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Quantum dynamics and transport in a double well system

Itamar Sela and Doron Cohen
Department of Physics, Ben-Gurion University, Beer-Sheva 84005, Israel

The simplest one-dimensional model for the studying of non-trivial geometrical effects is a ring
shaped device which is formed by joining two arms. We explore the possibility to model such a
system as a two level system (TLS). Of particular interest is the analysis of quantum stirring, where
it is not evident that the topology is properly reflected within the framework of the TLS modeling.
On the technical side we provide a practical “neighboring level” approximation for the analysis of
such quantum devices, which remains valid even if the TLS modeling does not apply.

I. INTRODUCTION

In this paper we explore the possibility to model a
ring shaped device (Fig.1(a)) as a two level system (TLS)
(Fig.1(b)). We shall see that both technical and concep-
tual difficulties are involved. The model Hamiltonian is

H =
1

2m

p̂2 + VA(x̂− xA) + VB(x̂ − xB) (1)

with periodic boundary conditions over x ∈ [−L/2, L/2]
so as to have a ring geometry, as illustrated in Fig.1(a).
VA and VB represent high barriers, such that the ring is
composed of two weakly coupled arms. We assume that
we have control over some geometrical parameters of the
model and in particular over the heights XA and XB of
both barriers. Our main interest is in the current that
flows in the system. The current through an arbitrary
point x0 is obtained as the expectation value of the op-
erator

I =
1

2m

(p̂ δ(x̂− x0) + δ(x̂− x0) p̂) (2)

Having defined the system and its observables we can
consider various dynamical scenarios such as coherent
Bloch oscillations between the two arms. Then we can
ask whether a TLS modeling is meaningful. Of particu-
lar interest for us is the analysis of quantum stirring [1]:
this means to induce a circulating current by periodic
modulation of the potential.

We note that transport due to periodic modulations of
the potential [2] has been studied mainly in the context
of quantum pumping [3,4,5], where the current is induced
between reservoirs. The notion of quantum stirring re-
lates to closed geometry, where the emerging physical
picture is significantly different [6,7].

The quantum stirring problem highlights an obvious
topological subtlety: one wonders whether the non trivial
topology of the ring is properly reflected in the effective
TLS model.

On the technical side we define the unperturbed Hamil-
tonian H0 as the XA = XB = ∞ limit. In this limit the
two arms are disconnected from each other, and the diag-
onalization gives a set of eigen-energies Ei such that each
eigenstate belongs to only one of the two arms. Then we
make either XA or XB or both finite, and we ask what is

the perturbation matrix Wij in the reduced Hamiltonian

Hij =

(

E1 0
0 E2

)

+

(

W11 W12

W21 W22

)

(3)

Obviously we would like to express the perturbation us-
ing the transmission coefficients of the barriers.

II. OUTLINE

In the first part of the paper (Sections III-V) we es-
tablish the building blocks. We derive expressions for
the perturbation matrix Wij and for the reduced current
operator Iij , and figure out how the topology is reflected
in the reduced description.

In the second part of the paper (Sections VI-VII) we
turn to the applications. We begin with the simplest
problems: The coherent Bloch oscillations of a particle
in a mirror symmetric device, and the Wigner decay of a
particle from a short arm to a long arm. Then we con-
tinue with the quantum stirring problem, and show how
one can derive expressions for the geometric conductance.

In the third part of the paper (Sections VIII-X) we
address some non-trivial technical points that are asso-
ciated with the analysis, thus exploring the limitations
of the TLS modeling. We demonstrate that even if the
TLS modeling does not apply, we still can use a neigh-

boring level approximation in order to extract results for
the geometric conductance.

In the Summary (Section XIII) we highlight the prac-
tical value of our findings for the purpose of design and
analysis of quantum stirring devices, and we briefly relate
to the experimental measurement issue.

III. THE TLS MODELING SCHEME

The unperturbed eigenstates ψi(x) are labeled as
i = 1, 2, corresponding to the two arms of the ring. The
associated eigen-energies are Ei = k2

i /(2m). We have

ψ(1)(x) =

{
√

2
L1

sin(k1x+ ϕ1) if x ∈ 1st arm

0 if x ∈ 2nd arm
(4)

and a similar expression for ψ(2)(x), where Li is the
length of the ith arm, and |ϕ| < π/2. Two rep-
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resentative eigenstates are illustrated in Fig.2. Note
that the wavenumber of the particle in the ith arm
is ki = (π/Li) × integer. Our interest is in a very
small energy range E1 ∼ E2 ∼ E, where the wavenum-
bers are k1 ∼ k2 ∼ kE , corresponding to the velocity
vE = (2E/m)1/2. We would like to ignore all the other
levels. Later we discuss the validity conditions for this
TLS modeling scheme.

