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We show theoretically that a simple one-dimensional system (such as metallic wire) can display

quantum spin pumping possibly without pushing any charge. It is achieved by applying two slowly

varying orthogonal gate electric fields on different sections of the wire, thereby generating local spin-orbit

(Rashba) terms such that unitary transformations at different places do not commute. This construction is

a unique manifestation of a spin-orbit observable effect in purely one-dimensional systems with potentials

respecting time-reversal symmetry.
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Motivation.—A standard way of achieving charge trans-
fer across a conducting system is to apply two gate voltages
and change them adiabatically and periodically: Under
certain conditions, a charge is transferred across the system
during each period. This is referred to as quantum (charge)
pumping [1–5]. In recent years, pumping of spin polariza-
tion has become a focus of attention. One option to get a
polarized current is to introduce a Zeeman splitting term
[6], or employing ferromagnetic leads [7]. In some cases it
costs a great deal of dissipated energy and besides, time-
reversal invariance is broken. That motivates the quest for
achieving spin pumping without the application of mag-
netic fields [8–11] (see also Ref. [12] where spin filtering is
discussed). It is naturally expected that pertinent experi-
ments are rather difficult to carry out, and hence, an
obvious desirable property required from a model describ-
ing spin pumping is that it should be simple and experi-
mentally feasible.

In the present work we show that spin pumping can be
achieved in a simple one-dimensional device (wire), by
exploiting the spin-orbit (SO) interaction of the electron
with electric fields applied on two different sections of the
wire (referred below as Rashba barriers). The model is
characterized by the following attractive properties: (1) It
demonstrates that spin pumping is one of the few manifes-
tations of observable SO effects in (strictly) one-
dimensional systems; (2) it enables pure spin (without
charge) pumping; (3) the expressions obtained are simple,
given in analytic form; (4) it serves as a pedagogical
manifestation of the basic concepts of generalized forces
and generalized charges.

Outline.—The order of presentation is as follows: First
we derive an expression for the scattering matrix of a single
Rashba barrier, and then recall a composition rule for
computing the S matrix for scattering off two successive
barriers. Once the Smatrix of the whole device is obtained,
the formalism of Refs. [2,3] (see also [13]) is employed in
order to analyze the pumping process. An expression for

the pumped spin polarization ( ~P) is derived, based on the
concept of generalized forces and charges. Together with
Refs. [9,14] it can be regarded as an SUð2Þ extension of the
Brouwer formula for the pumped charge (Q). Experimental
aspects and quantitative estimates of the spin pumping
current are then presented, followed by a short summary.
One-dimensional model.—The arena of our discussion is

that of noninteracting electrons confined in a straight one-
dimensional wire (along x) possibly experiencing a scat-
tering potential VðxÞ, and subject to a perpendicular elec-
tric field Eðx; tÞ. The time dependence will often be
omitted. The Pauli Hamiltonian is

H ¼ 1

2m
p2� e@

8m2c2
ðE�p�p�EÞ ��þVðxÞ (1)

wherem and e are the effective mass and the charge of the
electron. Concretely, we have in mind a simple and experi-
mentally feasible example where the wire passes through a
couple of barriers i ¼ 1; 2 composed of plate capacitors Ci

with different orientations (see Fig. 1). The fields E1ðxÞ ¼
ð0; E1; 0Þ and E2ðxÞ ¼ ð0; 0; E2Þ are non overlapping and
concentrated within the intervals �L < x < 0, and 0<
x< L. Barriers 1,2 are governed by Hamiltonians

FIG. 1. The pumping device (schematic). Electrons move on a
one-dimensional wire along the x direction between two reser-
voirs. Two capacitors C1 and C2 apply perpendicular electric
fields E1 ¼ ð0; E1; 0Þ and E2 ¼ ð0; 0; E2Þ whose strength is
controlled and varied periodically by an external circuit.
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H 1 ¼ @
2½k� �1ðxÞ�z�2

2m
þ v1ðxÞ; (2)

