
Multiple path adiabatic crossing in a 3 site ring

Dotan Davidovich, Doron Cohen

Department of Physics, Ben-Gurion University of the Negev,
P.O.B. 653, Beer-Sheva 84105, Israel

Abstract. We find an exact expression for the current that is induced in a
3 site ring during a multiple-path adiabatic crossing. The understanding of the
dynamics requires to go beyond the two-level phenomenology. In particular we
highlight a prototype process, “adiabatic metamorphosis”, during which current
is flowing through a non-accessible site. This helps to understand the crossover
from coherent non-classical splitting to stochastic noisy-alike partitioning of the
current.

1. Introduction

Adiabatic quantum transport [1, 2, 3, 4, 5] is a major theme in quantum mechanics,
with diverse applications, e.g. quantum Hall effect [6], dynamics of Josephson
junctions [7], and the analysis of pericyclic reactions [8]. If a parameter is slowly
varied in a closed system that has a non-trivial topology, say a ring shaped device, the
formalism implies that current is induced. In the absence of magnetic fields we call
such an effect “quantum stirring” [9, 10, 11, 12]. On the one hand it is related to the
classical problem of “stochastic stirring” [13, 14, 15, 16], and on the other hand it is
related to “quantum pumping” in open systems [17, 18, 19, 20, 21, 22, 23, 24].

Most results regarding adiabatic quantum transport are rather abstract, based on
a formal mathematical approach, notably the “Dirac monopoles picture” [4, 9]. This
should be contrasted with the analysis of stochastic stirring where the phenomenology
is quite mature [13]. The way to gain better physical insight is to analyze prototype
model systems [11, 12], and to identify the elementary ingredients that determine the
nature of the dynamics.

In the present work we would like to address the minimal model for a closed
isolated quantum system that has a non-trivial topology. This is evidently the 3 site
ring that is illustrated in Fig. 1. Quite generally, in the absence of magnetic field, the
stationary states of the system, and the ground state in particular, carry zero current.
If we want to get current we have to drive the system by varying a parameter u in
time. In the adiabatic limit the current is given by the following formula

〈I〉 = G(u(t)) u̇ (1)

where G(u) is the geometric conductance:

G(u) = 2Im

[〈 ∂

∂φ
Ψ
∣∣∣ ∂
∂u

Ψ
〉]

φ=0

(2)

In the above formula Ψ is the adiabatic ground state that depends on the parameter u,
and on an auxiliary test flux φ through the bond of interest.
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Figure 1. Two-site and three-site toy models for transport. A particle is initially
positioned at the left site |0〉, called “dot”. The dot has a potential energy u
that can be controlled externally. As u is varied adiabatically from −∞ to +∞,
currents are induced in the bonds, and the particle ends up at the right sites. In
the case of a 3-site system it is a multiple-path transition through the 0 ; 1 and
0 ; 2 bonds to the lower level of the “wire”.

Specifically we want to consider the following scenario, which we call “Multiple
path adiabatic crossing”. Assume that a particle is placed in the 0th site, which we
call “dot”. The potential of the dot is raised slowly from u = −∞ to u = +∞. As
a result the particle is adiabatically transferred from the dot to the other two sites.
These two sites (”1” and ”2”) can be regarded as a two-orbital entity that we call
“wire”. At the end of the process the particle will be found in the lower energy level
of the wire. We ask what is the current through the first bond (0 ; 1). Equivalently
we can characterize the transport by the integrated current

Q(u) =

∫ u

−∞
G(u′) du′ (3)

In particular we define Q ≡ Q(∞). If we had single-path geometry obviously the
result for the latter would be Q = 1, reflecting 100% transition probability. But we
are dealing here with a multiple path geometry.

At this point it is important to emphasize that if we were dealing with a stochastic
process the current would be partitioned between the paths, hence |Q| < 1. But the
essence of “quantum stirring” is the observation that during the driving process a
circulating current is induced. Due to this circulation, the integrated current can be
any number.

The above recipe Eq. (2) for calculating adiabatic currents is well known from
the works on adiabatic transport, but its physical implications have not been fully
recognized. In fact the original interest in this model has been motivated by a wrong
assertion that “adiabatic pumping” in a closed system has to be quantized [27]. The
fallacy of this statement has been illuminated using the “Dirac monopoles picture” [9]
and later using a 2 level “splitting ratio” phenomenology [12, 28]. The exact solution
of the 3 site ring has been considered as well [9], to establish that Q of a closed driving
cycle can have any value. However, the full solution of the multiple-path adiabatic
crossing has not been explored. In particular it has remained vague whether to go
beyond the two level approximation is of any physical significance.