Once we lower from infinity one barrier, say barrier A,
the two states become coupled. In section IV we consider
a delta barrier and obtain the following expression for the
perturbation matrix:

WA
ij = − vE

2
√

LiLj

√
gA (5)

where gA is the transmission of the barrier. For i 6= j
the minus sign is a convention that fixes the gauge (see
Appendix A). In section V we show that essentially the
same result applies to any other type of barrier, but the
i = j expression for the energy shift should be somewhat
generalized.

If both barriers are finite the two associated perturba-
tion terms should be added together, and one obtains for
the energy difference

ε = (E1 +WA
11 +WB

11) − (E2 +WA
22 +WB

22) (6)

and for the coupling

κ

2
= WA

12 +WB
12 = − vE

2
√
L1L2

(
√
gA ±c √gB) (7)

The latter expression involves a relative sign ±c that can-
not be gauged away (see Appendix A). If we had mag-
netic flux penetrating through the ring we could have,
instead of the ±c, an arbitrary phase factor.

Using the Pauli matrices we can write the TLS Hamil-
tonian as

Hij =
ε

2
σz +

κ

2
σx ≡ Ω

2
· σ (8)

Defining θ as the angle between Ω and the ”z” axis, with
the convention 0 < θ < π, the eigenstates n0 and m0 of
this Hamiltonian are:

|n0〉 =

(

∓ sin (θ/2)
cos (θ/2)

)

, |m0〉 =

(

cos (θ/2)
± sin (θ/2)

)

(9)

where the ± indicates the sign of κ. The energy difference
between these eigenstates is

Ω =
√

ε2 + κ2 (10)

If we have a symmetric well then the effective coupling
between odd and even levels vanishes (κ = 0), and then
we can get a degeneracy provided we tune appropriately
the energy level difference ε.

The TLS description is valid if W12 is much smaller
compared with the level spacing, namely

max{gA, gB} ≪ L2/L1 (11)

where without loss of generality we assume L1 > L2.
In section IX we are going to derive expressions for

the current IA through barrier A, as defined by Eq.(2)
with x0 = xA. One observes that the matrix elements of
this operator in the “standard basis” of Eq.(4) vanish,
because the unperturbed wavefunctions are zero at the
barriers. The more careful treatment reveals that the
reduced operator that gives the net current from the first
arm to the second arm is

Iij =
κ

2
σy (12)

and it turns out that IA
ij = λAIij , and IB

ij = λBIij ,
where the splitting ratio is defined as

λA =
WA

12

WA
12 +WB

12

=

√
gA√

gA ±c √gB
(13)

with a similar definition for λB . We have λA + λB = 1,
but contrary to the naive point of view 0 < λA < 1 is not
implied. Rather, if the two states have opposite parity,
then one λ is larger than 100%, while the other λ is nega-
tive. We shall see later in Section XIII that the physical
interpretation of the “splitting ratio” requires recogni-
tion in the existence of induced circulating current in the
system. Thus the multiple path topology of the system
is reflected in the TLS modeling via λ.

IV. THE EXPRESSION FOR Wij FOR A DELTA

BARRIER

Let us assume that barrier B is infinitely high, while
barrier A is modeled as a delta function. In other words:
we consider the simplest possibility of having an infinite
well [(−L/2) < x < (L/2)] which is divided at x = xA by
a delta function:

VA(x− xA) = XAδ(x − xA) (14)

The total perturbation is obtained from a sequence of
infinitesimal variations of the barrier height

H(XA) = H(∞) −
∫ ∞

XA

∂H
∂X

dX (15)

≡ H(∞) +WA (16)

For any value of X the Hilbert space of the system is
spanned by a set of (real) eigenfunction labeled by n.
The matrix elements for an infinitesimal variation of the
barrier height is

(

∂H
∂X

)

nm

= ψ(n)(xA) ψ(m)(xA) (17)

Using the matching conditions for a delta potential at
x = xA we can express the wave function by its deriva-
tive:

ψ(n)(xA) =
1

2mXA

[

∂ψ(n)(xA+0) − ∂ψ(n)(xA−0)
]

(18)
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A more elegant way of writing this relation is

ψ(n)(xA) =
1

2mXA

∑

a=1,2

∂aψ
(n)(xA) (19)

where ∂a is defined as the radial derivative in the di-
rection of the ath arms that stretch out of the junc-
tion at x = xA. Defining the total radial derivative as
∂ = ∂1 + ∂2 we get

(

∂H
∂X

)

nm

=
1

(2mXA)2
∂ψ(n)(xA) ∂ψ(m)(xA) (20)

For a large barrier with small transmission

gA ≈
(

vE

XA

)2

≪ 1 (21)

the nth and mth states remain similar to some unper-
turbed ith and jth states. Accordingly, upon integration
we get from Eq.(15) the result

WA
ij = − 1

4m
2XA

[

∂ψ(i)(xA)
] [

∂ψ(j)(xA)
]

(22)

Note that in the last equation the contribution to the
total derivative ∂ comes from one term only, because each
unperturbed wavefunction ψ(i)(x) is non-zero only in one
box. Using Eq.(21) we get Eq.(5).

