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Current can be pumped through a closed system by changing pararfeetdields in time. The Kubo
formula allows one to distinguish between dissipative and nondissipative contributions to the current. We
obtain a Green function expression and &matrix formula for the associated terms in the generalized
conductance matrix: the “geometric magnetism” term that corresponds to adiabatic transport, and the “Fermi
golden rule” term which is responsible for the irreversible absorption of energy. We explain the subtle limit of
an infinite system, and demonstrate the consistency with the formulas by Landauer ttiker BRrdére and
Thomas. We also discuss the generalization of the fluctuation-dissipation relation, and the implications of the
Onsager reciprocity.
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Linear response theoy.RT) is the traditional theoretical presented in Fig. 1, whene, and x, are gate voltages and
tool for dealing with the response of driven systefmslt  x3 is the magnetic flux through the loop. The generalized
offers an expressiotthe Kubo formula for the generalized forces are conventionally defined &&= — gH/dx,. Note
susceptibility, and hence for the generalized conductance mé#hat F2 is the electrical current. In LRTthe first-order con-
trix. It has been realized that in the adiabatic limit the Kubotribution to (F¥) is related tox;(t) by a causal response
formula reduces to an expression for “geometrickernel a®(t—t’). The Kubo expression for this response

: 5 ; ; i Ki( -y = kj Ki( ) = (i
magnetism.” In case of electrical current calculation the lat- kernel is a*!(7)=0(7)K*(7), where K"(7)=(i/%)
ter gives the “adiabatic transport” of char§é.Outside the  X([FX(7),F!(0)]) and®(r) is the step function. The Fou-
adiabatic regime the response includes an additional “dissirier transform of a¥l(7) is the generalized susceptibility
pation” term® The latter determines the rate of irreversible x*/(w). The generalized conductance matrix is
energy absorption, which is caused by Fermi golden rule
transitions between energy levels. o ImxM(w)]

Recently there has been much interest in analyzing the GY=li :f
response obpen systemshat are connected to reservoirs. ©=0
The analysis has been based on$hweatrix formalism, lead-
ing to the Landauer formufa® and more generally to the
Buttiker, Prare, and Thoma¢BPT) formula’® A major moti-
vation for the present work is the realization that the relation
between the BPT formula and the Kubo formula has not been (Fy=-> ij)'(jE(_ 7 X—BAX)y, )
clarified. In particular, the notion of “adiabatic pumping” in ]
the context of an open system has been left obscured, and
some confusion has arose regarding the role of dissipation iwhere following Ref. 5 the generalized conductance matrix
the pumping process'o1! is written as a sum of a symmetric matri¥!= #* that rep-

The purpose of the present work is to analyze the refesents the dissipative response, and an antisymmetric matrix
sponse ofclosed isolated systerhs'2 and in particular to  B“/=—B/* that represents the nondissipative respdiaseo
consider the special limit of an infinite systefno reser- called geometric magnetigm
voirs!). Thus we are going to construct a bridge between the
LRT formulation and the BPT formula. This is of great prac-
tical importance, because the assumed open geometry of the
Smatrix formulation is in many cases an idealization. It is
clear that Kubo formula allows a straightforward incorpora-
tion of finite-size, external noise, environmental, and possi-
bly also many-body effects. A major step in constructing this
bridge, had been taken up in Ref. 13, where the authors start
with the Kubo formula for the electrical conductivity and end
up with the Landauer formula which relates the conductance
to the transmission of the device. We are going to see that the
general case, which deals with tgeneralizedconductance
matrix and hence incorporates adiabatic transport, is much FiG. 1. lllustration of a closed system. The dot potential is con-
more subtle. trolled by gate voltagex; and x,. The flux through the loop is

Consider aclosed isolated systemhose Hamiltoniart{  x;=&. The scattering regiorr €0) is represented by a@matrix.
depends on several control parameteys An example is  The lengthL of the wire is assumed to be very large.