Outline.– We first derive an exact expression for Q(u). This is quite
straightforward, but as usual the exact expression is not very illuminating
physically. We therefore try to derive approximations that are based on a two-level
phenomenology. Then we realize that there are different regimes depending on the
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ratio between the inter dot-wire and the intra-wire couplings. In particular we find
a regime where the crossing process involves an “adiabatic metamorphosis” stage,
during which current is flowing through the energetically non-accessible dot.

2. G(u) for a 2-site system

We start with the analysis of a single-path crossing in a 2 site system. The Hamiltonian
and the associated current operator are

H 7→
(
u(t) C∗

C uc

)
, I 7→ λ

(
0 iC∗

−iC 0

)
(4)

where u(t) is the potential of the dot, and uc is the level that is crossed, and C is the
dot-level coupling. The extra parameter λ = 1 is reserved for later. Without loss of
generality we assume C to be real and positive C > 0. For the purpose of defining
the current operator I ≡ −∂H/∂φ, and later using Eq. (2), one should substitute
C 7→ Ceiφ.

For a given value of u the energy of the adiabatic ground state is

E(u) =
1

2

[
(u+ uc)−

√
4C2 + (u− uc)2

]
(5)

The corresponding eigenstate is

|Ψ〉 7→ 1√
S

(
E − uc
Ceiφ

)
(6)

where the normalization factor for zero flux is

S = (E − uc)2 + C2 (7)

Using Eq. (2) we get

G(u) = C2 ∂

∂u

[
1

S

]
(8)

leading to

G(u) = λ
2C2

(4C2 + (u− uc)2)
3/2

(9)

where λ = 1. It is easily verified that upon integration Q = λ, hence Q = 1, as implied
by the continuity equation for a single-path adiabatic crossing.

3. G(u) for a 3-site system

We now use the same procedure for the analysis of the double-path crossing in a 3 site
system. The Hamiltonian and the associated current operator are

H 7→

u(t) c∗1 c∗2
c1 0 c∗0
c2 c0 0

 , I 7→

 0 ic∗1 0
−ic1 0 0

0 0 0

 (10)

We assume the cs to be real (no magnetic field) but for the purpose of defining the
current through the 0 ; 1 bond, and later using Eq. (2), we substitute c1 7→ c1eiφ.

The secular equation for the eigenvalues is

E3
n − uE2

n − (c20 + c21 + c22)En + c20u− 2c0c1c2 cos(φ) = 0 (11)
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with the solution

En =
u

3
+ 2
√
Q cos

(
θ

3
+ n

2π

3

)
, n = 0,±1 (12)

where

cos(θ) ≡ R√
Q3

(13)

Q ≡ 1

9
u2 +

1

3
(c20 + c21 + c22) (14)

R ≡ 1

27
u3 +

1

6
(c21 + c22 − 2c20)u+ c0c1c2 cos(φ) (15)

As u is varied from −∞ to +∞, the angle θ varies from π to 0, and the ground state
energy E1 goes from −u to −c0. The corresponding eigenstates are

|n(u)〉 7→ 1√
Sn

 E2
n − |c0|2

c1En + c∗0c2
c2En + c0c1

 (16)

The normalization factor for zero flux is

Sn = (E2
n − c20)2 + (c1En + c0c2)2 + (c2En + c0c1)2 (17)

= E4
n + (c21 + c22 − 2c20)E2

n + 2c0c1c2En + c20(c20 + c21 + c22) (18)

If we placed the test flux at the c0 bond we would get from Eq. (2) the result that
had been derived in [9] for the current in the 1 ; 2 bond, namely:

G1;2(u) = c20 (c21 − c22)
∂

∂u

[
1

S1

]
(19)

But our interest is in the current that goes through the 0 ; 1 bond. Accordingly we
have placed the test flux at c1 and get

G = 2
[
c21E1 + c0c1c2

] 1

S1

∂E1

∂u
−
[
c21E

2
1 + 2c0c1c2E1 + c20c

2
1

] 1

S2
1

∂S1

∂u
(20)