V. THE EXPRESSION FOR Wij FOR A

GENERAL BARRIER

It is possible to deduce an expression for Wij without
assuming a specific form of potential barrier. For the pur-
pose of this calculation we describe the barrier at x = xA

by a general scattering matrix

S = eiγ

(

i
√

1 − g eiα −√
g

−√
g i

√
1 − g e−iα

)

(23)

Regarding the barrier as a junction it can be embedded
either in a closed ring geometry with the two arms at-
tached, or in an open one-dimensional geometry with two
infinite leads attached. In both cases the differential rep-
resentation of W should be the same, because W is local
in space. In other words WA

ij should come out the same

for the wavefunctions ψ(i)(x) and ψ(j)(x) of the ring, if
in the vicinity of x = xA they are identical with Ψ(i)(x)
and Ψ(j)(x) of the scattering geometry.

In the scattering geometry it is conventional to label
the two leads by a = 1, 2 and to define a radial coordinate
r = |x − xA|. The flux normalized scattering states of
the junction (assuming outgoing waves) are Ψ(i+). By
definition we have

Ψ(1+) =

{

1√
vE

[e−ikEr − S11e
ikEr] if r ∈ 1st lead

1√
vE

[−S21e
ikEr] if r ∈ 2nd lead

(24)

A similar expression holds for Ψ(2+). If the leads are not
coupled, the scattering matrix becomes S0 with g = 0.
In the vicinity of x = xA the unperturbed scattering
states coincide with those of Eq.(4) up to normalization.
Namely, in the vicinity of x = xA we have the relation

Ψ(i)(x) = −i
(

2Li

vE

)1/2

eiϕi ψ(i)(x) (25)

where

ϕi =
1

2

(

γ0 +
π

2
± α0

)

(26)

with ± sign for i = 1, 2 respectively.
The relation between the scattering matrix and the

perturbation matrix W can be deduced via the T ma-
trix formalism. The S matrix is related to the T matrix
through S = (1 − iT )S0, or more explicitly

[SS−1
0 ]ij = δij − i〈Ψ(i)|T |Ψ(j)〉 (27)

In leading order T equals W so we have

〈Ψ(i)|W |Ψ(j)〉 ≈ i(S − S0) S
−1
0 (28)

where

S − S0 = eiγ0

(

eiα0(δγ + δα)
√
g√

g e−iα0(δγ − δα)

)

(29)

Thus

〈Ψ(i)|W |Ψ(j)〉 = −
(

δγ + δα
√
g eiα0

√
g e−iα0 δγ − δα

)

(30)

Using Eq.(25) we deduce that each element of
〈ψ(i)|W |ψ(j)〉 involves multiplication by vE/(4LiLj)

1/2,
while the α0 is canceled out. This leads to Eq.(5) for
the i 6= j coupling, and a generalized expression for the
energy level shifts.

VI. WIGNER DECAY AND BLOCH

OSCILLATIONS

If the two arms of the ring have exactly the same length
L1 = L2 = L/2, then the coherent Bloch oscillations of a
wavepacket in such a symmetric double well are charac-
terized by the frequency

ΩBloch = 2|W12| =
vE

L1
|√gA +

√
gB| (31)

If one arm of the ring (L1) is very long, and the other
arm (L2) is short, then a particle placed initially at the
short arm will decay into the quasi continuum of the long
arm. The decay rate is given by the Fermi golden rule

Γ =
2π

∆
|W12|2 (32)
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where ∆ = (π/L)vE is the mean level spacing. If the
arms are coupled through barrier A, while barrier B is
infinitely high, then the decay rate is

Γ =
vE

2L2
gA (33)

This result agrees with the well known Gamow formula:
the decay rate is given by the attempt frequency multi-
plied by the probability to cross the barrier.

If both barriers are finite, it is important to notice
that the quasi-continuum of the long arm is composed of
odd and even states. The state of the short arm, which is
either even or odd, is coupled to states of the same parity
with a plus sign in the expression of Eq.(7) and to states
of the opposite parity with a minus sign. Accordingly, the
decay rate is the sum of the decay rate to states of the
same parity and the decay rate to states of the opposite
parity

Γ =
∑

±

2π

∆±

∣

∣

∣

∣

vE

2
√
L1L2

(
√
gA ±c √gB)

∣

∣

∣

∣

2

=
vE

2L2
(gA + gB) (34)

where ∆± = 2∆ is the mean level spacing for states with
the same parity. So inspite of the parity considerations
we still get the naive result that agree with Gamow for-
mula.

