From classical pumps of water to quantum pumping of electrons in closed devices

Doron Cohen, Ben-Gurion University

Collaborations:

Tsampikos Kottos (Gottingen) Holger Schanz (Gottingen) Itamar Sela (BGU)

Discussions:

Yshai Avishai (BGU) Markus Buttiker (Geneva) Thomas Dittrich (Colombia) Misha Moskalets (Kharkov)

http://www.bgu.ac.il/~dcohen LANL cond-mat archive

\$GIF, \$ISF

Driven Systems

Non interacting "spinless" electrons.

Held by a potential (e.g. AB ring geometry).

 $x_1, x_2 = \text{shape parameters}$

 $x_3 = \Phi = (\hbar/e)\phi = \text{magnetic flux}$

"Ohm law"

For one parameter driving by EMF

 $I = \boldsymbol{G}^{33} \times (-\dot{x_3})$ $dQ = -\boldsymbol{G}^{33} dx_3$

For driving by changing another parameter

Ι	=	$-{m G}^{31} \dot{x_1}$
dQ	=	$-\boldsymbol{G}^{31} dx_1$

For two parameter driving

$$I = -\mathbf{G}^{31}\dot{x_1} - \mathbf{G}^{32}\dot{x_2}$$
$$dQ = -\mathbf{G}^{31} dx_1 - \mathbf{G}^{32} dx_2$$
$$Q = -\oint \mathbf{G} \cdot dx$$

and in general

$$\langle F^k \rangle = -\sum_j G^{kj} \dot{x}_j$$

Linear response theory

What is the problem?

From Kubo formula we get a formal expression for G^{kj} .

Can we trust this expression? Conditions? Quantum chaos!

How to use this expression? The bare Kubo formula gives no dissipation!

To define an energy scale Γ Beyond first order perturbation theory!

 Γ in case of isolated system is due to non-adiabaticity.

 Γ affects both the dissipative and the non-dissipative (geometric) part of the response.

Some references

Adiabatic transport

Thouless (PRL 1983) - Periodic arrays Avron, Sadun, Raveh, Zur (1988) - Networks with fluxes Berry, Robbins (JPA 1993) - Geometric magnetism

Linear response theory and Mesoscopics

Imry, Shiren (PRB 1986) - Using Kubo for a closed ring Wilkinson, Austin (JPA 1995) - Challenging the validity DC (PRL 1999) - The "quantum chaos" identification of regimes DC and Kottos (PRL 2000) - The (A, Ω) regimes diagram DC (PRB+Rapid 2003) - the Kubo approach to pumping DC, Kottos, Schanz (cond-mat 2004) - pumping on networks Sela, DC (in preperation) - pumping on a ring

Open systems, S matrix formalism

The Landauer / Landauer-Buttiker formula (1970,1986) Fisher, Lee, Baranger, Stone (1981,1989) The Buttiker Pretre Thomas [BPT] formula (1994) Brouwer (1998) Avron, Elgart, Graf, Sadun Buttiker, Texier, Moskalets Marcus - experiments Shutenko, Aleiner, Altshuler (PRB 2000) - quantization? Entin-Wohlman, Aharony, Levinson (2002) - two delta functions

Driven Systems - classification

$\mathcal{H} = \mathcal{H}(\boldsymbol{r}, \boldsymbol{p}; x_1(t), x_2(t), x_3(t))$

- closed isolated systems
- periodic arrays
- open systems (with reservoirs)
- one of the above interacting with a bath

Questions: Transport? Dissipation?

Simple pumping devices

How can we drive current?

- by changing the height of the potential

- by translating the potential

Specific question:

What is the current which is created by translating a scatterer?

The moving scatterer model

- There is a stationary solution.
- There is no dissipation.
- Pumping: $dQ \propto 1 \times dX$

- There is no stationary solution.
- There is dissipation.
- Pumping: $dQ \propto (1-g_0) \times dX$

Simple model systems - networks

Adiabatic versus non-adiabatic result

DC, Kottos, Schanz, cond-mat 2004

Driven Systems - pumping

Assume periodic ("AC") driving. Does the current have a "DC" component? Define charge transported per cycle:

$$Q = \oint I dt = ???$$

$$x^{3}$$

$$x^{2}$$

$$x^{2}$$

Linear response assumption \implies for one parameter driving Q = 0.