=
d

du

[
c21E

2
1 + 2c0c1c2E1 + c20c

2
1

E4
1 + (c21 + c22 − 2c20)E2

1 + 2c0c1c2E1 + c20(c20 + c21 + c22)

]
(21)

4. The integrated current

On the basis of Eq. (21) one observes that for any c0 6= 0 the integrated current Eq. (3)
at the end of the process is

Q =
c21E

2
1 + 2c0c1c2E1 + c20c

2
1

E4
1 + (c21 + c22 − 2c20)E2

1 + c0 · · ·

∣∣∣∣
E1=−c0

=
c1

c1 − c2
(22)

Strangely enough this does not depend on the value of c0. But for c0 = 0, based on
the same expression, the result is quite different:

Q =
c21

E2
1 + (c21 + c22)

∣∣∣∣
E1=0

=
|c1|2

|c1|2 + |c2|2
(23)

It is therefore required to explain what happens physically if c0 is very very small but
not zero. In Fig. 2 we illustrate Q(u) for several representative cases. If c0 is large Q(u)
rises monotonically in a step-like fashion to the value that is predicted by Eq. (22).
However if c0 is small one observes two stages in the parametric evolution: first Q(u)
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Figure 2. An initially loaded level crosses the other two levels of a 3 site
network. We plot the parametric variation of the integrated current Q(u) in
representative cases. For graphical purpose the horizontal axis is Q1/2. The
parameters are c0 = 1 and (c1, c2) as follows: Solid blue (0.2, 0.15) is like a simple
2 level crossing; Dashed blue (5.0, 4.3) exhbits a shifted 2 level crossing; Solid
green (19, 17) features a sharp metamorphosis; Dashed green (19,−17) features a
gradual metamorphosis.

rises to the value that is predicted to Eq. (23), and only after that it re-adjust to the
value of Eq. (22). In Section 9 we shall use the term “adiabatic metamorphosis” in
order to describe this re-adjustment of the occupations. We shall see that it involves
a much larger parametric scale um ∝ 1/c0 that diverges in the limit c0 → 0. Hence
for c0 = 0 we are left with Eq. (23) instead of Eq. (22). A closer inspection of the
metamorphosis stage (dashed vs solid green curves in Fig. 2) reveals that it can be
either a gradual or a sharp transition, depending on the relative sign of c1 and c2.

The values (c1, c2) for the illustrations in Fig. 2 are indicated in the diagram of
Fig. 3. In the following sections we would like to illuminate the different regions in
this diagram by attempting a two-level approximation scheme.

5. The 2-level approximation

Let us try to reduce the 3 level dynamics to a 2 level crossing problem. For this
purpose we switch to the following basis:

|0〉 = the dot state (24)

|+〉 =
1√
2

(|1〉+ |2〉) = the upper (even) wire state (25)

|−〉 =
1√
2

(|1〉 − 2〉) = the lower (odd) wire state (26)

In the new basis the Hamiltonian and the current operator Eq. (10) take the following
form:

H 7→

u(t) c+ c−
c+ c0 0
c− 0 −c0

 , I 7→ c1√
2

 0 i i
−i 0 0
−i 0 0

 (27)

with couplings

c± =
1√
2

(c1 ± c2) (28)
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Figure 3. A schematic diagram that shows the different regimes in the analysis
of the adiabatic double-path crossing. Setting c0 = 1 the parameters that define
the 3-site system are the couplings c1 and c2. Without loss of generality we relate
to one quarter where both c+ and c− are positive. Grey shading indicate the
regime where a two level approximation scheme can be used, either c− � c0 or
c+ � c0, as discussed in the text. In each regime the G(u) has a different looking
lineshape. Blue and green symbols indicate the representative illustrations that
have been displayed in Fig. 2.

Without loss of generality we focus on the strongest bond, meaning that we assume
|c1| > |c2|, and by appropriate gauge we arrange that c1 > 0, hence both c± are
positive numbers. We shall see that a two-level approximation scheme is useful for
the treatment of 3 cases that are indicted in Fig. 3, namely

|c+| � c0 (29)

|c−| � c0 (30)

c0 = 0 (31)

In all these cases we can fit the exact result Eq. (21) to the two-level expression
Eq. (9), with some effective values for C and uc and λ. The remaining case of having
a relatively small but finite c0 is excluded, because it cannot be treated within the
framework of a two level approximation. This last case will be considered separately.