VII. QUANTUM STIRRING

We assume that we have control over geometrical pa-
rameters of the device, such as the potential floor in each
arm, the barriers heights, their location, or any other
gate controlled feature of the potential landscape. With
a control parameter X we associate a generalized force
operator

F = −∂H
∂X

(35)

Quantum stirring means to induce a circulating current
by changing the parameter X . We assume that the para-
metric variation is adiabatic so we have a linear relation
〈I〉 = −GẊ, where G is know as the geometric conduc-
tance [8]. The Kubo formalism implies that G equals to
the Berry curvature [9,10,11]:

G =
∑

m( 6=n)

2 Im[Inm]Fmn

(Em − En)2
(36)

where n is the level in which the particle is prepared, and
m are the other levels.

Within the framework of the TLS modeling the sum in
Eq.(36) contains only one term which involves the states
n0 and m0 of Eq.(9). For the matrix element of the
current operator we get

In0m0
=
[

λ
κ

2
σy

]

n0m0

= iλ
κ

2
(37)

where λ is the appropriate splitting ratio. The matrix
element of the generalized force operator is calculated
using Eqs.(9) and (35)

Fm0n0
= −1

2

[

∂ε

∂X
σz +

∂κ

∂X
σx

]

m0n0

(38)

= ± 1

2
sin(θ)

∂ε

∂X
− 1

2
cos(θ)

∂κ

∂X
(39)

=
1

2Ω

(

κ
∂ε

∂X
− ε

∂κ

∂X

)

(40)

where we used ± sin(θ) = κ/Ω and cos(θ) = ε/Ω. This
leads for the following result for the geometric conduc-
tance:

G =
λκ

2Ω3

[

κ
∂ε

∂X
− ε

∂κ

∂X

]

(41)

In the analysis of the operation of a stirring device we
typically have a well defined region where the potential
is being varied. We may call this segment “the pump”.
It is convenient to measure the current elsewhere, where
the potential is fixed. If barrier A is not part of the
“pump” then we can measure the current at x0 = xA.
Then it follows from the definitions of λ and κ that the
product λκ does not change with time, even if barrier B
is modulated. Then we can rewrite the above formula as

G =
λ0κ0

2Ω3

[

κ
∂ε

∂X
− ε

∂κ

∂X

]

(42)

where λ0 and κ0 are that values at some arbitrary mo-
ment of time. Typically the variation of X leads to a
sequence of level crossings if κ is disregarded. These be-
come avoided crossings if κ is taken into account. At
the vicinity of a crossing we typically can use a linear
approximation:

ε = ε̇× (X −X0) (43)

κ = κ0 + κ̇× (X −X0) (44)

The amount of probability dQ = Idt which is being trans-
ported equals −GdX . For an individual crossing the dX
integration over G can be performed using

∫ +∞

−∞

a(b+ cx) dx

(a2x2 + (b + cx)2)3/2
=

2a

b
√
a2 + c2

(45)

∫ +∞

−∞

c ax dx

(a2x2 + (b + cx)2)
3/2

= − 2c2

ab
√
a2 + c2

(46)

Then we get the result

Q = ±λ0

√

1 + (κ̇/ε̇)2 (47)

where the ± is determined according to the sign of ε̇. We
observed that in order to get the “quantized” valueQ = 1
there should be neither topological splitting (λ = 1) nor
barrier modulation (κ̇ = 0) during the transition.
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VIII. THE NEIGHBORING LEVEL

APPROXIMATION SCHEME

A major interest is in systems with zero temperature
Fermi occupation. In such a case Eq.(36) has to be
summed over n up to the Fermi energy. It turns out
[1] that the result is dominated by the contribution that
come from the coupling between the last occupied level
and its neighboring empty level. This suggests to adopt
a neighboring level approximation scheme that holds ir-
respective of the validity of the TLS modeling, and coin-
cides with it if the condition of Eq.(11) is satisfied. The
key idea is to characterize each eigenstate by a mixing
parameter

Θ ≡ 2 arctan

(
√

Prob(x ∈ 2)

Prob(x ∈ 1)

)

(48)

such that Θ = 0 for states that belong to the first arm
and Θ = π for states that belong to the second arm.
Numerical examples are presented in Figs. 3-4. If we are
given Θ then we can construct the eigenstate using a
procedure that we describe below. If the TLS modeling
applies then Θ becomes essentially the same as θ.

