2

3lB , ~27!

dxc
qmudiffractive;lB . ~28!

In the generic case the effective area of the deformed bou
ary Aeff may be smaller than the total areaA of the boundary.
The effective areaAeff can be formally defined by comparin
Eq. ~27! with Eq. ~25!. Equation~28! has been added fo
sake of completeness of our presentation. It correspon
the diffractive limit Aeff→lB

d21 . Note that this limit is be-
yond the scope of the present study. Thus in the generic c
the wall displacement needed to mix levels is much sma
than lB . In the generic casedxc

qm}\ (d11)/2 rather than
dxc

qm}\. What happens with perturbation theory beyo
dxc

qm? This is the subject of the next section.

IX. THE CORE-TAIL REGIME

For dx.dxc
qm standard perturbation theory diverges d

to the nonperturbative mixing of neighboring levels on sm
scale: Oncedx becomes of the order ofdxc

qm several levels
are mixed, and asdx becomes larger, more levels are bei
mixed nonperturbatively. Consequently it is natural to dist
guish betweencore and tail regions @13–15#. Most of the
spreading probability is contained within the core regio
which implies a natural extension of first-order perturbati
theory ~FOPT!: The first step is to transform Eq.~4! into a
new basis where transitions within the core are eliminat
The second step is to use FOPT~in the new basis! in order to
analyze the core-to-tail transitions. Details of this procedu
which is in the spirit of degenerate perturbation theory, w
discussed in Ref.@14#. The most important~and nontrivial!
consequence of this procedure is the observation that mi
on small scales does not affect the transitions on large sc
Therefore we have in the tail regionP(num)}dx2 rather
than P(num)}dx. The validity of this observation has bee
numerically illustrated in Ref.@15#.

Following the above reasoning we define thetail region
as consists of those levels whose ‘‘occupation’’ can be c
culated using perturbation theory, while thecore is the non-
perturbative component in the vicinity ofr 50. Assuming
that only one scale characterize the core width, one arrive
the following practical approximation

Pprt~r !5
D

2p\
C̃S En2Em

\ D dx2

@G~dx!#21~En2Em!2
.

~29!
7-8
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It is implicit in this definition that (En2Em) should be re-
garded as a function ofr 5(n2m). The parameterG(dx) is
determined~for a given dx) such thatPprt(r ) has a unit
normalization. One may say thatG(dx) regularizes the be
havior aroundr 50. For generic deformation we get

G~dx![b0D'S dx

dxc
qmD 2

3D. ~30!

The core is defined as the regionur u,b0, and the outer
(ur u.b0) regions are the tails. Fordx!dxc

qm we getb0!1
and the core-tail structure Eq.~29! becomes equivalent to th
standard perturbative result Eq.~21!. It should be clear tha
the core-tail structure is a generalization of Wigner’s Lore
zian. It is indeed a Lorentzian in the special case of a ‘‘fla
band profile.

We turn now to analyze our numerical results. We ha
verified ~see, e.g., Fig. 7! that for dx,0.2 we have good
agreement with perturbation theory irrespective of whet
we have a core component~which is the case for the gener
deformation! or not ~which is the case for the rotation!. As
we come closer todx;0.2 the agreement becomes wors
and for dx.0.3 we have a total collapse of perturbatio
theory. In Fig. 8 we display the total transition probabili
p(dx) as a function ofdx. This plot should be used in orde
to numerically determine the value ofdxc

qm, say as the value
wherep(dx)51/2.

Figure 8 also displays comparison with the correspond
perturbative calculation@using Eq. ~22! with ~29!#. The
agreement~for dx,dxc

qm) in case of the rotation is remark
able. For larger values ofdx one observes a linear drop o
the total probability due to the nonunitary nature of the e
lution. ~This drop is clearly linear in a linear-linear sca
which is not displayed.! The eventual rise of the total trans
tion probability ~beyond 1) in case of the generic deform
tion, reflects numerical errors in the determination of t
small k overlaps. See Ref.@20# for further details.

The lower subfigure in Fig. 8 displays the calculated c
width b0 for the generic deformation. Recall thatb0 is deter-
mined, givendx, such thatPprt(r ) of Eq. ~29! is normalized.
Also calculated is the widthbc of the region that contains
50% of the probability. The widthbc is calculated for both
Pprt(r ) and P(r ). Note thatbc51 in the standard perturba
tive regime. The determination ofdxc

qm for the generic de-
formation becomes more convenient by using this plot. A
the crossover~at dxNU;0.2) to the nonuniversal regime i
most pronounced.

X. NONUNIVERSAL REGIME

The validity of Eq.~29! as a global approximation relie
on the assumption that the core is characterized only by
scale~which is b0). But this assumption ceases to be true
dx is large enough. We have explained in Ref.@8# that the
width of thecoredefines a ‘‘window’’ through which we can
view the ‘‘landscape’’ of the semiclassical analysis. Asdx
becomes larger, this ‘‘window’’ becomes wider, and even
ally some of semiclassical structure is exposed. This
04620
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marked by the nonuniversal parametric scaledxNU . For dx
larger thandxNU , the nonuniversal structure of the core
exposed.

