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The amount of charge that is pushed by a moving scatted®@#s—-GdX, wheredX is the displacement of
the scatterer. The question is: whatG8. Does it depend on the transmissigof the scatterer? Does the
answer depend on whether the system is dpéth leads attached to reservoimer closed? In the latter case
what are the implications of having “quantum chaos” and/or coupling to the environment? The answers to
these questions illuminate some fundamental aspects of the theory of quantum pumping. For the analysis we
take a networkgraph as a model system, and use the Kubo formula approach.
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Consider an Aharonov-Bohm ring with a Fermi sea ofLandauer formulaG°"™=(e?/%)g,. The charge transport
noninteracting spinless electrons as in Fidh) 1Assume that mechanism that is represented by ED. has a very simple
the ring is either disordered or chaotic, and that the temperaieuristic explanation, which is reflected in the term “snow
ture is known. In such a case the ring has a well-defineghlow dynamics”[2]. On the other hand, in the case of Figs.
Ohmic conductanc&®"™. This means that if we change the 1(a) or 1(c), if we translate the scatterer at some constant
magnetic flux® through the ring, then we have the electro- g|ocity X, it is clear that

motive force <b and the current i€=G°"™x (-®). There-

fore the charge that is transportedli®@=-G°"Mdd. Next we e

can ask what is the charge that is transported if we vary some G=-1X —ke. 2
other parametefX) that controls the potential in which the .

electrons are heldin practice it may be a gate voltage

Then, in complete analogy with Ohm’s law, we expect to getm Eq. (2) t_he transmission of Fhe scatterer is assu_med.to be
dQ=-GdX whereG is ageneralized conductanc@he cal- do<1[in Fig. 1(a) the role ofg, is played by the relative size

culation of G is the so-called problem of “quantum pump- of thg scattergr Irrespgctive ofg, the steady state is a dis-
ing.” tribution that moves with the same velocity as the scatterer.
Most of the studies of quantum pumping wes fap (In the moving frame of the scatterer the steady state is a

about open systerigig. 1(e)]. Inspired by Landauer who Standing wave.Thoughg, does not influence the value 6
pointed out thaiG°'™ is essentially the transmission of the It Should be remembered that in the lingg— 1, it takes an
device, Bittiker, Pretre, and Thom@&PT) have developed a [Nfinite time to get into the steady state.
formula that allows the calculation & using theS matrix of
the scattering regiofl,2]. It turns out that the nontrivial
extension of this approach to closed systems involves quite
restrictive assumption§5]. Thus the case of pumping in
closed systems has been left unexplored, except to some pa
works on adiabatic transpof8,4]. Yet another approach to
quantum pumping is to use the powerfiilbo formalism
[6,7]. In this paper we report on a nontrivial demonstration
of this formalism. Namely, we illuminate the interplay of
“guantum chaos” with nonadiabaticity and environmental ef- )
fects, and in particular we derive specific results for (gen-
eralized conductance in close@haotio system.
To be specific we ask what is the amount of charge that is
transported if we make a displacemetX of some scatterer FIG. 1. A scatterefrepresented by a black cirgles translated
or of some wall elemen(tpiston”). The answer to this ques- through a systems that has a Fermi occupation of spineless nonin-
tion in case of the one-dimensiondlD) system of Fig. le) teracting electrons. Ifa) the system is a simple ring. lib) it is a
is well known. Using the BPT formula one gets chaotic ring (Sinai billiard. In (c) and in (d) we have network
systems that are of the same typg@fand (b), respectively. In the
1) network, the scatterdfpiston”) is a delta functior{represented as a
big circle) located atx=X. The current is measure at a section
(represented by a dotted vertical ljrteroughx=x;. In (e) we have
whereke=mug/# is the Fermi wave number, arg is the  an open geometry with left and right leads that are attached to
transmission of the scatterer. This result is analogous to theservoirs that have the same chemical potential.

e
G=-(1-9go) X —kg,
T
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What about Fig. (b)? Here the system has an inherenttext, Cc(7) is the symmetrizectorrelation function. Further-
time scaler, that governs the relaxation to an ergodic dis-more, considerations that are based on a Markovian treat-
tribution in the laboratory frame irrespective of the driving. ment of perturbation theory to infinite order, suggest the
The scatterer should push its way through the ergodizingeplacement
distribution, and therefore its relative sizer its transmis- (T2
sion) matters. Thus we expect to fin@G«(1-g,) in the Ce(r) — Ce(n)e , (6)
analogous network model of Fig(d). Moreover, we expect
to have a dependence Gfon the overall transmissiogy of
the ring. Using the Kubo formalism we are going to derive

wherel «|X|?3 is related to the nonadiabaticity of the driv-
ing [6], or, more generally, it may incorporate also the influ-
ence of an external bath. Thus we get