Let us see how we construct the wavefunction given
the energy E = En, the mixing parameter Θ = Θn, and
the parity ±a with respect to (say) barrier A, as defined
in Appendix A. Consequently it is convenient to set the
origin such that xA = 0, and write the nth eigenstate of
the ring as

ψ(n)(x) =

{

±aC1 sin(k1x+ ϕ1) if x ∈ 1st arm
C2 sin(k2x+ ϕ2) if x ∈ 2nd arm

(49)

where Ci > 0, and |ϕ| < π/2. Assuming kEL ≫ 1, the
amplitudes satisfy the normalization condition

1

2
L1C1

2 +
1

2
L2C2

2 ≈ 1 (50)

It follows that

C1 ≈
√

2

L1
cos

(

Θ

2

)

(51)

C2 ≈
√

2

L2
sin

(

Θ

2

)

(52)

We still have to say what are the wavenumbers k1 and
k2, and the phase shifts ϕ. Let us see first how they are
determined within the framework of the TLS modeling,
and then how they can be found irrespective of the TLS
modeling.

Naively the |n0〉 and |m0〉 eigenstates, within the
framework of the TLS modeling, are the superposition
of the basis states of Eq.(4) and accordingly

Θ = θ, π−θ (53)

k1 = corresponds to the unperturbed E1 (54)

k2 = corresponds to the unperturbed E2 (55)

ϕ1 = same as the unperturbed (56)

ϕ2 = same as the unperturbed (57)

while the true eigenstates are with (see Fig.2)

Θ ≈ θ, π−θ (58)

k1 = corresponds to En (59)

k2 = corresponds to En (60)

ϕ1 = shifted (61)

ϕ2 = shifted (62)

To be more specific, we have Θ(m0) ≈ θ and Θ(n0) ≈ π−θ
and hence Θ(m0)+Θ(n0) ≈ π if the TLS modeling is valid
(see Fig. 4). We note that from Eq.(51-52) it follows that
within the framework of the TLS approximation we have

C
(m0)
i C

(n0)
i ≈ 1

Li
sin(θ) (63)

This will be used later on in order to obtain simplified
expressions for the matrix elements of various operators.

Whether k1 and k2 in Eqs.(54-55) correspond to the
same energy or not, is not a big difference for us because
we assume k1 ∼ k2 ∼ kE in any case. The main problem
with the naive version is related to the phase shifts, as
demonstrated in Fig. 2. The variation of the phase shift
as the barriers are lowered reflect that there is a non-zero
probability to find the particle in the region of the barri-
ers. In particular if the phases ϕi remained the same it
would imply that all the matrix elements of IA and IB

would be zero. It is essential to take the variation of ϕ
into account in order to get a non-zero result for the geo-
metrical conductance. We shall discuss the calculation of
the matrix elements Inm and Fnm in the next sections.
First we would like to discuss how the required informa-
tion on the variation of the phases ϕ can be extracted.

In order to express ϕ by Θ, we write the wave function
of Eq.(49) as ingoing and outgoing waves and set the
origin x = 0 at either one of the barriers, for example
barrier A. We match the wave functions of the two bonds
by the barrier scattering matrix

(

±aC1 e+iϕ1

C2 e+iϕ2

)

= SA

(

±aC1 e−iϕ1

C2 e−iϕ2

)

(64)

and get closed equations for the phase shifts

√

1 − g sin(2ϕ1 − α− γ)=1 − g

2

(

1 +

(

C2

C1

)2
)

(65)

√

1 − g sin(2ϕ2 + α− γ)=1 − g

2

(

1 +

(

C1

C2

)2
)

(66)

So far everything is exact. So once we have Θ we
can find the phases and construct the wavefunction. We
would like to focus in the rest of this section in the regime
where the TLS modeling applies. Assuming that Θ is de-
termined by θ we want to find what are ϕ1 and ϕ2, so
as to construct a proper wavefunction. Neglecting terms
of order g and expanding arcsin(1−x) as π/2 ±

√
2x we

obtain

ϕ1 ≈ γ + α

2
+
π

4
±a

√
g

2

√

L1

L2
tan

(

Θ

2

)

(67)
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where the ±a sign should be the same as in Eq.(64), which
can be established by direct substitution. A similar ex-
pression can be obtained for ϕ2. We note that within the
framework of this TLS approximation we have

ϕ
(m0)
1 − ϕ

(n0)
1 = ±√

gA

(

L1

L2

)1/2
1

sin(θ)
(68)

where the sign is the same as that of κ. We now have
all the building blocks needed for the calculation of the
matrix elements.

IX. THE EXPRESSION FOR Inm

If we adopt the TLS point of view, we can postulate
a self-consistent definition of the current operator based
on the continuity equation. For this purpose we define
the occupation operator N for one of the arms as

N =

(

1 0
0 0

)

(69)

and deduce the definition of the current operator from

d

dt
N = i[H,N ] ≡ I (70)

where I is given by Eq.(12). If we turn off the coupling
at barrier A we get the same expression multiplied by
λB , while if we turn off the coupling at barrier B we get
the same expression multiplied by λA.

