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The amount of charge that is pushed by a moving scatterer isdQ=−GdX, wheredX is the displacement of
the scatterer. The question is: what isG?. Does it depend on the transmissiong0 of the scatterer? Does the
answer depend on whether the system is openswith leads attached to reservoirsd or closed? In the latter case
what are the implications of having “quantum chaos” and/or coupling to the environment? The answers to
these questions illuminate some fundamental aspects of the theory of quantum pumping. For the analysis we
take a networksgraphd as a model system, and use the Kubo formula approach.
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Consider an Aharonov-Bohm ring with a Fermi sea of
noninteracting spinless electrons as in Fig. 1sbd. Assume that
the ring is either disordered or chaotic, and that the tempera-
ture is known. In such a case the ring has a well-defined
Ohmic conductanceGohm. This means that if we change the
magnetic fluxF through the ring, then we have the electro-

motive force −Ḟ and the current isI=Gohm3 s−Ḟd. There-
fore the charge that is transported isdQ=−GohmdF. Next we
can ask what is the charge that is transported if we vary some
other parametersXd that controls the potential in which the
electrons are heldsin practice it may be a gate voltaged.
Then, in complete analogy with Ohm’s law, we expect to get
dQ=−GdX, whereG is a generalized conductance. The cal-
culation of G is the so-called problem of “quantum pump-
ing.”

Most of the studies of quantum pumping weresso fard
about open systemsfFig. 1sedg. Inspired by Landauer who
pointed out thatGohm is essentially the transmission of the
device, Büttiker, Pretre, and ThomassBPTd have developed a
formula that allows the calculation ofG using theSmatrix of
the scattering regionf1,2g. It turns out that the nontrivial
extension of this approach to closed systems involves quite
restrictive assumptionsf5g. Thus the case of pumping in
closed systems has been left unexplored, except to some past
works on adiabatic transportf3,4g. Yet another approach to
quantum pumping is to use the powerfulKubo formalism
f6,7g. In this paper we report on a nontrivial demonstration
of this formalism. Namely, we illuminate the interplay of
“quantum chaos” with nonadiabaticity and environmental ef-
fects, and in particular we derive specific results for thesgen-
eralizedd conductance in closedschaoticd system.

To be specific we ask what is the amount of charge that is
transported if we make a displacementdX of some scatterer
or of some wall elements“piston”d. The answer to this ques-
tion in case of the one-dimensionals1Dd system of Fig. 1sed
is well known. Using the BPT formula one gets

G = − s1 − g0d 3
e

p
kF, s1d

wherekF=mvF /" is the Fermi wave number, andg0 is the
transmission of the scatterer. This result is analogous to the

Landauer formulaGohm=se2/"dg0. The charge transport
mechanism that is represented by Eq.s1d has a very simple
heuristic explanation, which is reflected in the term “snow
plow dynamics”f2g. On the other hand, in the case of Figs.
1sad or 1scd, if we translate the scatterer at some constant

velocity Ẋ, it is clear that

G = − 13
e

p
kF. s2d

In Eq. s2d the transmission of the scatterer is assumed to be
g0,1 fin Fig. 1sad the role ofg0 is played by the relative size
of the scattererg. Irrespective ofg0 the steady state is a dis-
tribution that moves with the same velocity as the scatterer.
sIn the moving frame of the scatterer the steady state is a
standing wave.d Thoughg0 does not influence the value ofG,
it should be remembered that in the limitg0→1, it takes an
infinite time to get into the steady state.

FIG. 1. A scatterersrepresented by a black circled is translated
through a systems that has a Fermi occupation of spineless nonin-
teracting electrons. Insad the system is a simple ring. Insbd it is a
chaotic ring sSinai billiardd. In scd and in sdd we have network
systems that are of the same type ofsad andsbd, respectively. In the
network, the scatterers“piston”d is a delta functionsrepresented as a
big circled located atx=X. The current is measure at a section
srepresented by a dotted vertical lined throughx=x1. In sed we have
an open geometry with left and right leads that are attached to
reservoirs that have the same chemical potential.
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What about Fig. 1sbd? Here the system has an inherent
time scaletcl that governs the relaxation to an ergodic dis-
tribution in the laboratory frame irrespective of the driving.
The scatterer should push its way through the ergodizing
distribution, and therefore its relative sizesor its transmis-
siond matters. Thus we expect to findG~ s1−g0d in the
analogous network model of Fig. 1sdd. Moreover, we expect
to have a dependence ofG on the overall transmissiongT of
the ring. Using the Kubo formalism we are going to derive

G = −
e

p
kFF1 − g0

g0
GF gT

1 − gT
G s3d

and discuss the conditions for its validity. In particular we
are going to discuss whether the effect of nonadiabaticity is
to induce a crossover from Eq.s3d to Eq.s1d. We are going to
present both semiclassical and quantum mechanical deriva-
tions, and to consider the generalization of “universal con-
ductance fluctuations.”

