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Driven Systems

Non interacting “spinless” electrons.

Held by a potential (e.g. AB ring geometry).

x1, x2 = shape parameters

x3 = Φ = (h̄/e)φ = magnetic flux

wire
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dot

dot
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wire



“Ohm law”

For one parameter driving by EMF

I = G33 × (−ẋ3)

dQ = −G33 dx3

For driving by changing another parameter

I = −G31 ẋ1

dQ = −G31 dx1

For two parameter driving

I = −G31ẋ1 −G32ẋ2

dQ = −G31 dx1 −G32 dx2

Q = −
∮

G · dx

and in general

〈F k〉 = −
∑
j

Gkj ẋj



Linear response theory

H = H(r, p; x1(t), x2(t), x3(t))

F k = − ∂H
∂xk

〈F 〉t =
∫

α(t− t′) δx(t′) dt′

?
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αkj(t− t′)

χkj(ω)

Re[χkj(ω)] (1/ω) × Im[χkj(ω)]

ηkj Bkj

(non-dissipative)

Gkj

(dissipative)

〈F k〉 = −
∑
j

Gkj ẋj



What is the problem?

From Kubo formula we get

a formal expression for Gkj.

Can we trust this expression? Conditions?

Quantum chaos!

How to use this expression?

The bare Kubo formula gives no dissipation!

To define an energy scale Γ
Beyond first order perturbation theory!

Γ in case of isolated system is due to

non-adiabaticity.

Γ affects both the dissipative and the

non-dissipative (geometric) part of the response.



Some references

Adiabatic transport
Thouless (PRL 1983) - Periodic arrays

Avron, Sadun, Raveh, Zur (1988) - Networks with fluxes

Berry, Robbins (JPA 1993) - Geometric magnetism

Linear response theory and Mesoscopics
Imry, Shiren (PRB 1986) - Using Kubo for a closed ring

Wilkinson, Austin (JPA 1995) - Challenging the validity

DC (PRL 1999) - The “quantum chaos” identification of regimes

DC and Kottos (PRL 2000) - The (A, Ω) regimes diagram

DC (PRB+Rapid 2003) - the Kubo approach to pumping

DC, Kottos, Schanz (cond-mat 2004) - pumping on networks

Sela, DC (in preperation) - pumping on a ring

Open systems, S matrix formalism
The Landauer / Landauer-Buttiker formula (1970,1986)

Fisher, Lee, Baranger, Stone (1981,1989)

The Buttiker Pretre Thomas [BPT] formula (1994)

Brouwer (1998)

Avron, Elgart, Graf, Sadun

Buttiker, Texier, Moskalets

Marcus - experiments

Shutenko, Aleiner, Altshuler (PRB 2000) - quantization?

Entin-Wohlman, Aharony, Levinson (2002) - two delta functions



Driven Systems - classification

H = H(r, p; x1(t), x2(t), x3(t))

• closed isolated systems

• periodic arrays

• open systems (with reservoirs)

• one of the above interacting with a bath

Questions: Transport? Dissipation?



Simple pumping devices

How can we drive current?

- by changing the height of the potential

- by translating the potential

Dot

Specific question:

What is the current which is created by

translating a scatterer?



The moving scatterer model

• There is a stationary solution.

• There is no dissipation.

• Pumping: dQ ∝ 1 × dX

• There is no stationary solution.

• There is dissipation.

• Pumping: dQ ∝ (1− g0) × dX



Simple model systems - networks

dQ = (1−g0) ×
e

π
kF

× dX

dQ = 1 ×
e

π
kF

× dX

dQ =

[
gT

1−gT

] [
1−g0

g0

]
×

e

π
kF

× dX

Adiabatic versus non-adiabatic result

DC, Kottos, Schanz, cond-mat 2004



Driven Systems - pumping

Assume periodic (“AC”) driving.

Does the current have a “DC” component?

Define charge transported per cycle:

Q =
∮

Idt = ???

x1

x2

x3

Linear response assumption =⇒
for one parameter driving Q = 0.

Ratchests are non-linear devices that use mixed or damped

dynamics in order to pump with only one parameter.



The two barrier model - Speculations...

dot state

position

En

wire states

X2
X1

dot level

nE  (x(t))

time

For the open system, using BPT:

Q ≈ 1 − g

• Is it due to non-adiabaticity?

• Is it a dissipative contribution?