The above reasoning bypass the confrontation which is
involved in carrying out a direct calculation, and hence
contains an uncontrolled error which is associated with
the assumption that a TLS description of Hilbert space
is valid. If we revert to the original definition of Eq.(2),
then the matrix elements are given by

Inm = i
1

2m

(

∂ψ(n) ψ(m) − ψ(n) ∂ψ(m)
) ∣

∣

∣

x=x0

(71)

For the calculation of IA
nm we set x0 = xA = 0. As was

already pointed out, in order to get a non-trivial result,
we have to take into account the phase shifts ϕ which
was calculated in the previous section. Substituting the
wave function of Eq.(49) we get

IA
nm = −i 1

2m

C
(m)
1 C

(n)
1

[

km + kn

2
sin(ϕ

(m)
1 − ϕ

(n)
1 )

+
kn − km

2
sin(ϕ

(m)
1 + ϕ

(n)
1 )

]

(72)

Whenever the TLS modeling applies we can substitute
Eqs.(63) and (68) into Eq.(72). Neglecting the second
term we get

IA
n0m0

≈ ∓i vE

2
√
L1L2

√
gA (73)

where the sign is the same as that of −κ. One notices
that the expression for IA

n0m0
can be written as Eq.(37)

where κ and λ are given by Eq.(7) and Eq.(13).

X. STIRRING BY BARRIER MODULATION

In this section we calculate the geometric conductance
as determined by the matrix elements of the generalized
force that is associated with modulation of a delta bar-
rier. The motivation is to verify the results of the reduced
description against the direct full Hilbert space calcula-
tion. The potential barrier is given by

VB(x̂) = XBδ(x̂− xB) (74)

The stirring is induced by variation of the barrier height
XB. The associated generalized force is

F = − ∂H
∂XB

= −δ(x̂− xB) (75)

with the matrix elements

Fmn = −ψ(n)ψ(m) (76)

For the wavefunctions amplitudes we use Eq.(63) and for
the phase shifts Eq.(67). We also substitute the scatter-
ing matrix parameters that describe a delta barrier

γB ≈ −π/2 +
√
gB (77)

αB = 0 (78)

where the approximation is valid for gB ≪ 1 and the
relation of gB and XB is given in Eq.(21). With the
above approximations we get

Fm0n0
≈ gB

L2 − L1

4L1L2
sin(θ) ∓ gB

2
√
L1L2

cos(θ) (79)

where the sign should be the same as that of ∓cκ. In
order to verify the consistency with the TLS expression,
we differentiate Eq.(6) and Eq.(7):

∂ε

∂XB
= gB

L2 − L1

2L1L2
(80)

∂κ

∂XB
= ±c gB√

L1L2

(81)

and substitute into Eq.(38). Indeed we obtain the same
result for Fm0n0

as above.

The geometric conductance of Eq.(36) involves the
multiplication of Fm0n0

with In0m0
, leading to

G =
1

4
v2

E

L2 − L1

(L1L2)
2

gA gB ±c gA
1/2gB

3/2

Ω3

∓c 1

4
v2

E

L2 + L1

(L1L2)
2

gA gB + gA
1/2gB

3/2

Ω3
(82)

The calculation of the transport proceeds as in Sec-
tion VII.
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XI. STIRRING BY BARRIER TRANSLATION

In complete analogy with the previous section we
would like to calculate the geometric conductance as de-
termined by the matrix elements of the generalized force
which is associated with the translation of the barrier:

F = − ∂H
∂xB

= XBδ
′(x̂− xB) (83)

One obtains

Fmn = −XB

(

∂ψ(n) ψ(m) + ∂ψ(m) ψ(n)
)

(84)

where ∂ψ is the average derivative on both sides of the
barrier. We simplify this expression by using Eq.(19):

Fmn =
1

2m

[

∂ψ
(n)
1 ∂ψ

(m)
1 − ∂ψ

(n)
2 ∂ψ

(m)
2

]

x=xB

(85)

Assuming high barriers we get in leading order

Fmn ≈ −1

2
mv2

E

(

C
(m)
1 C

(n)
1 + C

(m)
2 C

(n)
2

)

(86)

which together with Eq.(63) leads to

Fm0n0
≈ −1

2
mv2

E

L1 + L2

L1L2
sin(θ) (87)

In order to compare the above result for Fm0n0
with the

TLS result of Eq.38 we calculate the variation of the po-
tential floor by taking in Eq.(6) the energies of infinite
wells with L1 = xB and L2 = L− xB. We get

∂ε

∂xB
= −mv2

E

L1 + L2

L1L2
+ O(

√
g) (88)

∂κ

∂xB
= vE

L2 − L1

(L1L2)
3/2

(
√
gA ±c √gB) (89)

Substitute into Eq.(38) indeed leads to the same result
for Fm0n0

as above. Note that in this case (unlike the
previous section) the second term in Eq.(38) which in-
volves the variation of κ is of higher order in gB and
therefore should be excluded.