G:_Ek{ﬂ][i} @ “ ~iBe(0) do

T 1- —
. e . C=hB) ] e i) 2 @
and discuss the conditions for its validity. In particular we
are going to discuss whether the effect of nonadiabaticity isvhere
to induce a crossover from E) to Eq.(1). We are going to
present both semiclassical and quantum mechanical deriva- E;E(w) = L[C(E +#w,E) + C(E - hw,E)] (8)
tions, and to consider the generalization of “universal con- 29(E)

ductance fluctuations.”

Our model systeni8] is the network of Fig. ). It is
composed of one-dimension&lD) wires (“bonds”. The C(E',E)=27> T E" = E) FronE - E,)
scatterer is represented by a delta function that is located on hm
some selected bond. Thus the Hamiltonfdrincorporates a
potentialU(x) =\ (#?/2m)8(x— X), whereX is the location of _2 tracdZ IM[G(E")]FImM[G(E)]].  (9)
the scatterer along the bond. The parametdetermines the ™
transmission of the scattergg=[1+(\/2kg)?] ™.

The generalized conductan&is, in fact, an element of
the generalized conductance matrix, that gives the respon
of the currentZ to the driving viaX. With X we associate the
operator F=—(dH/dX)=\(A2/2m) &' (x—X). SincedX is a
displacement, it follows thaf is a Newtonian force. We
measure the current through another seckisi; along the
same bondsee the dotted line in Fig.(d)]

and

In the first equalityC(E’,E) is expressed using the eigenen-
ergiesk,, and the matrix elements @f and F. In the second
%%uality it is expressed using [@]:—i%(G"—G‘), where
G*=1/(E-H=i0) are the Green functions of the system.
Thus we have three options for calculation. In the classi-
cal treatment it is simplest to calculate directly the correla-
tion function in the time domain. In the QM case we can use
expressions for the Green function in order to make the cal-

e culation. Optionally we can express the conductance using
1= %[5(X‘X1)p+ po(x=x1)]. (4 the eigenenergies and the matrix elements of the associated
operators
The Kubo expression fo& can be expressed using a gener-
alized fluctuation-dissipatiotFD) relation[7] =S HE) S Im[Inrzn]:mn] N (10
n m(#n) (Em_ En) + (F/Z)

G_g(EF)fo CEF(T)dT’ ®) wheref(E) is the Fermi occupation function. The latter ex-
pression is valid also in the strict adiabatic lindit— 0,
where Cg(7) is the cross-correlation function df(7) and  where it can be regarded as geometric magnef&m
F(0), andg(E) is the one-particle density of states at the We can get a semiclassical estimate @by studying the
Fermi energy. Equatioib) is the Kubo analog of the BPT classical correlation functio@(7). But first we should define
formula. In fact, the latter can be obtained as a special limitvhat classical calculation means in the context of this net-
of the former[7]. Equation(5) would become the standard work model. Recall thadX is displacement, s& has the
FD relation if we were looking foG"™. In such a case the meaning of Newtonian force. Therefore in the classical cal-
symmetric current-current correlation function would be in-culation F(t) consists of spikes whoswea has the meaning
volved, and consequently one would o0btai®*"™  of impact(=2muvg). Possibly it is more intuitive to think of
=%9(EF)CEF(‘”~O)- But in the case of our pumping calcula- the scatterer as a rectangular barrier with two vertical walls.
tion Ce(7) is antisymmetric, and therefore such simplifica- The vertical walls of the scatterer are regularized by giving
tion is not possible. them finite slops. In such case the spikesAif) become
Disregarding the assumption of having Fermi occupationshort rectangular pulses of some duratiey and height
Eq. (5) has a classical derivation. In such a ca3g7) is the  (2muvg)/ 7p. Obviously this regularization drops out from the
classical cross-correlation function, and there is an implicifinal result, because the produit)F(0) is weighted by the
thermal averaging oveEr. The analogous quantum me- probability of having nonzerd”(0), which is (vg7)/(2L).
chanical (QM) derivation is based on perturbation theory. The possibility to tunnel through the scatterer is taken into
Later we are going to discuss its limitations. In the QM con-account by adopting a stochastic point of view. Namely,
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upon collision there is a probabilitgy to go through the sion and reflection amplitudds; or R, for each encountered
scatterer(in such case there is no impacUsing the above vertex (i), while L, is the total length of the path. Upon
stochastic picture one deduces that the short-time correlaubstitution in(16) we get a double surl, over paths with
tions are endpointsx=+0 andx’=x;. In a term that involves deriva-
v tives the amplituded, (A,) is multiplied by a sign factos
C(n= —Fe(zva)[(l Qo> * (1 Tl)], (11)  and/ors’, which indicates, respectively, the initial and final
2L + sign of the velocity. Gathering all the contributions, one ends

