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We propose a BEC stirring device which can be regarded as the incorporation of a quantum pump
into a closed circuit: it produces a DC circulating current in response to a cyclic adiabatic change of
two control parameters of an optical trap. We demonstrate the feasibility of this concept and point
out that such device can be utilized in order to probe the interatomic interactions.

The realization of Bose-Einstein Condensation (BEC)
of ultra-cold atoms in optical lattices (OL) [1, 2, 3, 4, 5]
and the availability of atom chips [6, 7] is considered to
be a major breakthrough with potential applications in
the arena of quantum information processing. A ma-
jor advantage of BEC based devices, as compared to
conventional solid-state structures, lies in the extraor-
dinary degree of precision and control that is available
over the confining potential and the interatomic interac-
tions. This opens the possibility to design BEC-based
high performance or precision devices.

The possibility to induce DC currents by periodic (AC)
modulation of the potential is familiar from the context
of electronic devices. If an open geometry is concerned,
it is known as “quantum pumping” [8, 9, 10, 11, 12, 13],
while for closed geometry we use the term “quantum stir-
ring” [14]. We consider below the stirring of condensed
ultra-cold atoms [15, 16] due to the periodic variation of
the on-site potentials and of the tunneling rates between
adjunct confining traps. We show that the nature of the
transport process depends crucially on the sign and on
the strength of the interatomic interactions. We distin-
guish between 3 types of dynamical behavior: For strong
repulsive interaction the particles are transported one-
by-one; As the repulsive interaction becomes weaker the
sequential tunneling process is replaced by a gradual or
by a coherent mega crossing; For strong attractive inter-
action the particles are glued together and behave like a
huge classical ball that rolls from trap to trap.

The simplest model that captures the physics of quan-
tum stirring is a 3 site Bose-Hubbard Hamiltonian (BHH)
[17, 18, 19], which is illustrated in Fig. 1. One site (i=0)
is regarded as a “shuttle” (energy ε), while the other two
sites (i=1, 2) are regarded as a two level “canal” (ener-
gies ε+ and ε−). The Hamiltonian for an N body system
is:

Ĥ =
2∑

i=0

vini +
U

2

2∑
i=0

n̂i(n̂i − 1)− kc(b̂†1b̂2 + b̂†2b̂1)

−k1(b̂†0b̂1 + b̂†1b̂0)− k2(b̂†0b̂2 + b̂†2b̂0) (1)

Without loss of generality we use mass units such that
h̄=1, and time units such that intra canal hopping ampli-
tude is kc=1. The on-site potential at site i is defined as

vi. Below we assume for simplicity that v1 = v2 = 0, and
hence the single particle canal levels are ε± = ±1. We
consider v0 = ε as one control parameter of the pumping
cycle. The annihilation and creation operators b̂i and b̂†i
obey the canonical commutation relations [b̂i, b̂

†
j ] = δi,j

while the operators n̂i = b̂†i b̂i count the number of bosons
at site i. The interaction strength between two atoms in
a single site is given by U = 4πh̄2asVeff/m where Veff is
the effective volume, m is the atomic mass, and as is the
s-wave scattering length. Below we assume that NU � 1

The couplings between the shuttle and the two ends of
the canal are k1 and k2. We assume that both are much
smaller than kc. Their inverse 1/k1 and 1/k2 are like bar-
rier heights, and changing them is like switching valves
on and off. It is convenient to define the two control
parameters of the pumping as follows:

X1 =
(

1
k2
− 1
k1

)
, X2 = ε (2)

By periodic cycling of the parameters (X1, X2) we can
imitate a classical peristaltic mechanism and obtain a
non-zero amount (Q) of transported atoms per cycle.
The pumping cycle is illustrated in Figs. 1,2. Initially
all the particles are located in the shuttle which has a
sufficiently negative on-site potential energy (X2 < 0).
In the first half of the cycle the coupling is biased in fa-
vor of the k1 route (X1 > 0) while X2 is raised until (say)
the shuttle is empty. In the second half of the cycle the
coupling is biased in favor of the k2 route (X1 < 0), while
X2 is lowered until the shuttle is full. Assuming U=0,
the shuttle is depopulated via the k1 route into the lower
energy level ε− during the first half of the cycle, and
re-populated via the k2 route during the second half of
the cycle. Accordingly the net effect is to have a non-
zero Q. If we had a single particle in the system, the
net effect would be to pump roughly one particle per cy-
cle. If we have N non-interacting particles, the result of
the same cycle is to pump roughly N particles per cycle.
We would like to know what is the actual result using
a proper quantum mechanical calculation, and further-
more we would like to investigate what is the effect of
the interatomic interaction U on the result.
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In analogy with Ohm’s law (where X is the magnetic
flux, and −Ẋ is the electro motive force), the current
is I = −G1Ẋ1 if we change X1 and I = −G2Ẋ2 if we
change X2, where G1 and G2 are elements of the geo-
metric conductance matrix. Accordingly