OCKkj(T)TdT. (1)
0

Thus in the limit of zero frequency the nontrivial part of the
response can be written as a generalized Ohm’s law
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For a device as in Fig. 1, and zero-temperature occupatiopted using Eq(3). A similar claim holds regarding*), but
of noninteractingspinles$ fermions, we find below that the the details are much more subtle. We start with the standard

dissipative part of the response is expression*!
. h . k i
7 =—t[FXIm[ G ]F Im[G"]] 3 i IM[F 5 il
BY|r_o=242, f(E _— 9
™ Ir=o En: ( n)m(z;n) (E—E.)? 9
+

:ﬁr E '9_8 , (4) wheref(E) is the Fermi occupation functioflater we take

4| 9% IX; the limit of zero temperatujelncorporatingl’, and exploit-

whereG* =1/(E—H=i0) are Green functions of the corre- "d the antisymmetry of the numerator with respecbitem
sponding open system, and [I&"]=—i(1/2)(G"—-G"). interchange we get
For the nondissipative part of the response we find

Bki|r: E

Bkj=—%tr[F‘%G*JrG’)FiIm[GJr]] (5) hm (Ep—Ep)?+(I/2)?

The numerator, on an average, depends mainly on the differ-
" encer=m-—n, and it is nonnegligible within a bandwidth
+Biur 6  |E,—E.<A,. We further discuss the bandwidth issue in
the next paragraph, and explain that in the limit of a very
where the second equality holds flke=3, and allows the long wire A<I'<A,. This means that in this limif' serves
determination of the electrical curre(F®) via a specified like the infinitesimaliO in the definition of the Green func-
lead A. The last term is defined in E@6). The projectoiP,  tionsG™*. Consequently, the sum in EG.0), which is of the
restricts the trace operation to be over the specified leatbrm X, g(n—m)(f(E,)—f(En))==2,rg(r), leads after
channels. In the absence of magnetic field the remainingome straightforward algebra to E®).
component iB?=0, while *'=%**=0 as expected from Formally there is an optional derivation that leads to
the Onsager reciprocity relatiorisee last paragraphDisre-  Eqgs. (3) and (5). The kernel K"(7) is related to the
garding the last term in Ed6), the sum of Eqs(6) and(4)  symmetrized correlation functiorCi(7) =(1[F'(7)Fi(0)
for I§=3 coincid_es with the BPT formula, which can be writ- Fi(0)F'(7)]). The quantum-mechanical derivation of this
ten in our notations as subtle relation is discussed in Appendix D of Ref. 11. If we
use this relation we get from E@l) an extremely simple

.e )
G3J:__tr( pA_ST) [BPT]. (7)  (and useful result
21i IX;

—ihFK FL

(f(En)—f(Em)). (10)

aSST as*s
ax; ax;

e
=—"r

471 Pa

We show Iater that this reduce_s fpe=3 to the Landauer Gkizif%CkJ(T)dT’ (11)

formula which relates the electrical conductar@® to the Ao

transmission of the device. ] o )
Below we explain how to derive the expressions fgf ~ Which can be regarded as the generalization ofitietuation

and BX! starting from the Kubo formula Eq1). Later we dissipation relation The fluctuations are described by

discuss further physical implications of our results. Assum-CKi(w) which is defined as the Fourier transform@f (7).

ing zero-temperature Fermi occupation up to enekgy, It follows from this definition that

standard textbook proceddré leads to

(12

A .
i i nm mn
e =7h 2 Frnd(Ee—En)Fhid(Ee—En), (8 A E,E ~ho

where the overline indicates that thdunctions are smeared. OF the device of Fig. 1 the mean level spacing\is /L,

If the system were not isolated, the “broadeningof the wherelL is the Igngth of the wire. The above relation implies
energy levels would be determined by the interaction withihat the bandwidth of thenn matrix isA,~#/ 7, where the

the external environmefitBut we assume a closdgolated ~ classical correlation timer, is determined by the chaotic
system. Still we arglfethat in case of a quantizechaotic ~ motion inside the dot. It is also clear that' (w)=1/L, and
system the levels acquire an effective width  thereforecfec(1/L)2. Hence we get thaf «(1/L)Y3, imply-
=((hoe/A?)|X|)?3A, whereA is the mean level spacing, INg that the limitL—cc (keeping constant Fermi eneigis

and o is the root-mean-square value of the near-diagonafionadiabatic, and thaf<I'<A,. Assuming for simplicity
matrix elementgsee remar¥¥). Therefore we find two pos- that there is no magnetic field, one easily derives the expres-
sibilities: In the adiabatic regimd'(<A) the dissipative con- S!ONS
ductance is zero#=0), while in the nonadiabatic regime
(I'>A) the dissipative conductance acquires a well-defined G33=i633(w~0) (13)
finite value, which isnot sensitive tol’, and can be calcu- 2A '
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1= |[C¥w)|de Using the definition of” and Eqg.(18) we get Eq.(4). '
G3'=Kf N |z, fori=i2 (14 The derivation of thes-matrix expression Eq6) for BX!