where 7;=(x;—X)/vg. However there are tails due to mul- up with

tiple reflections, leadingafter geometric summatigrio

e 1-g9 , 1 -
f mo?[ 1 g . G=-—k . C? pqELspsq |m[T—OApAq}e Ltr,
C(ndr=-e F[ 0:|[ L ] (12 -

0 L'l 9 Il1-9r whereL=2Avg/T'. Above we neglected off-diagonal terms

Substitution into Eq(5) leads to Eq(3). The validity of the that involve pairs of trajectories with different lengths

; . .__This is justified if the energy averaging is over a sufficiently
final result can be double checked by solving the classic T : . : .
Master equation to find théquas) steady-state solutions of E]\arge range. It is also important to realize that any trajectory

the problem. The current in the steady state, to linear order ithat starts ak=+0 and departs in the positive direction rep-
the Fr)ate of t'he driving. leads to the s)::\me ré@th (3)] for Pesents, in fact, the contribution of two degenefzths one
9 ' starts with a positive velocity, while the other starts with a

theV\(l:grt]S:JnCtr?gv?/efo the proper quantum mechanical calcula-negative velocity but is immediately reflected. Assuming that
tion. The matrix elements between eigenstates of the networapls 's the only significant length degeneracy we get

e 1-
are G=- ;kF . 902 SpS,')|Ap|ze_LPILF- (18)
eh (U
Tom=— 1 —— (0" = 0 P ") ser (13
nm 2m W= ) “ The sum is over the same paths as in &4), and it can be

verified that the above-mentioned degenerate paths adds cor-
_ h? rectly. The summation ovep involves a geometric sum in
Fom= _)‘%(‘/ﬁ‘?’ﬂmr Y ex (14) [gr—(1-g7p)] and gives the factog;/(1-gy). Thus we see

_ ) that a careful treatment within the framework of the diagonal
where the gradien#ys should be interpreted as the averageapproximation recovers the classical result.

value of the left and right slope€To derive this resultitis e turn to discuss the validity of our result. The deriva-
convenient to regard the delta function as a narrow rectanjon of the Kubo formula Eq(10) assumed <A, By defi-
gular barrien. Without loss of generality we set from now on pition the bandwidthA,~%/7 is the energy rangeE,
X=0. Itis convenient to express,, using the wave function -Eq| <A, for which Z,,,Fi, are non-negligible. It is deter-
atx=+0. Thus we get mined by the classical correlation timg that characterizes

72 C(7). For a generic chaotic system the mean level spacing is

Fom= —Az—(wﬂlﬂ“ WP = NP Y ero. (15 A9 whered is the dimensionality of the system. Hence

m the bandwidth in dimensionless units issA,/AoxA ™, It
Substitution of(13) and(15) into (10) leads to an expression follows thatb> 1 is the generic case for any quantized cha-
that can be written in terms of the Green functién [An ~ otic system. For a chaotic netwode1, andb is roughly
alternate procedure is to substitute in E§) the implied equal to the number of bonds.

differential representation of the operatdrs. There is a practical implication of the above discussion to
2\ 2 pumping in general. For some geometries we haye 7.
G:_E’<h_) (GRG' -GR G'+GRG!, -GRa! The notable example is the dot-wire geometry of R&.
m\2m e o T e where 7 is related to the motion inside the dot, while the
+?\(GSG' _GRGL')>E1 (16) current is measured outside at a section on(tregy long