Ratchests are non-linear devices that use mixed or damped dynamics in order to pump with only one parameter.

The two barrier model - Speculations...

For the open system, using BPT:

$$Q \approx 1 - g$$

- Is it due to non-adiabaticity?
- Is it a dissipative contribution?

What about strict adiabatic cycle in a closed system?

Shutenko, Aleiner, Altshuler (2000):

"If the system were closed [and strictly adiabatic], the charge distribution after each period of the perturbation would return to the original distribution, and therefore, the pumped charge would be *exactly quantized*."

Not correct!

Questions

- Take the "two barrier model" as an example.
- Assume Fermi occupation.
- Adiabatic limit: Find the current of each level.
- Is there one level that carries most of the current?
- What is the effect of non-adiabaticity?
- What is the role of dissipation?
- Can we get in a closed system Q > 1 or even $Q \gg 1$
- Why in an open system always Q = 1 g

Formalism:

- Start with Kubo formula.
- Derive from it the adiabatic limit.
- Explain the implications of non-adiabaticity.
- Explain the emergence/role of dissipation.
- Take the limit of large L.
- Express the results using the S matrix.
- Does the result coincides with BPT?

The two barrier model

 $X_1 + X_2 \sim \text{dot potential floor}$

The dot-wire ring system (I)

$$\mathcal{H} = \mathcal{H}(\boldsymbol{r}, \boldsymbol{p}; x_1, x_2, x_3)$$

 $x_3 = \Phi = (\hbar/e)\phi = \text{magnetic flux}$
 $-\dot{x}_3 = \text{electro motive force [Volt]}$

$$\oint \vec{\mathcal{A}} \cdot \vec{dr} = \Phi$$

There is more than one way to put Φ into \mathcal{H} ... Conjugate current operator? Continuity?

The dot-wire ring system (II)

$\mathcal{H} = \mathcal{H}(\boldsymbol{r}, \boldsymbol{p}; x_1, x_2, x_3)$

 $x_1, x_2 = \text{shape parameters}$

Possibilities:

- x = dot potential floor
- x =position of a wall element
- x =position of a scatterer inside the dot
- x =height of a barrier

Generalized forces / currents (I)

$$\mathcal{H} = \mathcal{H}(\boldsymbol{r}, \boldsymbol{p}; x)$$
$$F = -\frac{\partial \mathcal{H}}{\partial x}$$

Example 1:

- x =position of a wall element (or scatterer)
- $\dot{x} =$ wall (or scatterer) velocity
- F = Newtonian force
- $\langle F \rangle = -\eta \dot{x}$ [friction law]
- $\dot{\mathcal{W}} = \eta \dot{x}^2$ [rate of heating]

Generalized forces / currents (II)

$$\mathcal{H} = \mathcal{H}(\boldsymbol{r}, \boldsymbol{p}; x)$$
$$F = -\frac{\partial \mathcal{H}}{\partial x}$$

Example 2:

- x = magnetic flux through the ring
- $\dot{x} = -\text{EMF}$
- F = electrical current $\langle F \rangle = -G\dot{x} \quad \text{[Ohm law]}$
- $\dot{\mathcal{W}} = G\dot{x}^2$ [Joule law]

Linear response theory

The Kubo Formula

$$\alpha^{kj}(\tau) = \Theta(\tau) \times \frac{i}{\hbar} \langle [F^k(\tau), F^j(0)] \rangle$$

$$\chi^{kj}(\omega) = \sum_{n,m} f(E_n) \left(\frac{-F_{nm}^k F_{mn}^j}{\hbar\omega - (E_m - E_n) + i0} + \frac{F_{nm}^j F_{mn}^k}{\hbar\omega + (E_m - E_n) + i0} \right)$$

$$G^{kj} = \frac{1}{\omega} \times \operatorname{Im}[\chi^{kj}(\omega)] \Big|_{\omega \sim 0}$$

$$\boldsymbol{\eta}^{kj} = \pi \hbar \sum_{n,m} F_{nm}^k F_{mn}^j \,\delta(E_n - E_F) \,\overline{\delta(E_m - E_n)}$$

$$\boldsymbol{B}^{kj} = 2\hbar \sum_{n} f(E_{n}) \sum_{m(\neq n)} \frac{\operatorname{Im} \left[F_{nm}^{k} F_{mn}^{j} \right]}{(E_{m} - E_{n})^{2} + (\Gamma/2)^{2}}$$