Q =
∮

cycle

Idt = −
∮

(G1dX1 +G2dX2). (3)

In order to calculate the geometric conductance we use
the Kubo formula approach to quantum pumping [20]
which is based on the theory of adiabatic processes [21,
22, 23]. It turns out that in the strict adiabatic limit G is
related to the vector field B (also know as “two-form”) in
the theory of Berry phase. Namely, using the notations
B1 = −G2 and B2 = G1 we can rewrite Eq.(3) as

Q =
∮

B · ~ds, (4)

where we define the normal vector ~ds = (dX2,−dX1) as
illustrated in Fig. 1. The advantage of this point of view
is in the intuition that it gives for the result: Q is related
to the flux of a field B which is created by “magnetic
charges” in X space. For U=0 all the magnetic charge
is concentrated in one point. As the interaction U be-
comes larger the “magnetic charge” disintegrates into N
elementary “monopoles” (see Fig. 2). In practice the cal-
culation of B is done using the following formula:

Bj =
∑

n 6=n0

2 Im[In0n] F j
nn0

(En − En0)2
. (5)

Above I = i/2
[
(b̂†0b̂1−b̂

†
1b̂0) + (b̂†2b̂0−b̂

†
0b̂2)

]
is the av-

eraged current along the bonds 0 7→ 1, 2 7→ 0 and
F j = −∂H/∂Xj is the generalized force associated with
the control parameter Xj . The index n distinguishes the
eigenstates of the many-body Hamiltonian. We assume
from now on that n0 is the BEC ground state.

Below we find convenient to define the average cou-
pling as κ = (k1 + k2)/

√
2. In the zero order approxi-

mation k1 and k2 are neglected, and later we take them
into account as a perturbation. For κ = 0 the number
of particles in the dot n becomes a good quantum num-
ber. Furthermore, we adopt a “two orbital approxima-
tion”: we assume that there is non-zero occupation only
in the shuttle and in the lower canal level, which is valid
if NU � kc=1. Accordingly the many body energies are

En = Eshuttle(n) + Ecanal(N−n), n = 0, 1, 2, .., N (6)

where

Eshuttle(n) = εn+ (1/2)U(n−1)n (7)
Ecanal(N−n) = −(N−n) + (1/4)U(N−n−1)(N−n)

The location εn = −1 + 1
2U × (N−3n+2) of the

n 7→ (n−1) crossing is determined from the degeneracy

condition En − En−1 = 0, where n = 1, 2, ...N can be
associated with the number of particles in the shuttle.
The crossings are distributed within

− 1− (N−1)U ≤ ε ≤ −1 +
1
2

(N−1)U. (8)

The rescaled version of the control variable is
ε̂ = (ε+1)/((N−1)U), and its support is −1 < ε̂ < 1/2.
Within this range we have N crossings. The distance be-
tween the crossings, while varying the dot potential ε, is
U . Once we take κ into account we get avoided crossings
of width δεn = [(N+1−n)n/2]1/2κ. If κ/U is large these
avoided crossings merge and eventually we get one mega
crossing. For the purpose of further analysis we write
the many body Hamiltonian in the two-orbital approxi-
mation as a matrix (say for N = 4):

H =


E0 −κ1 0 0 0
−κ1 E1 −κ2 0 0

0 −κ2 E2 −κ3 0
0 0 −κ3 E3 −κ4

0 0 0 −κ4 E4

 (9)

where the couplings are defined as κn = 〈n−1|H|n〉. The
calculation of κn involves the matrix elements of b†i b0,
leading to κn = [(N + 1− n)n]1/2 κ. Analogous expres-
sion applies to the current operator where κ is re-
placed by (k1−k2)/

√
2. For large U , as ε is varied,

we encounter a sequence of distinct Landau-Zener tran-
sitions (|4〉 7→ |3〉 7→ |2〉 7→ |1〉 7→ |0〉). The distance be-
tween avoided crossings is of order U while their width
is δεn = κn. The widest crossings are at the center with
δεn ∼ Nκ. This should be contrasted with the energy
scales U and NU that describe the span of the crossings.
Accordingly we deduce the following regimes:

U � κ mega crossing regime
U � Nκ sequential crossing regime

We observe that the regime of behavior depends on the
ratio κ/U . If N is not too large one can resolve a se-
quence of two level crossings. In the following paragraphs
we summarize the results in the various regimes. In par-
ticular Eq.(12) below is obtained from Eq.(5) with a two
level approximation for each crossing.