H 2 ¼
@
2½kþ �2ðxÞ�y�2

2m
þ v2ðxÞ; (3)

where k ¼ �i@x and �iðxÞ ¼ eEiðxÞ=4mc2. The scalar
potentials viðxÞ ¼ ViðxÞ � @

2�iðxÞ2=2m are nonvanishing
within the respective intervals. For realistic circumstances,
the second term in viðxÞ is small on any energy scale, and
may be neglected [15]. Otherwise, there is charge pumping
due to the barrier modulation, which can be calculated
using the same basic formalism developed below. The
dimensionless parameters that characterize the field inter-
action are,

�i ¼ 2
Z 1

�1
�iðx0Þdx0 i ¼ 1; 2: (4)

The time dependence of �i is assumed to be periodic and
very smooth, justifying the use of the adiabatic approxi-
mation. Practically then, the time is used as a parameter
that will be employed at a later stage when the spin pump-
ing is discussed (hence it will not be specified before that).
Our first goal is to find the S matrix for scattering through
the system (see Fig. 1). The strategy would be to write
down the Pauli equation and solve the scattering problem
separately for each barrier thereby obtaining the corre-

sponding S matrices Sð1Þ and Sð2Þ and then combine them

to obtain S ¼ Sð1Þ � Sð2Þ, the total S matrix.
Scattering from a single Rashba barrier.—The electric

field E1ðxÞ in the left barrier is constant deep inside the
capacitor and decays as a third power (in distance) outside
it. For definiteness let us assume that the capacitor C1 is
centered at x ¼ �L=2 and that L is sufficiently large so
that E1ðxÞ is non-negligible only within �L < x < 0. We
can then solve the stationary Schrödinger equation for
scattering at energy " for each barrier separately. For the
first barrier, the equation isH 1c 1ðxÞ ¼ "c 1ðxÞ where H1

is given in Eq. (2). Direct solution yields the 4� 4 Smatrix

Sð1Þab of the first barrier where the channel index is a ¼ 1 " ,
1 # , 2 " , 2 # . Within 2 block structure in Lead � Spin
space, it reads,

S ð1Þ ¼ R1 T0
1

T1 R1

� �
¼ r1 tU�1

1
tU1 r1

� �
: (5)

Here 1 is the 2� 2 identity matrix and U1 ¼ ei�1�z is an
SUð2Þ spin rotation matrix [see also Eq. (6) ]. The reflec-
tion and transmission amplitudes r and t are determined by
the potential v1ðxÞ. Similar consideration applies to the
second barrier as well. Assuming (just for convenience)
that the second barrier has the same reflection and trans-
mission amplitudes (r and t), its S matrix has an identical

structure as Sð1Þ albeit with different spin rotation matrix
U2 � U1, since the spin-orbit term in the second barrier is
�2ðxÞ�y [compare Eqs. (2) and (3)]. In brief, the corre-

sponding spin rotation matrices for barriers 1 and 2 are,

U1 ¼ eþi�1�z=2; U2 ¼ e�i�2�y=2: (6)

Scattering from two Rashba barriers.—The S matrix of
the whole device is constructed by composing the two
(nonoverlaping) barriers in a series, employing the follow-
ing prescription [16] for calculating the transmission and
reflection amplitudes:

T ¼ T2ð1� R0
1R2Þ�1T1; T0 ¼ T0

1ð1� R2R
0
1Þ�1T0

2;

R ¼ R1 þ T0
1ð1� R2R

0
1Þ�1R2T1;

R0 ¼ R0
2 þ T2ð1� R0

1R2Þ�1R0
1T

0
2: (7)

In the absence of SO the transmission and reflection am-
plitudes due to the total potential v1ðxÞ þ v2ðxÞ are

� ¼ t2

1� r2
; � ¼ r

�
1þ t2

1� r2

�
: (8)

In the presence of SO, Eqs. (7) imply,

S ¼ R T0
T R0

� �
¼ �1 �U�1

1 U�1
2

�U2U1 �1

� �
; (9)

where U1 and U2 are defined in Eq. (6). The noncommu-
tativity of the SUð2Þ spin rotations, ½U1; U2� � 0, is crucial
for the operation of the pumping device, (discussed below)
because only then the two pumping parameters �1 and �2
are generically independent.
Gauge considerations in spin pumping.—Our formalism

employs the approximate SUð2Þ invariance of the Pauli
equation [15]. For a one-dimensional system, it might be
tempting to eliminate the SUð2Þ vector potential
Axðx; tÞ ¼ @