The geometric conductance of Eq.(36) involves the
multiplication of Fm0n0

with In0m0
, leading to

G = −1

2

√
gA mv4

E

L1 + L2

(L1L2)
2

√
gA ±c √gB

Ω3
(90)

The calculation of the transport proceeds as in Sec-
tion VII. One realizes that a translation of the barrier
is effectively equivalent to the variation of the potential
floor difference, as long as it does not involve modulation
of its transmission (which is assumed to be small).

XII. ERROR ESTIMATES AND LIMITATIONS

If we vary a parameterX then the energy levels En(X)
form a “spaghetti” which is characterized by a mean level

spacing ∆ and possibly by narrow avoided crossings with
splitting ∆0. For the ring system that we are considering
it follows from the estimate of κ that

∆0

∆
∼ min{1,

√

bg} (91)

where b = L1/L2 and g = max{gA, gB}. The condi-
tion Eq.(11) for the applicability of the TLS modeling
ensures ∆0 ≪ ∆. In such circumstances Eq.(36) for the
geometric conductance, which in essence is a sum of the
type

∑∞
n=0(∆0 + n∆)−2, implies that the error that is

involved in the neighboring level approximation is

error(G)

G
∼

(

∆0

∆

)2

∼ bg ≪ 1 (92)

Once the TLS modeling fails the error becomes of order
unity. This sounds bad, but in fact it is not so bad.
The good news is that the far levels contribute to G a
correction which is of the same order as the leading term.
Therefore with the neighboring level approximation we
can still get a realistic estimate disregarding numerical
prefactors of order unity.

Having b≫ 1 is very interesting, because then we have
a non-trivial intermediate regime 1/b≪ g ≪ 1 where nei-
ther 1st order perturbation theory with respect to “zero”
height barriers, nor 1st order perturbation theory with
respect to “infinite” barriers applies. This is the regime
where each level of the small arm forms a distinct Wigner
resonance with the quasi-continuum states of the long
arm. Obviously the TLS modeling is not applicable in
this regime, but the neighboring level approximation still
provides a decent starting point for a calculation. We
shall explore this Wigner regime in a future work.

One may also wonder whether the specific results that
we have obtained for stirring using a delta barrier ap-
plies also for a thick barrier. On physical grounds it is
quite obvious that the induced current is determined by
the scattering matrix of the modulated barrier. Conse-
quently if the S(E) of the modulated barrier is E in-
dependent within the energy range of interest, it can be
regarded as representing a delta function, and the results
should come out the same.

Finally one may wonder about the implications of fi-
nite temperature or non-adiabatic driving. These aspects
are complementary to the theme of the present paper.
Namely, as discussed in [1], at finite temperatures the
statistics of the occupation should be taken into account.
So we have to average (so to say) over the level that we
have labeled as n0 with an appropriate weight as im-
plied by the Fermi function. On the other hand the non-
adiabatic effects require to introduce in the denomina-
tor of the Kubo formula Eq.(36) a term that represents
the “width” of the Fermi-golden-rule transitions. Then
the weight of the neighboring level in the sum becomes
smaller compared with the total weight of the far levels.
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XIII. SUMMARY

We have developed a practical procedure for the anal-
ysis of a one dimensional double well system, which is
both powerful and illuminating. The procedure assumes
that we have a way to find the eign-energies En of the de-
vice, and the mixing ratio Θn of each of them. Given the
transmissions of the barriers we further characterize the
device by the splitting ratio λ. With these ingredients in
hand we can analyze any stirring process and obtain ex-
plicit expressions for the geometric conductance G. The
calculation simplifies if the TLS modeling applies, be-
cause then the mixing ratio can be determined form the
diagonalization of a 2 × 2 matrix.

In particular we obtain explicit expressions for G due
to either barrier translation (generalizing a result that
has been obtained in [1]), or barrier modulation (gener-
alizing a result that has been obtained in [7]), and verify
that they agree with the naive self-consistent TLS calcu-
lation. We see that whenever the TLS modeling applies
the proper calculation in the full Hilbert space gives the
same result as the naive calculation in the TLS Hilbert
space.

As a by product of the TLS analysis we find that the
pumped “charge” during an avoided crossing is not quan-
tized (see Eq.(47)), not only because of the topological
splitting effect, but also due to a dynamical effect that
arises if the barrier is modulated.