What is the semiclassical structure of the LDOS? Tim
domain semiclassical considerations@See Eq.~10! of Ref. @8#

FIG. 7. Comparison between the perturbative calculationPprt(r )
and the actualP(r ). ~a! is for the rotation and~b! is for the generic
deformation,~c! is the same as~b!, giving a zoom over the ‘‘birth’’
of the nonperturbative semiclassical saturation profile.
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and related discussion there# imply that the nonuniversa
structure of the core is

P~n2m!'
1

p

dESC

dESC
2 1~En2Em!2

~31!

FIG. 8. ~a! and~b! arep(dx) for the rotation and for the generi
deformation respectively.~c! is the perturbative calculation of th
core width b0 for the generic deformation. Also displayed is th
calculatedbc for Pprt(r ), and the actualbc for P(r ).
04620
with dESC5\/tcol . The definition of the collision rate 1/tcol
is similar to that of 1/tbl . The former is the collision rate
with the deformed areaAdfr , and therefore it may be smalle
than 1/tbl , becausetbl is related to the total areaA.

If, by mistake, we identifiedtcol with tbl , then we would
get the random wave result which is derived in the Appe
dix. This would be an over simplification. If it were true,
would imply that fordx.dxNU we should have got the sam
Lorentzian distribution in both cases~the rotation and the
generic deformation!. What we see, as a matter of fact, is th
for the rotation~Fig. 5! we have a reasonably good agre
ment with Lorentzian whose width isdkSC51.5, whereas for
the generic deformation~Fig. 6! there is rough agreemen
with Lorentzian whose width isdkSC50.26. The smaller
width in the latter case clearly reflects having largertcol . For
the generic deformation we also have pronounced n
Lorentzian features. Actually the global fitting to Lorentzia
is quite bad. Our understanding is that these features are
to the bouncing-ball trapping: It leads to non-exponen
decay of the time-dependent survival probability~see Ref.
@8# for definition of the latter term!, and hence to the ob
served non-Lorentzian features of the spreading profile.

We turn now to explain howdxNU is determined. By defi-
nition it is the deformation which is required in order
expose features of the semiclassical landscape. These
tures start to be exposed onceG(dx);dESC which should be
converted into an equivalent expressiondx;dxNU . Thus we
get

dxNU5S Adfr

Aeff
D 1/2

3lB;lB . ~32!

Here Adfr is the geometric area of the deformation~in the
sense of scattering cross section!, while Aeff is the effective
area of the deformation. The definition of the latter is impli
by comparing Eq. ~27! with Eq. ~25!. By rescaling
D(s)°aD(s) and dx°dx/a, we can makeAeff5Adfr by
convention. For special deformationsdxNU coincides with
dxc

qm implying that we get into the non-universal regime
soon as we have a breakdown of standard perturba
theory.

Our theoretical consideration so far do not imply a to
collapse of perturbation theory. We may have in principle
coexistence of nonuniversal core component and pertu
tive tails. Actually we see such coexistence in the lower s
figures of Fig. 7, mainly fordx50.2512. The right peak
aroundk50 is clearly nonperturbative, while the rest of th
profile is in reasonable~though not very good! agreement
with the perturbative calculation. We are going to explain
the next section that the total collapse of perturbation the
for dx.0.3 is actually not related at all to the appearance
nonuniversal features in the core structure. It is only circu
stantial that in the hard wall limit this collapse happens
soon as we enter the nonuniversal regime.

XI. THE COLLAPSE OF PERTURBATION THEORY

A good starting for the following discussion is to consid
the classical approximation forP(r ). Namely, in Eq.~1! one
7-10
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approximatesrn(Q,P) andrm(Q,P) by microcanonical dis-
tributions. A phase-space illustration of the energy surfa
which supportrn(Q,P) andrm(Q,P) can be found in Fig. 1
of Ref. @8#. The classicalP(num) equals to the overlap o
these surfaces.

If we were dealing with a generic system we could intr
duce a linearized version of the HamiltonianH(Q,P;x)
5H0(Q,P)1dxF(Q,P;dx50), where F(Q,P;x)
5]H/]x. By definition this linearization is a good approx
mation provideddx!dxc

cl , wheredxc
cl is the classical corre

lation scale ofF(Q,P;x) with respect tox. In the classical
linear regime the classicalP(r ) has the scaling propert
P(r )51/dxP̂(r /dx). See Ref.@15# for details.