4mc ½Eðx; tÞ � ��x from the kinetic energy

term 1
2m ½px þ e

cAxðx; tÞ�2 by a suitable gauge transforma-

tion c ðx; tÞ ! gðx; tÞc ðx; tÞ, such that

Ax ! Ax þ gAxg
�1 þ g@xg

�1 ¼ 0; (10)

where gðx; tÞ is an SUð2Þ valued function. This is possible
in principle, but there is a price, since pumping is essen-
tially a time dependent problem (albeit treated adiabati-
cally). The gauge transformation will generate a time
component of the SUð2Þ vector potential such that i@@t !
i@@t � gðx; tÞ@t½gðx; tÞ��1. The upshot is that in static prob-
lems, the SUð2Þ vector potential can be completely elim-
inated by an SUð2Þ gauge transformation, but in a time
dependent problem, such as pumping, it cannot.
Operation of the pumping device.—We now consider the

situation displayed in Fig. 1 where the SO dimensionless
parameters �1ðtÞ and �2ðtÞ of Eq. (4) are controlled by
slowly varying the fields inside the capacitors with a
common period 2�=�. The adiabatic picture implies that
the driving frequency� is very small. By that we mean the
usual condition for so-called adiabatic pumping, namely, if
we have parametric driving with rate _� and frequency �
then the condition is @�, @ _� � �E, where �E is the
energy scale over which the transmission fluctuates. For
a device with a simple barrier (no resonance) �E is simply
@vF=L where L is the length of the device. Our goal is to
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study the pumped charge and the pumped spin polarization
during a single period. The generalized conductance
Ga;ið�iÞ is defined as in [13] via the relation:

dQa ¼ � X
i¼1;2

Ga;ið�iÞd�i; (11)

where dQa is the charge pushed into channel a. If only one
control parameter is manipulated (call it �), and only one
lead (say the left) is inspected, then one can use the simpler
notations dQ" ¼ �G"d� and dQ# ¼ �G#d�. Accordingly,
the net charge which is pushed into the specified lead is
dQ ¼ �ðG" þG#Þd� while the net spin polarization is
dPz ¼ �ðG" �G#Þd�. Below it is shown that dPx and
dPy can be calculated as well, and that our pump generates

net spin polarization current while the net charge current
vanishes at any moment.

Pumping of spin polarization.—The generalized con-
ductance can be calculated using the Buttiker-Thomas-
Pretre formula [2,3]. With our notations it reads:

Ga;ið�Þ ¼ 1

2�i

�
@S

@�i
Sy
�
aa

� � 1

2�

�
HðiÞ

�
aa
: (12)

If one regards the Sð�Þ matrices as a group of unitary

transformations, then the HðiÞ are interpreted as their gen-
erators. For the problem under consideration:

Hð1Þ ¼ 1

2

j�j2�z ����zU
y
1U

y
2

����U2U1�z �j�j2U2�zU
y
2

0
@

1
A

Hð2Þ ¼ 1

2

�j�j2Uy
1�yU1 ����Uy

1U
y
2�y

����yU2U1 j�j2�y

0
@

1
A:

(13)

Simple manipulations show that the diagonal 2 � 2 blocks
in the above expressions are proportional to Pauli matrices
which are traceless. Hence, the net charge which is pushed
into any of the two leads vanishes, G" þG# ¼ 0. On the
other hand, the spin polarization current is determined by
G" �G#, which generically does not vanish. It is estimated
below to be of the order of j�j2�20 where j�j2 is the trans-

mission coefficient [Eq. (8)], and �0 is the amplitude of the
pumping parameters �i defined in Eq. (4).

