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The calculation of the induced current

Adiabatic transport [Kubo, Thouless, Avron, Berry]:

dQ = G du ~ I=Gu

G(u) = 2Im [<aa¢q" aﬁu‘l’>]

$=0

Splitting ratio picture [MC,IS,DC]:
> At

qn (t) — occupation probabilities of the network levels

p t) = occupation probability of the shuttle

p(t) + > aul(t) = 1
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I [current via C,]




Single path crossing
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A complicated way to derive the continuity equation....




Double path crossing
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Here we are not able to deduce it from the continuity equation. But...

d
— [)\_q_ + )\_|_q+] , with A+ = splitting ratio = a

dt c1 = co

q+(t) = occupation probabilities of the network levels

Qo~1 = /Idt = /Gdu = - = ... Not bounded within [0, 1]




“adiabatic crossing” and ‘“adiabatic metamorphosis” processes

(co,c1,c2) (1, 0.2, 0.15) (co,c1,¢2) = (1, 19, 15)
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Shuttle crosses an half-filled energy band

For a Fermi sea occupation we have to sum the currents of all the occupied levels.

2C o562
(ACet? + (u — €ng)2)>/?

G(U) X Afilled
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Cq, Cp, = couplings to the ends of the wire
kt x (Cq£Ch) = -couplings to the levels

2 Kk

C’eff = . A

Occupation probability of the shuttle if only ng = 250 were occupied:

p(u) = A-Lu—eny; I',6]

1
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Maximal p is attained away from the crossing point. ST b Tpmms s
(u_8250)/A

probability




Non-adiabatic crossing of an empty quasi-continuum

A particle is loaded into the shuttle.
Standing shuttle - Wigner decay problem.
Moving shuttle - a variant of Wigner decay problem:

t ” T 2
an(t) = Iﬂn/ dT exp (ienq- =72 _ _7->
0 2 2

Competition between two time scales: 1/I" and I'/u 0 0 50 100 150 200 250 300

Regimes:
e Adiabatic U L K2
e Slow k2 < u < I?
o Fast u > T2
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Adiabatic vs non-adiabatic crossing - results for @

Qo~a = Z {qn (final) — @n (initial) | Ap
n

Starting with an occupied shuttled, adiabatic case:

occupation q; of lower network level changes from zero to unity

Ca
QOM a — A = ———— [if ground-state is odd]

Ca _Cb
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Starting with an occupied shuttled, non-adiabatic case:
many levels are occupied
gn < |kt|? = |Co £ Cpl?

|Cal?
‘Ca|2 + |Cb|2

Qo~a = WeightedAverage|Ai, \_

Starting with an occupied level n, adiabatic case: for even/odd parity level:
occupation g, of even level changes from unity to zero

occupation qn+1 of odd level changes from zero to unity An —Ca
Co £ C
QCaCb

QO’\»a
|Ca|2 o ‘CbP




The splitting ratio formula - general network

shuttle site
network site (standard basis)

network level (energy basis)

N
Generalized continuity equation: H = ;) |2)E3 (3] + g [2)Ci; (7]
1= 1%£]

IO/\»a — E

d
pape
Eo = u(t) = shuttle potential

Cio = C; = coupling of the shuttle to site ¢

For a single path crossing:

Q = /0 Idt = zn:qn(oo)




Original derivation - based on Two-level approximation

Standard site (z) basis:
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Energy level (n) basis:

u(t) K— k4
H— | k- —co O
K 0 co

Two level approximation:
u(t K_

TN ( (t) ) |
K_— —cCo

Formally the same as single path crossing with Z := A7




General derivation - embarrassingly simple

We assume that we know to how to find the level occupations:

an(t) = |¥n(t)

Continuity equation for star geometry:

= Kn Im[ﬁ ¢0]

Getting site amplitudes from level amplitudes:

Va(t) = > (aln) ¥n(t)

n

Expression for the current in the bond of interest:

n

Iowa = Ca Im{\l/a(t)* \Ilo(t)} — O, Im [Z<n|a> U (1) 2o (2)
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Splitting and stirring

The scattering point of view:
The particle has two paths to its destination.

The stirring point of view:

A circulating current is induced due to the driving.




The splitting ratio approach to quantum stirring

Half cycle: Full cycle:
W) W)~ |VEZ-eoVES|
(Q) Q) = Ao—-A

Var(Q) Var(Q) ‘5\@ PS + ew)\@\/PT?Z

2

[Interference of two LZ transitions]
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Counting statistics for a coherent transition, Maya Chuchem and DC (PRA 2008)
Counting statistics in multiple path geometries, Maya Chuchem and DC (JPA 2008)
Quantum stirring of electrons in a ring, Itamar Sela and DC (PRBs 2008)

In the classical context a similar approach has been independently proposed:
current decomposition formula, S.Rahav, J.Horowitz, and C.Jarzynskil (PRL 2008).




Motivation

Brouwer [PRB 1998], following BPT - calculation of ) in open geometry

Shutenko, Aleiner, Altshuler [PRB 2000] - Wrong conception of () quantization

DC [arXiv 2002, PRB 2003] - Kubo approach to quantum pumping - too formal
Moskalets, Buttiker [PRB 2003] - Problem to apply scattering approach in @ calculation
DC [PRB (R) 2003] - from closed to open systems - too formal

with Maya Chuchem and Itamar Sela [JPA, PRA, PRB 2008] - splitting ratio approach

Open issues that have motivated the present work:
e Originally derived in the context of adiabatic transport.
e Originally based on a two level approximation scheme.
e Not clear what happens in a multi-level network (effect of strong mixing).

e Not clear what happens in the non-adiabatic case.

Possible application:

Electronic Quantum Fluxes during Pericyclic Reactions

[Andrae, Barth, Bredtmann, Hege, Manz, Marquardt, Paulus]




Main messages

The splitting ratio approach:

a simple way to calculated currents in a driven network.
[(t) is deduced from p(t) and ¢, (1).

Regimes: adiabatic; slow; fast.

Counting statistics, in particular () and Var(Q).

Beyond the two level approximation:

metamorphism and mixing processes.
Exact analysis of stirring in a 3-site model.

Exact analysis of shuttling in dot-wire geometry.