6. The simple 2-level approximation |c+| � c0

We first consider the very simple case, in which the third (upper) level can be
ignored. The condition for that is |c+| � c0. Taking the relevant block from the
3× 3 Hamiltonian of Eq. (27) one obtains a reduced 2× 2 Hamiltonian that is given
by Eq. (4) with the effective parameters

λ =
c1

c1 − c2
, C =

c1 − c2√
2

, uc = −c0 (32)

Hence we deduce that G(u) of Eq. (9) can be used as an approximation for the exact
result. This expectation is confirmed in Fig. 4.

The presence of λ reflects that the flow is via two bonds instead of via only a
single bond, unlike the case of the 2-sites model. In other words the particle “splits”
and flows through both bonds. We notice that the integrated current Q = λ can have
a manifestly non-classical value: it can be either larger than 1 or negative. In fact, if
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it is larger than 1 in one bond it has to be negative in the other bond, since the total
corresponds to 100% probability of being adiabatically transferred. The non-classical
value of λ reflects a circulating current that is induced during the transition. In a
semi-classical language it means that the particle is looping several rounds through
the ring before ending up in the wire.

7. The shifted 2-level approximation |c−| � c0

The simple two-level approximation of the previous section is not valid if |c+| > c0.
Still if |c−| � c0 we can still get a result that looks like Eq. (9). The solution procedure
involves two steps. In the first step we switch to a new basis:

|θ〉 = cos(θ/2)|0〉+ sin(θ/2)|+〉 (33)

|θ̄〉 = − sin(θ/2)|0〉+ cos(θ/2)|+〉 (34)

|−〉 = the lower (odd) wire state (35)

where

θ(u) = arctan

(
2c+
u− c0

)
(36)

In this basis the block of the Hamiltonian Eq. (27) that contains the strongly
interacting states |0〉 and |+〉 becomes diagonal. Now it is possible to neglect the
upper level |θ〉 and we get a two-level crossing problem that involves the “dressed”
dot level |θ̄〉 and the lower (odd) wire level |−〉. The adiabatic energy of the former is

Eθ̄ =
1

2

[
(u+ c0)−

√
4c2+ + (u− c0)2

]
(37)

while that of the latter is E− = −c0. Accordingly the shifted crossing point is

uc =

[
−1 +

1

2

(
c+
c0

)2
]
c0 (38)

The stronger the coupling c+ to the upper level, the larger is the shift of uc.
In order to estimate the effective parameters of the shifted two level crossing we

have to write the Hamiltonian and the current operator in the new basis. In the
vicinity of the crossing point we set θc = θ(uc), getting

H 7→
([

u sin2(θc/2) + c0 cos2(θc/2)− c+ sin(θc)
]

−c− sin(θc/2)
−c− sin(θc/2) −c0

)
(39)

and

I 7→ λ

(
0 −ic− sin(θc/2)

ic− sin(θc/2) 0

)
(40)

where λ is the same as in the previous section. It is important to realize that up to
constant the effective dot potential equals αu with α = sin2(θc/2). It is not difficult
to see that this implies the replacement

G(u) 7→ α G(αu) (41)

Hence within the framework of the two level approximation the effective C in Eq. (9)
is not −c− sin(θ/2) but rather it should be divided by α. So eventually we deduce
that the G(u) can be approximated by Eq. (9) with an effective coupling parameter

C = −
[
sin

(
θc
2

)]−1

c− (42)
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Figure 4. An initially loaded level crosses the other two levels of a 3 site network.
(a) The adiabatic energies En(u) as a function of the dot potential. (b) The
geometric conductance G(u) during this sweep process, reflecting the current
through the c1 bond. The thick blue line is the exact solution Eq. (21). We
use units such that c0 = 1. The parameters in set (1) are c1 = 0.2 and c2 = 0.15,
corresponding to the regime |c+| � c0, where the simple two level approximation
(thin black line) applies. Vertical dashed line indicates the dot-wire crossing point.
The parameters in set (2) are c1 = 5.0 and c2 = 4.3, corresponding to the regime
|c−| � c0, where a shifted two level approximation (thin black line) applies.
Vertical dashed line indicates the shifted crossing point. Note: the agreement is
so good that the thin black lines almost cannot be resolved.