In order to get physical understanding of the spin pump-
ing one should note that if the channel basis is changed,
then H undergoes a similarity transformation H �
T �1HT where T is the transformation matrix from the
old to the new basis. In particular, one is interested in block
diagonal T ’s, such that each of the two 2� 2 blocks
represents an SUð2Þ rotation of the axes that are attached
to the respective lead. By an appropriate choice of axes, a
given lead-related 2� 2 block of a given H matrix can be
transformed into the canonical form Hlead 7 ��! 1

2 j�j2�Z

where Z is the new z axis. This means that the net spin
polarization which is pushed into a lead is

dPZ ¼ j�j2 d�
2�

; (14)

where � is either �1 or �2. It should be appreciated that the
direction (Z) of the spin polarization current depends on
whether �1 or �2 is being changed, and it is not the same for
the left and for the right lead. Specifically, if �1 is being
varied, then the spin polarization of the current in the left
lead is in the z direction, while in the right lead it is in the
xy plane, with an angle �1 relative to the y direction.
SUð2Þ extension of the Brouwer formula.—For a general

pumping cycle the net pumping is given by a line integral
over the conductance. Following Brouwer [3], one can
replace this line integral by an area integral using Stokes
theorem. Namely,

Qa ¼
I

G ^ d� ¼
ZZ

Caad�1d�2 (15)

where � ¼ ð�1; �2Þ, and G ¼ ðGa;1; Ga;2Þ. In the above
expression we have introduced the ‘‘rotor’’ Caa of G,
which can be regarded as a diagonal element of the matrix
C ¼ �ð1=2�Þ½@1H2 � @2H1�; hence,

C ¼ 1

�
=
��

@S

@�2

��
@Sy

@�1

��
¼ 1

2�i
½H2;H1�: (16)

Note that if one changes the channel basis, then C under-
goes a similarity transformation. Calculating C for our
model system, one observes that the derivatives bring
down �y�z ¼ i�x and each �x is rotated by the corre-

sponding SUð2Þ rotation matrix, by angles ��1 around z
for U1 and �2 around y for U2, leading to

C ¼ i

4�
j�j2 Uy

1�y�zU1 0

0 U2�y�zU
y
2

 !

¼� 1

4�
j�j2 cos�1�xþsin�1�y 0

0 cos�2�x�sin�2�z

� �
:

(17)

The Uð1Þ Brouwer expression for the pumped charge and
its SUð2Þ extension for the pumped spin polarization are,

Qlead ¼
ZZ

TrðC1leadÞd�1d�2 (18)

~P lead ¼
ZZ

TrðC ~� leadÞd�1d�2: (19)

The matrix 1lead is a projector on (say) the left lead, which
means in practical terms that one can keep only the upper
right 2� 2 block of C, and sum only over the channels of
the left lead. Equation (17) automatically entails TrðCÞ ¼
0 and hence by Eq. (18) Qlead ¼ 0. This is to be expected
when the effect of spin-orbit interaction appears as a pure
gauge: it affects the wave function merely through an
SUð2Þ phase factor. On the other hand, spin pumping is
not zero sinceC is multiplied by spin matrices before being

traced, and ~P � 0. Estimates below indicate that it is not
necessarily small.
Experimental aspects.—In Ref. [17] it was stressed that

the high purity of 2DEGs grown by molecular beam epi-
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taxy enables an almost collisionless motion of an electron
through an experimental quasi-1D electronic system which
has an arbitrary number of occupied transverse modes.
Experiments on quantum-wire based devices that exploit
both the charge and spin of an electron then become
feasible (see Fig. 2). For a pumping cycle of frequency
� the pumped (vector) spin current Is is obtained by an
integral over the area of the pumping cycle,

I s ¼ e�

�

Z
Tr½C��d�1d�2:

For a very clean wire perfect transmission is assumed,
j�j2 ¼ 1. Employing Eq. (17), it is easy to check that

Tr ½C�� ¼ � 1

4�
½cos�1 þ cos�2; sin�1;� sin�2�:

The size of spin pumping is then determined solely by the
dimensionless parameters �1;2 defined in Eq. (4). The fields
E1;2ðx; tÞ inside the capacitors 1,2 �L 	 x 	 0 and 0 	
x 	 L are chosen such that �1;2ðx; tÞ and hence �1;2 can be
approximated by �1;2ðx; tÞ ¼ �0 cos�t (�0 sin�t) and

�1;2ðx; tÞ ¼ �0 cos�t (�0 sin�t) where �0 ¼ �0L.
Assuming a pumping cycle in the form of a square 0 	
�i 	 �0 the pumped spin currents read,

Isx ¼ e�

4�2

Z �0

0

Z �0

0
ðcos�1 þ cos�2Þd�1d�2

¼ � 2e��0 sin�0
4�2

;