is much more subtle, and requires a preliminary discussion
which are equivalent to those obtained in the preceding par#f the definition of the current operator. Consider a ring ge-
graph. Note thaC®/(7) with j=1,2 is antisymmetric with Ometry, and assume that the current is driven by the dux
respect tor, and therefore-iC 3 (w)/w is a real symmetric In ord'er to have a better 'defined model we should specify
function. what is the vector potential(r) along the ring. We can
We turn back to the formal derivation. We want to get€9ard the values ofl at different points in space as inde-
exact expressions for the elements of the conductance mRendent paramete(think of tight binding model Their sum
trix, for the device of Fig. 1, in the nonadiabatic limit of LMeaning$.A(r)-dr] should bed. So we have to know how
large L. The location of the particle is specified hy ® is distributed along the ring. This is not just a matter of
=(r,s), wherer is the coordinate along the ring asds a  “gauge choice” because the electric fieffr) = — A(r) is a
transverse coordinate. Optionally we can specify the locatiogauge invariant quantity. The transformatiopl— A
along a lead using a radial coordinatewhile the surface +VA(r) for a time dependent field is not merely a gauge
coordinates distinguishes different points that have the samechange. A gauge transformation of time dependent field re-
r. We shall refer tor=0 as the boundary of the scattering quires a compensating replacement of the scalar potential,
region. The channel basis is defined(as|a,r)=x,(s)(r  which is not the case here. So let us define a fyxwhich
—r,(r)), wherea is the channel index. The wave function in is associated with a vector potential that is concentrated
the lead regions can be expanded as follows: across a section=r, of a given lead. For the later derivation
it is essential to assume that the sectietr, is contained
within the scattering regiorisee Fig. 1 The generalized
force which is associated witlh, is F3=1,, the current
through this section. Namely,

|xp>=; (Ca €k +C, e aN)|a,r). (15)

Following® we define an operator which can be identified
with the imaginary part of the self-energy of the interaction P

. H
of the dot with the leads [a=— . e d(r—rp)+8(r—rp)v) (22
A

F=3 la0)hva(a0=dne |a)ivsal, (16) — (e/h)[T AP —T AP "1, (23

wherev ,=(ik,/mass) is the velocity in channal The ma-  wherev is ther component of the velocity operator. The last

trix elements of the second term in E3.6) are equality involves new definitions. We define
1“(S,S’):g Xa(8)hivaxa(s'). 17 Ta= > |ara)fiva(ara. (24)
aeA

Using standard procedufsee Sec(3.4) of Ref. 3] the Green
function in the leads, inside the scattering regioscQ), can
be expressed using tf&matrix

We also define projecto®™ andP~ that project out of the
lead wave function, Eq(15), the outgoing and the ingoing
parts, respectively. These projectors commute With Fur-
thermore, note thaP*G*=G", P"G"=0, andG P~

=0, and so forth. Using these extra identities one obtains the

G+<r,s|0.s'>=—i§ Xb(S)

Vhoy, following expression:
A , 1
><(eflkr_|_se|kr)ba xa(s'), (18 3 _ e ~ Gt . o~ dG A N
,/ﬁva B —4—77itr FA 0Xj I'G FA&’_)(JFG . (25)

wherek=diagk,} is a diagonal matrix. Now we are fully ) o - - _
equipped to convert E3) into anS-matrix expression. Us-  Using the definitions of” andT',, together with Eq(18),

ing the identitiedfor Eq. (19) below see Ref. B foll_owed by a strgightforwarq_ algebraic manipulation, one
arrives at Eq(6) with the additional term