An equivalent definition of dxc
cl in the quantum-

mechanical case is obtained by looking on thex dependence
of the matrix elements ofF(Q,P;x) in somefixed basis.
Again we definedxc

cl as the respective correlation scale. It
quite clear that for cavity with soft walls we have

dxc
cl5 l @soft walls#, ~33!

where l 5E/ f has been defined as the penetration dista
upon collision. From a purely classical point of view the ha
wall limit l→0 is a nonlinear limit. But this is not true
quantum mechanically. Here we have

dxc
cl;lB @hard walls# ~34!

for l ,lB . The terminology ‘‘classical correlation scale
while referring todxc

cl becomes misleading here, but we sh
keep using it anyway.

The theory of the core-tail structure@14# is valid only in
the linear regimedx!dxc

cl . Let us assume for a moment so
walls. We can ask isdx!dxc

cl a sufficient condition for hav-
ing a core-tail structure? The answer is definitely not. Per
bation theory has a final collapse once the core widthb0(dx)
becomes of the order of the band widthb. This defines a
parametric scaledxprt . For dx.dxprt the LDOS becomes
purely nonperturbative. In Wigner’s theory of rando
banded matrices this corresponds to the crossover f
Lorentzian to semicircle line shape.

However, in the limit of hard walls the above mechanis
of collapse becomes irrelevant because the band widt
infinite (b5`). On the other hand we still have to satisfy th
inequalitydx!dxc

cl . Thus, fordx.lB we expect a total col-
lapse of perturbation theory, as indeed observed in the
merical study.
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APPENDIX: OVERLAP OF UNCORRELATED RANDOM
WAVES

It is possible to estimate the overlapu^num&u2 if we as-
sume thatun& and um& are uncorrelatedrandom superposi
tions of plane waves: A random superposition of pla
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waves is characterized by the correlation function

^cR~x1!cR~x2!&5
1

V cos~kux22x1u!,

where cos(kr)[^exp(ik•r )&V is a generalized Bessel func
tion ~for further details see Appendix D of Ref.@14#!. As-
suming that the wave function ofun& is uncorrelated with the
wave function ofum& one obtains

^u^num&u2&5S 1

VD 2E E cos~knux22x1u!

3cos~kmux22x1u!dx1dx2 .

The integration is over the whole volume of the cavity. U
ing the definition of the cos function we can cast this expr
sion into the form̂ u^num&u2&5^ f (q)&q where the average is
over the differenceq5(k22k1), with all possible orienta-
tions for uk1u5km and for uk2u5kn . The function f (q) is
defined as

f ~q!5U E eiq•xdxU2

.

The functionf (q) depends mainly onq5uqu. We can obtain
an estimate forf (q) by considering a spherical cavityuxu
,R with the same volume. Using spherical coordinates i
straightforward to obtain

f ~q!'S FTF 1

d21
~R22x2!(d21)/2G D 2

,

where FT is a Fourier transform fromx to q. For q!1/R we
have simply f (q)5(V)2. For q@1/R we have f (q)
5(V)2/(Rq)d11. This is because of the singularity atx
56R. The average overq can be done using again spheric
coordinate. We haveq'@(Dk)212k2(12cosu)#1/2, where
Dk5ukn2kmu, and we can transform thedu integration into
a dq integration

^ f ~q!&q5
Vd22

Vd21

3E qdq

k2 S A@q22~Dk!2#@~2k!22q2#

2k2 D d23

f ~q!,

where Vd is the solid angle ind dimensions. There is no
point in trying to carry an exact integration. Rather, it
important to observe that a practical approximation for
overlap is

^u^num&u2&'S 1

kRD d21 1

11@R•~kn2km!#2
.

In the latter expression we have neglected thed-dependent
normalization prefactor. It is a ‘‘practical’’ approximatio
since it gives the correct behavior for both small and la
values ofDk. The interpolation aroundDk;1/R cannot be
trusted.
7-11
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@1# The classical approximation forP(num) works well for er-
godic eigenstates. As explained later in the text we actu
consider the averaged profile. Namely,P(num) is regarded as
a function ofr 5n2m, and it is averaged over the referen
statem. With this procedure the effect of the minority of non
ergodic eigenstates can be neglected in the classical limit.

@2# The two parametric scales of Wigner’s RMT model corr
spond todxc

qm and dxprt of Table I. Consequently there ar
three parametric regimes in Wigner’s theory. These are
standard perturbative regime (dx!dxc

qm), the Lorentzian re-
gime (dxc

qm!dx!dxprt), and the semi-circle regime (dx
@dxprt). As an artifact of this RMT model, there actually e
ists a forth regime~Anderson strong localization regime! that
in the present context does not have a semiclassical analo

@3# As explained in Ref.@8# the generic hierarchy isdxNU!dxprt

!dxSC!dxc
cl . This hierarchy is realized in the classical lim

~small\) where we have soft walls~see Sec. II!. The hard wall
limit is nongeneric, and these four parametric scales coinc
In the present paper we assume hard walls unless stated o
wise.
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