Our model systemf8g is the network of Fig. 1sdd. It is
composed of one-dimensionals1Dd wires s“bonds”d. The
scatterer is represented by a delta function that is located on
some selected bond. Thus the HamiltonianH incorporates a
potentialUsxd=ls"2/2mddsx−Xd, whereX is the location of
the scatterer along the bond. The parameterl determines the
transmission of the scattererg0=f1+sl /2kFd2g−1.

The generalized conductanceG is, in fact, an element of
the generalized conductance matrix, that gives the response
of the currentI to the driving viaX. With X we associate the
operatorF=−s]H /]Xd=ls"2/2mdd8sx−Xd. Since dX is a
displacement, it follows thatF is a Newtonian force. We
measure the current through another sectionx=x1 along the
same bondfsee the dotted line in Fig. 1sddg

I =
e

2m
fdsx − x1dp + pdsx − x1dg. s4d

The Kubo expression forG can be expressed using a gener-
alized fluctuation-dissipationsFDd relation f7g

G = gsEFdE
0

`

CEF
stddt, s5d

where CEstd is the cross-correlation function ofIstd and
Fs0d, and gsEd is the one-particle density of states at the
Fermi energy. Equations5d is the Kubo analog of the BPT
formula. In fact, the latter can be obtained as a special limit
of the formerf7g. Equations5d would become the standard
FD relation if we were looking forGohm. In such a case the
symmetric current-current correlation function would be in-
volved, and consequently one would obtainGohm

= 1
2gsEFdC̃EF

sv,0d. But in the case of our pumping calcula-
tion CEstd is antisymmetric, and therefore such simplifica-
tion is not possible.

Disregarding the assumption of having Fermi occupation,
Eq. s5d has a classical derivation. In such a case,CEstd is the
classical cross-correlation function, and there is an implicit
thermal averaging overEF. The analogous quantum me-
chanical sQMd derivation is based on perturbation theory.
Later we are going to discuss its limitations. In the QM con-

text, CEstd is thesymmetrizedcorrelation function. Further-
more, considerations that are based on a Markovian treat-
ment of perturbation theory to infinite order, suggest the
replacement

CEstd ° CEstde−sG/2"dt, s6d

whereG~ uẊu2/3 is related to the nonadiabaticity of the driv-
ing f6g, or, more generally, it may incorporate also the influ-
ence of an external bath. Thus we get

G = "gsEdE
−`

` − iC̃EF
svd

"v − isG/2d
dv

2p
, s7d

where

C̃Esvd =
"

2gsEd
fCsE + "v,Ed + CsE − "v,Edg s8d

and

CsE8,Ed = 2po
nm

InmdsE8 − EmdFmndsE − End

=
2

p
tracefI ImfGsE8dgF ImfGsEdgg. s9d

In the first equalityCsE8 ,Ed is expressed using the eigenen-
ergiesEn and the matrix elements ofI andF. In the second
equality it is expressed using ImfGg=−i 1

2sG+−G−d, where
G±=1/sE−H± i0d are the Green functions of the system.

Thus we have three options for calculation. In the classi-
cal treatment it is simplest to calculate directly the correla-
tion function in the time domain. In the QM case we can use
expressions for the Green function in order to make the cal-
culation. Optionally we can express the conductance using
the eigenenergies and the matrix elements of the associated
operators

G = 2"o
n

fsEnd o
msÞnd

ImfInmFmng
sEm − End2 + sG/2d2 , s10d

where fsEd is the Fermi occupation function. The latter ex-
pression is valid also in the strict adiabatic limitG→0,
where it can be regarded as geometric magnetismf3g.