This expectation is confirmed in Fig. 4. Note again that λ is the same as in the simple
two-level approximation, and that we evaluate θc at the crossing point using Eq. (36)
with Eq. (38).

8. Adiabatic crossing for c0 = 0

In the previous versions of the two-level approximation, the intra-wire coupling c0
was large in some sense. Now we go to the other extreme limit of having c0 = 0.
This resembles the standard setup that is used in the analysis of stimulated Raman
adiabatic passage (STIRAP). In fact we can adopt here the same “dark state” picture
in order to reduce the problem to a two-level crossing. Namely, for this purpose we
switch to the following basis:

|0〉 = the dot state (43)

|C〉 =
1√

c21 + c22
(c1|1〉+ c2|2〉) (44)

|D〉 =
1√

c21 + c22
(c2|1〉 − c1|2〉) = dark state (45)

In the new basis the |D〉 state decouples, and hence we end up again with a reduced
2× 2 Hamiltonian that is given by Eq. (4) with the effective parameters

λ =
c21

c21 + c22
, C =

√
c21 + c22, uc = 0 (46)
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Figure 5. The same as in Fig. 4 but with c1 = 19 and c2 = 15, illustrating a sharp
metamorphosis. The additional panel (c) shows the parametric variation of the
occupation probabilities. In (b) the black line is the c0 = 0 solution. The thinner
(green) and the thinnest (red) lines are I/u̇ for u̇ = 2 and for u̇ = 50, as determined
by numerical simulation. The left and right vertical lines indicate the dot-wire
crossing point, and the metamorphosis point, with separation (um − uc) = 286.
During the adiabatic metamorphosis a current is flowing through the energetically
distant dot. Mild non-adiabaticity spoils the metamorphosis without affecting the
dot occupation.

Hence we deduce that G(u) of Eq. (9) with the above set of effective parameters
coincides in this case with the exact result.

It should be clear that for c0 = 0 we no longer have a non-trivial geometry, and
hence a circulating current cannot be induced. For this reason it is a-priori expected
to get an effective two-level description with λ ∈ [0, 1]. In fact we got for λ a stochastic
look-alike expression that reflect the relative transmission of the two bonds.

9. Adiabatic metamorphosis

Let us contrast the c0 = 0 case with the c0 → 0 case. The two cases give very different
results. We would like to better clarify what really happens if c0 is very small. We
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first recall the optional bases for the representation of the system. The standard
basis is |0〉, |1〉, |2〉. The wire-eigenstates basis is |0〉, |+〉, |−〉, and the c0 = 0 basis is
|0〉, |C〉, |D〉. For the instantaneous eigenstates we shall use the notations |Eg〉, and
|Ed〉 and |Ee〉.

Recall that for c0 = 0 the dark state |D〉 decouples, meaning that |Ed〉 = |D〉,
while the other two eigenstates |Eg〉 and |Ee〉 are superpositions of |0〉 and |C〉. At
the end of an adiabatic process the system will be found in the degenerate |Eg〉 = |C〉
state. However, if c0 is non-zero, the system ends up in the non-degenerate |Eg〉 = |−〉
state.

It is therefore clear that for very small but finite c0 the adiabatic ground-state
changes from |C〉 to |−〉. We call this “adiabatic metamorphosis”. We define um
as the value of u at which this metamorphosis occurs. Close to um the dot level is
energetically far above, hence the lower states |1〉 and |2〉 form a 2-level system with
virtual coupling through the distant dot level. The reduced Hamiltonian is determined
by 2nd order perturbation theory:

H 7→

(
c21
u c0 − c1c2

u

c0 − c1c2
u

c22
u

)
(47)

By inspection of this Hamiltonian it is clear that for large enough u the direct coupling
c0 takes over, and then the metamorphosis to |Eg〉 = |−〉 is finalized. In particular it
is interesting to consider the case in which c2 ∼ c1. Then the metamorphosis crossing
point is sharply defined:

um =
c1c2
c0

, [for sharp metamorphosis] (48)

which is demonstrated in Fig. 5. Otherwise the metamorphosis is a gradual process,
as was illustrated in Fig. 2. Note that for sharp metamorphosis, at u = um, all the
probability is concentrated in one site of the wire, namely, in the site that is more
strongly connected to the dot. This is demonstrated in panel (c) of Fig. 5.