The practical importance of the TLS modeling in con-
dense matter physics is obvious. On the other hand the
specific application to the study of quantum stirring de-
serves a few words regarding the measurement proce-
dure and the experimental relevance. As explained in
[1] it should be clear that the measurement of current
in a closed circuit requires special techniques [12,13,14].
These techniques are typically used in order to probe per-
sistent currents, which are zero order (conservative) ef-
fect, while in the present paper we were discussing driven
currents, which are a first-order (geometric) effect. It is
of course also possible to measure the dissipative conduc-
tance (as in [12]). During the measurement the coupling
to the system should be small. These are so called weak

measurement conditions. More ambitious would be to
measure the counting statistics, i.e. also the second mo-
ment of Q as discussed in [15,16] which is completely
analogous to the discussion of noise measurements in
open systems [17,18]. Finally it should be pointed out
that the formalism above, and hence the results, might
apply to experiments with superconducting circuits (see
[19]).

APPENDIX A: CONVENTIONS AND

NOTATIONS

Consider two segments that are connected at points
that are labeled as xA and xB. In the absence of cou-
pling each segment is regarded as a one dimensional box.

The unperturbed eigenstates are labeled by i (or option-
ally by j). In the TLS scheme i = 1, 2. If the coupling
is non-zero the exact eigenstates are labeled by n (or op-
tionally by m). Within the framework of the neighboring
level approximation scheme we focus on two levels that
we label as n = n0 and m = m0. If the TLS modeling
applies then the states n0 and m0 are regarded as linear
combinations of i = 1, 2.

The unperturbed states i = 1, 2 are characterized by
their parities ±1 and ±2 respectively. The relative sign ±c

in Eq.(7) equals the product of ±1 and ±2. Inverting the
arbitrary gauge sign of either ψ(1)(x) or ψ(2)(x) would
multiply the expression in Eq.(5) by a global minus sign,
while the relative sign ±c remains unchanged. The gauge
invariant relative sign is due to the fact that the unper-
turbed states are either odd or even: we have plus sign if
both states have the same parity and minus sign if they
have opposite parity.

Each exact eigenfunction n, as written as in Eq.(49),
is characterized by what we call the parity ±a with re-
spect to barrier A. Positive parity means that the radial
derivatives as defined in Eq.(19) have both the same sign.
Optionally we can define ±b as the parity with respect to
barrier B. This parity ±a is not a symmetry related quan-
tum number, but it is merely required in order to define
the wavefunction of Eq.(49) in a unique way given the en-
ergy and the mixing ratio. If the TLS modeling applies
then for positive (negative) κ the state n0 of Eq.(9) has
negative (positive) parity, while the m0 state has posi-
tive (negative) parity. Within this framework the parity
±b with respect to barrier B is ±a multiplied by ±c.

We have verified that the various ± signs through the
paper are consistent, which is not always evident in a
superficial look.
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FIG. 1: Panel (a): Illustration of a ring shaped device that
is divided by the barriers VA and VB into two arms of length
L1 and L2. The current is measured through the dashed sec-
tion near barrier A. In the quantum stirring scenario it is
assumed that there is a gate control over the potential floor
of each arm, or over the height or the location of barrier B.
Panel (b): Within the framework of the TLS modeling, the
reduced Hilbert space contains two levels. The perturba-
tion Wij is due to having finite rather than infinite barri-
ers, so it corresponds to the difference H−H(∞) and not to
V = H−H(0). See the text for further details.

AB B

FIG. 2: Upper panel: Two nearly degenerate eigenfunctions
ψ(x) of a particle in a ring with arms of length L1 = 1 and
L2 = 2.23. These are the two unperturbed states of Eq.(4).
Lower panel: The exact eigenfunctions assuming that the bar-
riers are finite (gA ≈ 0.28 and gB ≈ 0.06). These do not van-
ish at the barriers, and therefore cannot be written as a super-
position of the unperturbed states. Still we explain in the text
how a decent approximation for the former can be obtained
using the neighboring levels approximation scheme.
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FIG. 3: We consider a particle of mass m = 1 in a ring of
length L = 151.43. The position of barrier B is X, so we
have L1 = X and L2 = L−X . We calculate numerically kn

and Θ(n) for two neighboring levels (solid and dashed lines).

The sum Θ(m)+Θ(n) is plotted as a dash-dotted line. We have
high barriers with gA ∼ 10−2 and gB ∼ 10−5. Accordingly we
expect TLS modeling to be valid: The dotted lines indicate
the values Θ = π/2 (expected crossing point) and Θ = π (ex-
pected sum). For sake of comparison there is a third dotted
line that indicates the value of Θ that corresponds to equal
amplitudes C1 = C2.
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FIG. 4: The same as the previous figure, but here the TLS
modeling does not apply. In the left panels one barrier is high
(gA ∼ 10−2) and one barrier is low (gB ∼ 0.9), while in the
right panels both barrier are low (gA ∼ gB ∼ 0.9).