What about strict adiabatic cycle in a closed system?

Shutenko, Aleiner, Altshuler (2000):

“If the system were closed [and strictly adiabatic], the charge distribution after

each period of the perturbation would return to the original distribution, and

therefore, the pumped charge would be exactly quantized.”

Not correct!



Questions

• Take the “two barrier model” as an example.

• Assume Fermi occupation.

• Adiabatic limit: Find the current of each level.

• Is there one level that carries most of the current?

• What is the effect of non-adiabaticity?

• What is the role of dissipation?

• Can we get in a closed system Q > 1 or even Q � 1

• Why in an open system always Q = 1− g

nE  (x(t))

time

nE  (x(t))

time

Formalism:

• Start with Kubo formula.

• Derive from it the adiabatic limit.

• Explain the implications of non-adiabaticity.

• Explain the emergence/role of dissipation.

• Take the limit of large L.

• Express the results using the S matrix.

• Does the result coincides with BPT?



The two barrier model

dot state

position

En

wire states

X2
X1

dot level

nE  (x(t))

time

X1 + X2 ∼ dot potential floor
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The dot-wire ring system (I)

H = H(r, p; x1, x2, x3)

x3 = Φ = (h̄/e)φ = magnetic flux

−ẋ3 = electro motive force [Volt]

∮
~A · ~dr = Φ

There is more than one way to put Φ into H...

Conjugate current operator? Continuity?

dot

x3

lead lead

x1

r=r

wire

r=0

A

x2



The dot-wire ring system (II)

H = H(r, p; x1, x2, x3)

x1, x2 = shape parameters

Possibilities:

x = dot potential floor

x = position of a wall element

x = position of a scatterer inside the dot

x = height of a barrier

dot

x3

lead lead

x1

r=r

wire

r=0

A

x2



Generalized forces / currents (I)

H = H(r, p; x)

F = −∂H
∂x

Example 1:

x = position of a wall element (or scatterer)

ẋ = wall (or scatterer) velocity

F = Newtonian force

〈F 〉 = −ηẋ [friction law]

Ẇ = ηẋ2 [rate of heating ]

x(t)

chaos!



Generalized forces / currents (II)

H = H(r, p; x)

F = −∂H
∂x

Example 2:

x = magnetic flux through the ring

ẋ = −EMF

F = electrical current

〈F 〉 = −Gẋ [Ohm law]

Ẇ = Gẋ2 [Joule law]

chaos!



Linear response theory

〈F 〉t =
∫

α(t− t′) δx(t′) dt′

?
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αkj(t− t′)

χkj(ω)

Re[χkj(ω)] (1/ω) × Im[χkj(ω)]

ηkj Bkj

(non-dissipative)

Gkj

(dissipative)

〈F k〉 = −
∑
j

Gkj ẋj

〈F 〉 = −G · ẋ = −η · ẋ − B ∧ ẋ

Ẇ = −〈F 〉 · ẋ =
∑
kj

ηkj ẋk ẋj



The Kubo Formula

αkj(τ) = Θ(τ) ×
i

h̄
〈[F k(τ), F j(0)]〉

χkj(ω) =
∑
n,m

f(En)
(

−F k
nmF

j
mn

h̄ω−(Em−En)+i0
+

F
j
nmF k

mn

h̄ω+(Em−En)+i0

)

Gkj =
1

ω
× Im[χkj(ω)]

∣∣∣∣
ω∼0

ηkj = πh̄
∑
n,m

F k
nmF j

mn δ(En − EF ) δ(Em − En)

Bkj = 2h̄
∑
n

f(En)
∑

m( 6=n)

Im
[
F k

nmF j
mn

]
(Em−En)2 + (Γ/2)2



The Kubo Formula and ”quantum chaos”

τcl = classical correlation time

∆ ∝ h̄d/L = mean level spacing

∆b ∼ h̄/τcl = bandwidth

Effective width of the energy levels:

Γ =

(
h̄σ

∆2
|ẋ|
)2/3

× ∆ ∼
(
L |ẋ|

)2/3 1

L

Γ � ∆ adiabatic regime

∆ < Γ < ∆b non-adiabatic regime

∆b < Γ non-perturbative regime

L →∞ is not the semiclassical limit!



