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Driven Systems

Non interacting “spinless” electrons.
Held by a potential (e.g. AB ring geometry).
x1, T9 = shape parameters

= (h/e)¢ = magnetic flux
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“Ohm law”

For one parameter driving by EMF
I = G x(—13)
dQ — —G33 CZZCg

For driving by changing another parameter
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For two parameter driving
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Linear response theory
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What is the problem?

From Kubo formula we get

a formal expression for G .

Can we trust this expression? Conditions?

Quantum chaos!

How to use this expression?

The bare Kubo formula gives no dissipation!

To define an energy scale I'

Beyond first order perturbation theory!

['in case of isolated system is due to

non-adiabaticity.

[" affects both the dissipative and the

non-dissipative (geometric) part of the response.




Some references

Adiabatic transport
Thouless (PRL 1983) - Periodic arrays
Avron, Sadun, Raveh, Zur (1988) - Networks with fluxes

Berry, Robbins (JPA 1993) - Geometric magnetism

Linear response theory and Mesoscopics
Imry, Shiren (PRB 1986) - Using Kubo for a closed ring
Wilkinson, Austin (JPA 1995) - Challenging the validity

DC (PRL 1999) - The “quantum chaos” identification of regimes
DC and Kottos (PRL 2000) - The (A, €2) regimes diagram

DC (PRB+Rapid 2003) - the Kubo approach to pumping

DC, Kottos, Schanz (cond-mat 2004) - pumping on networks

Sela, DC (in preperation) - pumping on a ring

Open systems, S matrix formalism

The Landauer / Landauer-Buttiker formula (1970,1986)
Fisher, Lee, Baranger, Stone (1981,1989)

The Buttiker Pretre Thomas [BPT] formula (1994)
Brouwer (1998)

Avron, Elgart, Graf, Sadun

Buttiker, Texier, Moskalets

Marcus - experiments

Shutenko, Aleiner, Altshuler (PRB 2000) - quantization?

Entin-Wohlman, Aharony, Levinson (2002) - two delta functions




Driven Systems - classification

H = H(r,p; x1(t), x2(t), x3(t))

e closed isolated systems
e periodic arrays
e open systems (with reservoirs)

e one of the above interacting with a bath

Questions: Transport? Dissipation?




Simple pumping devices
How can we drive current?

- by changing the height of the potential

- by translating the potential

. | Dot ‘

Specific question:

What is the current which is created by

translating a scatterer?




The moving scatterer model

e There is a stationary solution.

e There is no dissipation.
e Pumping: d@) x1x dX

e There is no stationary solution.

e There is dissipation.
e Pumping: dQ x (1 —gg)* dX




Simple model systems - networks

&
dQ = (1-go) * —ke * dX

dQ =1~ Sk < dX
v

Adiabatic versus non-adiabatic result

DC, Kottos, Schanz, cond-mat 2004




Driven Systems - pumping

Assume periodic (“AC”) driving.
Does the current have a “DC” component?

Define charge transported per cycle:

Q = ¢Idt =77

A
x3

e

M X2

xl

Linear response assumption —
for one parameter driving ¢) = 0.

Ratchests are non-linear devices that use mixed or damped

dynamics in order to pump with only one parameter.




The two barrier model - Speculations...

. dot level

wire states - dot state

position

For the open system, using BPT:

Q =~ 1 -y

e Is it due to non-adiabaticity?

e Is it a dissipative contribution”?

What about strict adiabatic cycle in a closed system?

Shutenko, Aleiner, Altshuler (2000):
“If the system were closed [and strictly adiabatic], the charge distribution after
each period of the perturbation would return to the original distribution, and

therefore, the pumped charge would be ezactly quantized.”

Not correct!




Questions

Take the “two barrier model” as an example.
Assume Fermi occupation.

Adiabatic limit: Find the current of each level.

Is there one level that carries most of the current?
What is the effect of non-adiabaticity?

What is the role of dissipation?