Isy ¼ �Isz ¼ 2e��0ð1� cos�0Þ
4�2

:

It remains to estimate the parameter �0. In Ref. [18], the

quantity � � @
2

2m�0 is experimentally found for the

In0:53Ga0:47As=In0:52Al0:48As herterostructure. For gate
voltage Vg ¼ �1:5 V, � 
 10�11 eVm (see Fig. 5 of

Ref. [18]). For m ¼ 0:05m0 [18], this gives � 
 2��1,
and hence �0 ¼ �0L ¼ 0:8. This generous estimate is
based on a 2D experimental setup, but as pointed out in
Ref. [17], the value of � should not be much affected in 1D
systems as well.

Discussion.—On the practical level it has been demon-
strated in this work that in a strictly 1D device it is possible
to push polarization into the leads without pushing charge,
and that this can be carried out using two gates and without
magnetic fields. This should be contrasted with more com-
plicated arrangements that were suggested for this purpose,

e.g., in Ref. [12]. The scheme considered in our analysis is
based on a pumping (time dependent) setup, instead of the
more conventional transmission filter setup. On the theo-
retical side, a very simple result for the pumped spin
polarization has been obtained, namely, Eq. (14). As dem-
onstrated, it can also be formulated as an SUð2Þ extension
of the Brouwer formula for charge pumping, noting that the
geometric (Kubo) conductance G is formally a 2-form
(curvature), while C is a 3-form (scalar).
We have illuminated the gauge consideration in the

theory: while in the time-independent setting it is possible
to transform away the SO interaction, in spite of the non-
commutativity of the SUð2Þ gauge transformations, this is
no longer true for the time dependent Hamiltonian that
describes the pumping scenario.
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FIG. 2 (color online). Suggested experimental device for real-
izing spin pumping (schematic). The wire is stretched on a
metallic substrate between source and drain and subject to
horizontal and vertical ac fields at different regions so that
they do not overlap.

PRL 104, 196601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
14 MAY 2010

196601-4

http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.62.R10618
http://dx.doi.org/10.1103/PhysRevB.62.R10618
http://dx.doi.org/10.1103/PhysRevB.66.035329
http://dx.doi.org/10.1103/PhysRevB.66.035329
http://dx.doi.org/10.1103/PhysRevLett.89.146802
http://dx.doi.org/10.1103/PhysRevLett.89.146802
http://dx.doi.org/10.1103/PhysRevLett.91.258301
http://dx.doi.org/10.1103/PhysRevLett.91.258301
http://dx.doi.org/10.1103/PhysRevB.70.245318
http://dx.doi.org/10.1103/PhysRevB.70.245318
http://dx.doi.org/10.1103/PhysRevB.68.113306
http://dx.doi.org/10.1103/PhysRevLett.87.096401
http://dx.doi.org/10.1103/PhysRevLett.87.096401
http://dx.doi.org/10.1103/PhysRevB.68.035321
http://dx.doi.org/10.1103/PhysRevB.68.155324
http://dx.doi.org/10.1103/PhysRevLett.91.166801
http://dx.doi.org/10.1103/PhysRevLett.91.166801
http://dx.doi.org/10.1103/PhysRevB.67.155303
http://dx.doi.org/10.1103/PhysRevB.74.195312
http://dx.doi.org/10.1103/PhysRevB.78.125328
http://dx.doi.org/10.1103/PhysRevB.68.201303
http://dx.doi.org/10.1103/PhysRevB.68.155303
http://dx.doi.org/10.1103/PhysRevB.68.155303
http://dx.doi.org/10.1103/PhysRevLett.91.186803
http://dx.doi.org/10.1103/PhysRevLett.91.186803
http://dx.doi.org/10.1103/RevModPhys.65.733
http://dx.doi.org/10.1103/RevModPhys.65.733
http://dx.doi.org/10.1103/PhysRevB.45.1074
http://dx.doi.org/10.1103/PhysRevB.45.1074
http://dx.doi.org/10.1103/PhysRevB.60.14272
http://dx.doi.org/10.1103/PhysRevB.60.14272
http://dx.doi.org/10.1103/PhysRevLett.78.1335