IM[G*]=—3G' TG =—3G I'G", (19
;i _ © aS okr
aGi ) Bintrf_ER tr PAWé A ’ (26)
W: —GiFJGi, (20) !
) : whereP, is a projector that restrict the trace operation to the
we obtain aeA lead channels.
b 190Gt . 0G- For the simple ring geometry of Fig. 1, we have a left lead
Pi=—tr — T 21y (beB) and aright leadg< A) channels, and th& matrix
Ao | Ix;  IX can be written as
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5 tage ¢ 00 of the device, and can be either positive or negative.
S=lid¢ 1 |* Pamlo 1) (27)  In contrast to that, with the BPT formula the correction to
BA A Q~1 is always negative. On the basis of our derivation we
wherep=ed/A. Using the identity can conclude the following: The deviation from quantization
in a strictly adiabatic cycle is related to the contribution of
IS =iE(PAS—SPA) (28) the neiglhboring level. If the degeneracy Wi.th .this level is
by located in the planex(,x,,x3=0) of the encircling cycle,

one can derive the relation that has been stated between Eﬁ?n the correction is positive. If the encircled degeneracy is

(4), Eq. (6), and the BPT formula Eq(7). Furthermore, as- off plane, then the correction is negative. The effect of nona-
sur,ning tha,lt there is an electro motive foreéDB whicr; is diabaticity ">A) is to screen the contribution of the neigh-

induced in the other lead. one obtains from BRSES boring levels, which is the reason for having always a nega-

S tive correction from the BPT formula.
=(e2/27-rh)tr(tABt,KB) which is the Landauer formula. The

licati £ thi d ltilead . The role that dissipation may have in pumping is re-
application of this procedure to multilead systems IS &gyicted, merely by the realization that the BPT formula is
straightforward generalization.

L ) hat th hich i related to the Kubo formula. The Onsager reciprocity rela-
For anopensystem it is evident that the current Which is 4, i1y that in the absence of magnetic field the conduc-

emitted(say) through the right lead does not have to be equa ance matrixG</ should be symmetri¢antisymmetrig with

to the current which is absorbed by the left lead. The reasoﬂespect to the permutation of the indexdsj], depending

is that. charge can be accu.mulated in the dpt region. But for 8 "\ b ctheEX andE transform(not) in the san,1e way under

pumpm% ca/cle one rellalc;z?_s thlat dth_edmteg(;ated CUMeMime reversal, This means that shape deformations lead to

Epumspe i c aLQas atyve h eldlne'c{ €ad n feggn dehm:an- dissipation viasy! with i,j <3, while the electrical current is

ity. Similar observation holds in case of@osedsystem.  joiormined exclusively by the nondissipative tef&$ and

Assume for example, that the left lead is blocked. In Sucrﬁ?? This should be contrasted with the response to electro-

gﬁ;ﬁ éatﬁ'rgg thh(tahg?it Efltgggalwmlé fr?;f:ir?e%imgjlohn tk?e otive force which is purely dissipative. Both the current
9 9 9 ' 9 and the dissipation are exclusively determined by the Ohmic

left lead is zero. The emitted charge is accumulated in th%onductance]33. Thus, in the absence of magnetic field, we

wire.” But for a full cycle the _orlglnal charge distribution is have a clear cut distinction between the dissipative and the
restored, and therefore the integrated chaggbecomes a o Lo
nondissipative contributions to the response.

well-defined (lead independept quantity. The additional In summary, starting with the Kubo formalism, we were

term, Eq.(26), gives a zero net contribution for a full pump- able to find expressions for the dissipative and for the non-

:/Cgh%/%ee Tehalzl t(_arrkr]r; I(r:?JFr):Ieer?t tﬁ:; tgem%lg{faﬂ?c;ﬁ innOtthuem:ggigpissipative parts of the response, and to illuminate the role of
' nonadiabaticity in the limiting case of anfinite system. In

directionr, with a spatial period that equals half the de Bro- ontradiction with past speculations, we were able to dem-

e wavelength oL e Pl enera. his efects st e Mt tat the Swich to apensysiem does ot ecess-
P P te an extra dissipative term.

wave which is associated with the last occupied level.
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