The Kubo Formula and "quantum chaos" $\tau_{\rm cl}$ = classical correlation time

 $\Delta \propto \hbar^d / L =$ mean level spacing $\Delta_b \sim \hbar / \tau_{\rm cl} =$ bandwidth

Effective width of the energy levels:

$$\Gamma = \left(\frac{\hbar\sigma}{\Delta^2}|\dot{x}|\right)^{2/3} \times \Delta \sim \left(L|\dot{x}|\right)^{2/3}\frac{1}{L}$$

 $\Gamma \ll \Delta$ adiabatic regime $\Delta < \Gamma < \Delta_b$ non-adiabatic regime $\Delta_b < \Gamma$ non-perturbative regime

 $L \to \infty$ is not the semiclassical limit!

The generalized FD relation

$$K^{kj}(\tau) = (i/\hbar) \langle [F^k(\tau), F^j(0)] \rangle$$

$$C^{kj}(\tau) = \frac{1}{2} (\langle F^k(\tau) F^j(0) \rangle + cc)$$

 $\alpha^{kj}(\tau) = \Theta(\tau) \ K^{kj}(\tau) \qquad [\text{``Kubo formula''}]$

$$\boldsymbol{G}^{kj} = \lim_{\omega \to 0} \frac{\operatorname{Im}[\chi^{kj}(\omega)]}{\omega} = \int_0^\infty K^{kj}(\tau) \tau d\tau$$

$$\mathbf{G}^{kj} = \frac{1}{\Delta} \int_0^\infty C^{kj}(\tau) d\tau$$
 ["FD relation"]

$$\boldsymbol{B}^{kj} = \frac{-i}{\Delta} \int_{-\infty}^{\infty} \left[\frac{\tilde{C}^{kj}(\omega)}{\omega} \right] \frac{d\omega}{2\pi}$$

$$\boldsymbol{\eta}^{kj} = \frac{1}{2\Delta} \tilde{C}^{kj} (\omega \sim 0)$$

Kubo formula - Green functions - BPT formula

$$\eta^{3j} = \frac{\hbar}{\pi} \operatorname{trace} \left[F^3 \operatorname{Im}[\mathsf{G}^+] F^j \operatorname{Im}[\mathsf{G}^+] \right]$$
$$= \frac{\hbar}{4\pi} \operatorname{trace} \left[\frac{\partial S^{\dagger}}{\partial x_3} \frac{\partial S}{\partial x_j} \right]$$

$$\boldsymbol{B}^{3j} = \frac{\hbar}{4\pi} \operatorname{trace} \left[\mathcal{F}^{3} \operatorname{\mathsf{G}}^{+} \mathcal{F}^{j} \operatorname{\mathsf{G}}^{-} - \mathcal{F}^{3} \operatorname{\mathsf{G}}^{-} \mathcal{F}^{j} \operatorname{\mathsf{G}}^{+} \right]$$
$$= \frac{e}{4\pi i} \operatorname{trace} \left[P_{\mathrm{A}} \left(\frac{\partial S}{\partial x_{j}} S^{\dagger} - \frac{\partial S^{\dagger}}{\partial x_{j}} S \right) \right] + \operatorname{intrf}$$

$$\mathbf{G}^{3j} = \frac{e}{2\pi i} \operatorname{trace}\left(P_{\mathrm{A}} \frac{\partial S}{\partial x_{j}} S^{\dagger}\right) \quad [\mathrm{BPT}]$$

DC, PRB(R) 2003

Pumping within the Kubo formulation

$$Q = \oint \langle F^3 \rangle dt$$

$$\langle F \rangle = -\eta \cdot \dot{x} - B \wedge \dot{x}$$

$$Q = \left[-\oint \eta \cdot dx - \oint B \wedge dx \right]_{k=3}$$

Consider a planar (x_1, x_2) pumping cycle.