Can we get in a closed system ) > 1 or even QQ > 1

Why in an open system always Q =1 — g

\E,(x(1)) A E,(x(1))

~_

Formalism:
Start with Kubo formula.
Derive from it the adiabatic limit.
Explain the implications of non-adiabaticity.
Explain the emergence/role of dissipation.
Take the limit of large L.
Express the results using the S matrix.

Does the result coincides with BPT?




The two barrier model

E,(x(1))

wire states dot state - dotlevel

position

X1+ Xy ~ dot potential floor




The dot-wire ring system (I)
H = H(T’,p, $1,$2,l’3)

= (h/e)¢ = magnetic flux

—1&3 = electro motive force [Volt]

jcszf.d? — 0

There i1s more than one way to put ® into H...

Conjugate current operator? Continuity?




The dot-wire ring system (II)

H = H(T’,p, $1,ZC2,§U3)

xr1, To = shape parameters

Possibilities:

x = dot potential floor

x = position of a wall element

x = position of a scatterer inside the dot

x = height of a barrier




Generalized forces / currents (I)

H(r,p;x)
OH

ox

Example 1:

r = position of a wall element (or scatterer)
= = wall (or scatterer) velocity

F = Newtonian force

(F) = —nz  |[friction law|

W =ni? [rate of heating |




Generalized forces / currents (II)

H(r,p; x)
OH

ox

Example 2:

r = magnetic flux through the ring

r = —EMF

F' = electrical current
(F) = -Gz |Ohm law]
W = Gi? [Joule law]




Linear response theory

(F), = /a(t —t') dx(t") dt’
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The Kubo Formula
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The Kubo Formula and ”quantum chaos”

classical correlation time

A X hd/L — mean level spacing

Ay ~ h/7, = bandwidth

Effective width of the energy levels:

2/3
(Mﬁo A~ (p) g

[ KA adiabatic regime

A< T <Ay non-adiabatic regime

Ay < T non-perturbative regime

L — o0 1s not the semiclassical limit!




The generalized FD relation

[“Kubo formula”|

/OO K" (t)rdr

0




Kubo formula - Green functions - BPT formula
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Pumping within the Kubo formulation

Q = P

-x —BAz

n
Q = [—%n-dq} —%B/\daz

k=3

Consider a planar (x1, x2) pumping cycle.

X2

— — o B- d
dsB Q 7{ ’

/

No magnetic field. Onsager —
7731 = 7732 = 0 (no dissipative contribution)

B2 =0 (no vertical component)




The B field

[geometric magnetism]|

Tm [Fk [ }

nm-— mn

(B — En)?2+ (1'/2)2

m(#n)

This field is divergenceless (for I' = 0)

A chain of degeneracies:

(51:%0), a:éo), o0 4 ZW% x integer)

The degeneracies are like Dirac monopoles
- The issue of bandwidth

- The effect of screening




Summary

LRT gives a unified framework for the theory of pumping.
Derivation of S matrix expressions for n and B.

Distinction between adiabatic, non-adiabatic and non-prt regimes.
“Quantum chaos” considerations are essential (I').

The emergence / relevance of dissipation.

The L — oo limit versus the h — 0 limit.

Near-field versus far field pumping cycles around “Dirac chains”.

The analysis of deviations from “quantized” pumping.

| QM-adiabatic | linear-response | non-perturbative
| ‘ ‘

non-perturbative regime

linear-response regime —

QM-adiabatic A Sin ( Qt)




Digression - The simplest pump
Assume that the current is given by Ohm law:

d CZZUg
[ = G- = —-G=2
dt dt

0 :j{]dt _ —jf(;da;?,

—G(a) * (P2 — @)
—G(b) x (1 — P2)

The net pumped charge:
= (G(b) = Gla)) * (P2 — P1).




Digression - The BPT formula

t e >

G’ = Ltrace 05 ST>
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Digression - The S matrix

g (VTG
/ge’? i1 — ge @
transmission
global phase shift

magnetic lux phase

displacement phase

NE,

Wire states

position

do




Digression - The 1D moving wall model

Strictly adiabatic:

Non adiabatic:

dQ = (1—-g)~