We can get a semiclassical estimate forG by studying the
classical correlation functionCstd. But first we should define
what classical calculation means in the context of this net-
work model. Recall thatdX is displacement, soF has the
meaning of Newtonian force. Therefore in the classical cal-
culationFstd consists of spikes whosearea has the meaning
of impact s=2mvFd. Possibly it is more intuitive to think of
the scatterer as a rectangular barrier with two vertical walls.
The vertical walls of the scatterer are regularized by giving
them finite slops. In such case the spikes ofFstd become
short rectangular pulses of some durationt0 and height
s2mvFd /t0. Obviously this regularization drops out from the
final result, because the productIstdFs0d is weighted by the
probability of having nonzeroFs0d, which is svFt0d / s2Ld.
The possibility to tunnel through the scatterer is taken into
account by adopting a stochastic point of view. Namely,
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upon collision there is a probabilityg0 to go through the
scatterersin such case there is no impactd. Using the above
stochastic picture one deduces that the short-time correla-
tions are

Cstd =
vF

2L
es2mvFdFs1 − g0do

±
± dst ± t1dG , s11d

wheret1=sx1−Xd /vF. However there are tails due to mul-
tiple reflections, leadingsafter geometric summationd to

E
0

`

Cstddt = − e
mvF

2

L
F1 − g0

g0
GF gT

1 − gT
G . s12d

Substitution into Eq.s5d leads to Eq.s3d. The validity of the
final result can be double checked by solving the classical
Master equation to find thesquasid steady-state solutions of
the problem. The current in the steady state, to linear order in
the rate of the driving, leads to the same resultfEq. s3dg for
the conductance.

We turn now to the proper quantum mechanical calcula-
tion. The matrix elements between eigenstates of the network
are

Inm= − i
e"

2m
scn]cm − ]cncmdx=x1

, s13d

Fnm= − l
"2

2m
scn]cm + ]cncmdx=X, s14d

where the gradient]c should be interpreted as the average
value of the left and right slopes.sTo derive this result it is
convenient to regard the delta function as a narrow rectan-
gular barrier.d Without loss of generality we set from now on
X=0. It is convenient to expressFnm using the wave function
at x= +0. Thus we get

Fnm= − l
"2

2m
scn]cm + ]cncm − lcncmdx=+0. s15d

Substitution ofs13d ands15d into s10d leads to an expression
that can be written in terms of the Green functionG. fAn
alternate procedure is to substitute in Eq.s9d the implied
differential representation of the operators.g

G = −
le

p
S "2

2m
D2

kGRGxx8
I − Gxx8

R GI + Gx
RGx8

I − Gx8
R Gx

I

+ lsGx8
R GI − GRGx8

I dlE, s16d

where k·lE=−edEf8sEd implies thermal averaging and we
have defined GR=ReGsx,x8 ;E+ iG /2d, and GI

=Im Gsx,x8 ;E+ i0d. The subscripts indicate derivatives with
respect tox and x8. The expression is evaluated forx= +0
andx8=x1.

In case of a network the Green function is given byf9g

Gsx,x8;Ed = −
i

"vF
o
p

Ape
ikELp, s17d

where the sum extends over all the paths that start atx and
end atx8. TheAp are the product of the associated transmis-

sion and reflection amplitudessTi or Ri for each encountered
vertex sid, while Lp is the total length of the path. Upon
substitution ins16d we get a double sumopq over paths with
endpointsx= +0 andx8=x1. In a term that involves deriva-
tives the amplitudeAp sAqd is multiplied by a sign factors
and/ors8, which indicates, respectively, the initial and final
sign of the velocity. Gathering all the contributions, one ends
up with

G = −
e

p
kFÎ1 − g0

g0
o
L

o
p,qPL

sp8sq ImF 1

T0

ApAq
*Ge−L/LG,

whereLG=2"vF /G. Above we neglected off-diagonal terms
that involve pairs of trajectories with different lengthsL.
This is justified if the energy averaging is over a sufficiently
large range. It is also important to realize that any trajectory
that starts atx= +0 and departs in the positive direction rep-
resents, in fact, the contribution of two degeneratepaths: one
starts with a positive velocity, while the other starts with a
negative velocity but is immediately reflected. Assuming that
this is the only significant length degeneracy we get

G = −
e

p
kF

1 − g0

g0
o
p

spsp8uApu2e−Lp/LG. s18d

The sum is over the same paths as in Eq.s17d, and it can be
verified that the above-mentioned degenerate paths adds cor-
rectly. The summation overp involves a geometric sum in
fgT−s1−gTdg and gives the factorgT/ s1−gTd. Thus we see
that a careful treatment within the framework of the diagonal
approximation recovers the classical result.

We turn to discuss the validity of our result. The deriva-
tion of the Kubo formula Eq.s10d assumesG!Db. By defi-
nition the bandwidthDb<" /tcl is the energy rangeuEn
−Emu,Db for which InmFmn are non-negligible. It is deter-
mined by the classical correlation timetcl that characterizes
Cstd. For a generic chaotic system the mean level spacing is
D~"d, whered is the dimensionality of the system. Hence
the bandwidth in dimensionless units isb=Db/D~"1−d. It
follows thatb@1 is the generic case for any quantized cha-
otic system. For a chaotic networkd=1, andb is roughly
equal to the number of bonds.