wire. Thus we may hav€& >#/ 7, in Eq. (6) without break-

where (-)e=—-[dEf (E) implies thermal averaging and we ing theT validity con('jitionl“<h/r'c|. Cpnsequently we stay
have defined GR=ReG(x,x:E+il'/2), and G only with the short-time correlations in E¢L1), and we get
=Im G(x,x’; E+i0). The subscripts indicate derivatives with Eq. (1) rat_h_er that Eq(3). . . o
respect tox andx'. The expression is evaluated for +0 An agdltlonal assu_mptlon enters into _the derivation of the
andx’ =x,. generah;ed FD reIat_lop and the associated Green function
In case of a network the Green function is given[By expression. Namely, 't. IS assumeq that A. In order to test .
the significance of this assumption, we consider a generic
s kel network withb=35. In Fig. 2 we plot the exact result &
GxXx"E) =~ ﬁ_vFE ApEE, (17 as a function of". We also plot the dispersion &. One may
P regard this dispersion as the analogiofversal conductance
where the sum extends over all the paths that staxtaatd  fluctuations As I becomes larger than these fluctuations
end atx’. The A, are the product of the associated transmis-are smoothed away. We also see that the result is quite in-
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SERLLLL p——— T [ & generic cas®~ 1. For this purpose we consider two specific
2= [TETTTT T N\ — examples: a scatterer on a closed 1fiFg. 1(c)]; and a scat-

—10° J 1% —— - terer on a disconnected bofillig. 1(e) but without the res-

E 2 ervoirg. In the first example the adiabatic result E8). can

be recovered from Ed3) by substitutinggr=g,, while in the
second cas&=0 becausay;=0. The latter result requires
further discussion. Sincg;=0 the possibility of getting a
steady-state circulating current is blocked. The zero-order
adiabatic picture is as follows: At any moment the lowest

ol I i [, ,,,,uu' ~. energy levels are populated, hence at any moment the charge
10 1072 10° 10° distribution is rqughly gniforn(ergodio. If we plot the cur-
/A rent as a function of time, we find that the snow plow dy-

namics is counterbalanced by adiabatic passages of the par-

FIG. 2. Comparison of the exact quantum result @@) for (G)  ticles through the moving barrier. The latter manifest
with the diagonal approximation E¢L8) in case of the network of  themselves in the current as short spikes that compensate the
Fig. 1(d). The average is taken over more than 20 000 levels aroungtherwise steadysnow plow flow of current. The statistical
Er, while the calculatior(for each Fermi levelwas performed in properties of the current should be regarded as the simplest
an interval of 32 000 levels. The valencyof each vertex is picked  eyample for the generalized universal conductance fluctua-
up randomly. The transmission of the pistongts~0.1. The per-  jong that we have discussed previously. If the driving is
pendicular dotted line indicates the border of the regime where th?\onadiabatic then the particles do not have the time to make
QM calculation is validsee text We also plot the standard devia- adiabatic paésages through the scatterer, and then the snow
tion 5G/{G), while the inset displays the distributi®{G—(G)) for plow dynamics becomes more effective ,Thus the nonadia-
I'=0.0001A. Notice the slight asymmetry. The smooth line is the batic t lati f th it ind ’ tead
best fit with 0.068(0.024+x+0.065'9). In these calculations the atic transiation ot the scatterer induces a steady nonzero
temperature i§=0. current in the bond, which is associated with accumulation of

charge on the heading side of the scatterer and depletion in

sensitive to the exact value bfas long ad”<A,, which is  the trailing side. Hence the current within the bond becomes
the regime where the quantum mechanical derivation of théduring some transient perip@f the same order of magni-
Kubo formula makes sense. Throughout all regimes the ditude as in the case of an open sysiéfig. 1(e)], where the
agonal approximation is very precise, as expected for quarreservoirs are assumed to be of an infinite size.
tities related to the statistics of matrix elements. In summary, the Kubo approach to quantum pumping al-

If the conditionI" <A, breaks down we enter intor®on-  |ows us to explore the crossover from the strictly adiabatic
perturbative regimevhere the QM recipe E¢(6) does not  «gepometric magnetism” regime to the nonadiabatic regime.
hold. However, if the system hascissical limit then it can |5 particular we were able to derive specific results for the
be arguedon semiclassical grounfithat in the nonpertur- - generalized conductance, using either classical stochastic

bative regime the classical calculation can be trusted. Sincgodeling or diagonal approximation, which are supported by
the classical calculation gives the same estimate as the diagymerical analysis.

onal approximation, it follows that there should be no appar-

ent breakdown of validity as we cross from the perturbative D.C. has the pleasure to thank M. Buttiker for an instruc-
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