The generalized FD relation

Kkj(τ) = (i/h̄)〈[F k(τ), F j(0)]〉
Ckj(τ) = 1

2(〈F
k(τ)F j(0)〉+ CC)

αkj(τ) = Θ(τ) Kkj(τ) [“Kubo formula”]

Gkj = lim
ω→0

Im[χkj(ω)]

ω
=

∫ ∞

0
Kkj(τ)τdτ

Gkj =
1

∆

∫ ∞

0
Ckj(τ)dτ [“FD relation”]

Bkj =
−i

∆

∫ ∞

−∞

[
C̃kj(ω)

ω

]
dω

2π

ηkj =
1

2∆
C̃kj(ω ∼ 0)



Kubo formula - Green functions - BPT formula

η3j =
h̄

π
trace

[
F 3 Im[G+] F j Im[G+]

]
=

h̄

4π
trace

[
∂S†

∂x3

∂S

∂xj

]

B3j =
h̄

4π
trace

[
F3 G+ F j G− −F3 G− F j G+

]
=

e

4πi
trace

[
PA

(
∂S

∂xj

S† − ∂S†

∂xj

S

)]
+ intrf

G3j =
e

2πi
trace

(
PA

∂S

∂xj

S†
)

[BPT]

DC, PRB(R) 2003



Pumping within the Kubo formulation

Q =
∮
〈F 3〉dt

〈F 〉 = −η · ẋ −B ∧ ẋ

Q =
[
−
∮

η · dx −
∮

B ∧ dx
]
k=3

Consider a planar (x1, x2) pumping cycle.

X2

X1

Bds
Q = −

∮
B · ds

No magnetic field. Onsager =⇒

η31 = η32 = 0 (no dissipative contribution)

B12 = 0 (no vertical component)



The B field

Q =
[
−
∮

B ∧ dx
]
k=3

Bij =
∑
n

f(En)Bij
n [geometric magnetism]

Bkj
n = 2h̄

∑
m( 6=n)

Im
[
F k

nmF j
mn

]
(Em − En)2 + (Γ/2)2

This field is divergenceless (for Γ = 0)

A chain of degeneracies:(
x

(0)
1 , x

(0)
2 , Φ(0) + 2π

e

h̄
× integer

)
The degeneracies are like Dirac monopoles

- The issue of bandwidth

- The effect of screening



Summary
• LRT gives a unified framework for the theory of pumping.

• Derivation of S matrix expressions for η and B.

• Distinction between adiabatic, non-adiabatic and non-prt regimes.

• “Quantum chaos” considerations are essential (Γ).

• The emergence / relevance of dissipation.

• The L →∞ limit versus the h̄ → 0 limit.

• Near-field versus far field pumping cycles around “Dirac chains”.

• The analysis of deviations from “quantized” pumping.

V
QM-adiabatic linear-response non-perturbative

cl

QM-adiabatic

linear-response regime

non-perturbative regime

prtA

cA

A

Ω∆ ω

x(t) = V t

x(t) =

A sin(Ωt)



Digression - The simplest pump

Assume that the current is given by Ohm law:

I = −G
d

dt
Φ = −G

dx3

dt

Q =
∮

Idt = −
∮

Gdx3

X3

b a

Q(b) Q(a)

X1, X2
1Φ

2Φ

Q(a) = −G(a) × (Φ2 − Φ1)

Q(b) = −G(b) × (Φ1 − Φ2)

The net pumped charge:

Q = (G(b)−G(a)) × (Φ2 − Φ1).



Digression - The BPT formula

S =

(
rB tABe−iφ

tBAeiφ rA

)

PA =

(
0 0

0 1

)

G3j =
1

2πi
trace

(
PA

∂S

∂xj

S†
)

〈F 3〉 = −
∑
j

G3j ẋj

S = eiγ

(
i
√

1− geiα √
ge−iφ

√
geiφ i

√
1− ge−iα

)

Q =
1

2π

∮
(1− g)

dα

dx
· ~dx ≈ 1 − g



Digression - The S matrix

S = eiγ

(
i
√

1− geiα √
ge−iφ

√
geiφ i

√
1− ge−iα

)

g = transmission

γ = global phase shift

φ = magnetic flux phase

α = displacement phase

position

En

wire states dX

dα = 2kdX



Digression - The 1D moving wall model

p

p

p

Fp

F
−p

Strictly adiabatic:

dQn = 1
L
dX

dQ = pF dX
πh̄

N = 2pF L
2πh̄

Non adiabatic:

dQ = (1− g) × pF dX
πh̄