There is a practical implication of the above discussion to
pumping in general. For some geometries we havetcl!t1.
The notable example is the dot-wire geometry of Ref.f7g
wheretcl is related to the motion inside the dot, while the
current is measured outside at a section on thesvery longd
wire. Thus we may haveG." /t1 in Eq. s6d without break-
ing the validity conditionG," /tcl. Consequently we stay
only with the short-time correlations in Eq.s11d, and we get
Eq. s1d rather that Eq.s3d.

An additional assumption enters into the derivation of the
generalized FD relation and the associated Green function
expression. Namely, it is assumed thatG@D. In order to test
the significance of this assumption, we consider a generic
network withb=35. In Fig. 2 we plot the exact result forG
as a function ofG. We also plot the dispersion ofG. One may
regard this dispersion as the analog ofuniversal conductance
fluctuations. As G becomes larger thanD these fluctuations
are smoothed away. We also see that the result is quite in-
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sensitive to the exact value ofG as long asG!Db, which is
the regime where the quantum mechanical derivation of the
Kubo formula makes sense. Throughout all regimes the di-
agonal approximation is very precise, as expected for quan-
tities related to the statistics of matrix elements.

If the conditionG!Db breaks down we enter into anon-
perturbative regimewhere the QM recipe Eq.s6d does not
hold. However, if the system has aclassical limit, then it can
be arguedson semiclassical groundsd that in the nonpertur-
bative regime the classical calculation can be trusted. Since
the classical calculation gives the same estimate as the diag-
onal approximation, it follows that there should be no appar-
ent breakdown of validity as we cross from the perturbative
to the nonperturbative regime. We have studied this issue
f10g in the context of energy absorptionsthe Gohm conduc-
tanced.

It is now interesting to discuss what happens in the non-

generic caseb,1. For this purpose we consider two specific
examples: a scatterer on a closed ringfFig. 1scdg; and a scat-
terer on a disconnected bondfFig. 1sed but without the res-
ervoirsg. In the first example the adiabatic result Eq.s2d can
be recovered from Eq.s3d by substitutinggT=g0, while in the
second caseG=0 becausegT=0. The latter result requires
further discussion. SincegT=0 the possibility of getting a
steady-state circulating current is blocked. The zero-order
adiabatic picture is as follows: At any moment the lowest
energy levels are populated, hence at any moment the charge
distribution is roughly uniformsergodicd. If we plot the cur-
rent as a function of time, we find that the snow plow dy-
namics is counterbalanced by adiabatic passages of the par-
ticles through the moving barrier. The latter manifest
themselves in the current as short spikes that compensate the
otherwise steadyssnow plowd flow of current. The statistical
properties of the current should be regarded as the simplest
example for the generalized universal conductance fluctua-
tions that we have discussed previously. If the driving is
nonadiabatic, then the particles do not have the time to make
adiabatic passages through the scatterer, and then the snow
plow dynamics becomes more effective. Thus the nonadia-
batic translation of the scatterer induces a steady nonzero
current in the bond, which is associated with accumulation of
charge on the heading side of the scatterer and depletion in
the trailing side. Hence the current within the bond becomes
sduring some transient periodd of the same order of magni-
tude as in the case of an open systemfFig. 1sedg, where the
reservoirs are assumed to be of an infinite size.

In summary, the Kubo approach to quantum pumping al-
lows us to explore the crossover from the strictly adiabatic
“geometric magnetism” regime to the nonadiabatic regime.
In particular we were able to derive specific results for the
generalized conductance, using either classical stochastic
modeling or diagonal approximation, which are supported by
numerical analysis.
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FIG. 2. Comparison of the exact quantum result Eq.s10d for kGl
with the diagonal approximation Eq.s18d in case of the network of
Fig. 1sdd. The average is taken over more than 20 000 levels around
EF, while the calculationsfor each Fermi leveld was performed in
an interval of 32 000 levels. The valencyv of each vertex is picked
up randomly. The transmission of the piston isg0<0.1. The per-
pendicular dotted line indicates the border of the regime where the
QM calculation is validssee textd. We also plot the standard devia-
tion dG/ kGl, while the inset displays the distributionPsG−kGld for
G=0.0001D. Notice the slight asymmetry. The smooth line is the
best fit with 0.068/s0.024+ux+0.065u1.5d. In these calculations the
temperature isT=0.
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