10. Beyond the adiabatic limit

In order for the process to be adiabatic the probability distribution should change
slowly with time. This implies that the current cannot be very large. Let us see
what is the precise statement. Specifically for a two level Landau-Zener crossing the
adiabatic condition is

u̇ � C2 (49)

where C is the coupling between the dot and the crossed level. This implies that

Imax ∼ G(uc) u̇max ∼ C (50)

One observes that the maximal current reflects the coupling. Furthermore, also the
integrate current cannot be too large. It is simply bounded by unity (|Q| < 1) reflecting
that the maximum transfer is 100%.

If we consider multiple path geometry it is easy to show that the conclusion
regarding the maximal current still holds. However, as was clarified in previous section,
the integrated current Q = λ becomes arbitrarily large if c1 ∼ c2, rather than being
bounded. A large value |Q| > 1 reflects the existence of a circulating current that is
induced in the system during the driving process. It should be clear that in order to
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witness |Q| � 1 one has to satisfy a very demanding adiabatic condition, because the
effective coupling that enters into Eq. (49) is C = (c1−c2)

√
2.

Within the conventional framework of the two-level approximation, the
implication of non-adiabaticity is to have less than 100% probability to cross from the
dot to the wire, as implied by the Landau-Zener expression [25, 26]. But for very small
c0, such that the metamorphosis scenario applies, the implications of non-adiabaticity
are more interesting as explained below.

For finite u̇ there is a finite range of small c0 values for which the result for Q is
approximately the same as for c0 = 0. The complementary statement is as follows:
for a given c0, if u̇ is large enough, the system does not have enough time to realize
that it is coupled to a “dark state”. Roughly this non-adiabatic condition takes the
form u̇ > c20. Thus we have an intermediate “diabatic” regime c20 � u̇� C2 where
the dynamics is “adiabatic” with regard to the crossing, but “sudden” with regard to
the metamorphosis. The bottom line of the above discussion is illustrated in Fig. 5.
One observes that for mild values of u̇ the metamorphosis stage is not expressed, and
the dynamics looks like that of c0 = 0 system.

11. Discussion

Transport in quantum networks is a theme that emerges in diverse contexts. The
simplest network that has non-trivial topology is the 3 site system that we have
considered in this paper. It can be regarded as composed of “dot” and “wire” segments.
The most elementary process that has to be understood is an adiabatic sweep of the
potential energy of a selected site (the dot), leading to transfer of the probability to
the other sites (the wire). Unlike stochastic process in which the probability current
is partitioned with branching ratios that are bounded within [0, 1], here the splitting
ratio λ can be any number reflecting a quantum stirring effect.

The detailed analysis of the 3 sites model allows to highlight several essential
ingredients in the analysis of quantum transport. In particular it was important to
clarify what is the way in which the two-level approximation breaks down. Strangely
enough the splitting ratios are independent of the intra-wire coupling, but still the
G(u) line shape is strongly influenced.

In particular we have distinguished between two type of processes: inter dot-wire
“adiabatic crossing” processes; and intra-wire “adiabatic metamorphosis” processes.
In the former probability is transported between the dot and the wire, while in the
latter the changes in the occupation are exclusively within the wire. During the
metamorphosis stage the dot level is very far from the wire levels, but still current
flows through the inter-connecting bonds, without being accumulated in the dot.

We believe that the processes that we have illuminated are of much relevance, and
might shed new light, on the analysis of pericyclic reactions [8]. In this context the
method of calculating electronic quantum fluxes had assumed that the latter can be
deduced from the continuity equation. Such procedure is obviously not applicable for
(say) a ring-shaped molecule: due to the multiple path geometry there is no obvious
relation between currents and time variation of probabilities.

Furthermore, it is important to understand how non-adiabaticity and decoherence
affect adiabatic transport. Possibly the most dramatic demonstration concerns the
suppression of metamorphosis processes by mild non-adiabaticity. Then we get instead
of coherent splitting, stochastic-like partitioning of the current. The reason for this
crossover can be optionally explained using a very general paradigm. Namely, once the
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intra-wire couplings are introduced, there is a protecting “gap” that becomes effective
if the rate of the sweep is slow enough; this protecting gap forces the particle to be
in a definite superposition at any moment. It follows that coherent splitting, unlike
“partitioning” of current is not a noisy process. This observation has implications on
the calculation of “counting statistics” and “shot noise” [29, 28].
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