No magnetic field. Onsager \implies $\eta^{31} = \eta^{32} = 0$ (no dissipative contribution) $B^{12} = 0$ (no vertical component)

The B field

$$Q = \left[-\oint \boldsymbol{B} \wedge dx\right]_{k=3}$$

$$\boldsymbol{B}^{ij} = \sum_{n} f(E_n) \boldsymbol{B}_n^{ij}$$

[geometric magnetism]

$$\boldsymbol{B}_{n}^{kj} = 2\hbar \sum_{m(\neq n)} \frac{\operatorname{Im} \left[F_{nm}^{k} F_{mn}^{j} \right]}{(E_{m} - E_{n})^{2} + (\Gamma/2)^{2}}$$

This field is divergence less (for $\Gamma=0)$

A chain of degeneracies:

$$\left(x_1^{(0)}, x_2^{(0)}, \Phi^{(0)} + 2\pi \frac{e}{\hbar} \times \text{ integer}\right)$$

The degeneracies are like Dirac monopoles

- The issue of bandwidth
- The effect of screening

Summary

- LRT gives a unified framework for the theory of pumping.
- Derivation of S matrix expressions for η and B.
- Distinction between adiabatic, non-adiabatic and non-prt regimes.
- "Quantum chaos" considerations are essential (Γ) .
- The emergence / relevance of dissipation.
- The $L \to \infty$ limit versus the $\hbar \to 0$ limit.
- Near-field versus far field pumping cycles around "Dirac chains".
- The analysis of deviations from "quantized" pumping.

Digression - The simplest pump

Assume that the current is given by Ohm law:

$$I = -G \frac{d}{dt} \Phi = -G \frac{dx_3}{dt}$$
$$Q = \oint I dt = -\oint G dx_3$$

$$Q(a) = -G(a) \times (\Phi_2 - \Phi_1)$$
$$Q(b) = -G(b) \times (\Phi_1 - \Phi_2)$$

The net pumped charge:

$$Q = (G(b) - G(a)) \times (\Phi_2 - \Phi_1).$$

Digression - The BPT formula

$$S = \begin{pmatrix} \mathbf{r}_{\rm B} & \mathbf{t}_{\rm AB} \mathrm{e}^{-i\phi} \\ \mathbf{t}_{\rm BA} \mathrm{e}^{i\phi} & \mathbf{r}_{\rm A} \end{pmatrix}$$
$$P_{\rm A} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$
$$\mathbf{G}^{3j} = \frac{1}{2\pi i} \mathrm{trace} \left(P_{\rm A} \frac{\partial S}{\partial x_j} S^{\dagger} \right)$$
$$\langle F^3 \rangle = -\sum_j \mathbf{G}^{3j} \dot{x}_j$$

$$S = e^{i\gamma} \begin{pmatrix} i\sqrt{1-g}e^{i\alpha} & \sqrt{g}e^{-i\phi} \\ \sqrt{g}e^{i\phi} & i\sqrt{1-g}e^{-i\alpha} \end{pmatrix}$$

 $Q = \frac{1}{2\pi} \oint (1-g) \frac{d\alpha}{dx} \cdot \vec{dx} \approx 1 - g$

Digression - The S matrix

$$S = e^{i\gamma} \begin{pmatrix} i\sqrt{1-g}e^{i\alpha} & \sqrt{g}e^{-i\phi} \\ \sqrt{g}e^{i\phi} & i\sqrt{1-g}e^{-i\alpha} \end{pmatrix}$$

- g = transmission
- $\gamma = \text{global phase shift}$
- ϕ = magnetic flux phase
- α = displacement phase

 $d\alpha = 2kdX$

Digression - The 1D moving wall model

Strictly adiabatic:

$$dQ_n = \frac{1}{L}dX$$

$$dQ = \frac{p_F dX}{\pi \hbar}$$

$$N = \frac{2p_F L}{2\pi\hbar}$$

Non adiabatic:

$$dQ = (1 - g) \times \frac{p_F dX}{\pi \hbar}$$