The predominant contribution to Q comes during the
dX2 variation, therefore we refer from now on to G2 = G
only. An overview of the numerical results for the con-
ductance is shown in Fig. 3, where we plot G as a func-
tion of X2 for various interaction strengths U . In Fig. 4
more details are presented: besides G we also plot the
X2-dependence of the energy levels, and of the site pop-
ulation. Four representative values of U are considered
including also the U < 0 case.

Let us try to understand the observed results. For
U=0 the analytical calculation is just N times the single
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particle result:

G = −N (k2
1 − k2

2)/2
[(ε− ε−)2 + 2(k1+k2)2]3/2

, (10)

which can be expressed as a function of the control pa-
rameters (X1, X2). Integrating over a full cycle one ob-
tains

Q = N
[1 + (κR)2]1/2 − 1

κR
, (11)

where κ is the average value of the coupling constants,
and R is the radius of the pumping cycle (see Fig. 2). For
small cycles we get Q ≈ NκR/2, while for large cycles
we get the limiting value Q ≈ N . For U=0 and also for
small values of U all the particles cross “together” from
the shuttle orbital to the ε− canal orbital. We call this
type of dynamics “mega crossing”. For very repulsive
interaction (U>0) we get

G = −
(
k1 − k2

k1 + k2

) N∑
n=1

(δεn)2

[(ε− εn)2 + (2δεn)2]3/2
. (12)

For intermediate values of U (weak repulsive interaction),
namely in the range κ � U � Nκ, we find neither the
sequential crossing of Eq.(12), nor the mega-crossing of
Eq.(10), but rather a gradual crossing. Namely, in this
regime, over a range ∆X2 = 3/2(N−1)U we get a con-
stant geometric conductance:

G ≈ −
[
k1 − k2

k1 + k2

]
1

3U
(13)

which reflects in a simple way the strength of the inter-
action. This formula has been deduced by extrapolat-
ing Eq.12, and then was validated numerically (see lower
panel of Fig. 3c).

As discussed above for large positive U the N -fold “de-
generacy” of the U=0 Landau-Zener crossing is lifted,
and we get a sequence of N Landau-Zener crossings (for
schematic illustration see the lower panel of Fig. 2, and
compare with the numerical results in the upper panels
of Fig. 4). Also for U<0 this N -fold “degeneracy” is
lifted, but in a different way: the levels separate in the
“vertical” (energy) direction rather than “horizontally”
(see upper panels of Fig. 4). In the latter regime all the
particles execute a single two-level transition from the
shuttle to the canal (see Fig. 4a). In fact, for sufficiently
strong attractive interactions all the particles are glued
together and behave like a classical ball that rolls from
the shuttle to one of the canal sites. When the sign of
X1 is reversed the ball rolls from one end of the canal to
the other end (not shown). This should be clearly dis-
tinguished from the N -fold degenerated transition to the
lower canal level which is observed in the U=0 case.

In summary, we have proposed the creation of con-
trolled atomic current on the basis of BEC stirring

[15, 16] and optical lattice technology [24]. The ac-
tual measurement of induced neutral currents poses a
challenge to experimentalists. In fact there is a vari-
ety of techniques that have been proposed for this pur-
pose. For example one can exploit the Doppler effect at
the perpendicular direction, which is known as the rota-
tional frequency shift [25]. The analysis of the prototype
trimer system reveals the crucial importance of interac-
tions. The interactions are not merely a perturbation:
rather they determine the nature of the transport pro-
cess. We expect the induced circulating atomic current to
be extremely accurate, which would open the way to var-
ious applications, either as a new metrological standard,
or as a component of a new type of quantum information
or processing device.
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FIG.1: Illustration of the model system. In the first half of the cy-

cle a the particles are transported from the “shuttle” to the “canal”

via the k1 bond, while in the second half of the cycle b the particles

are transported back from the “canal” to the “shuttle” via the k2

bond. See the text for further details.

nE

X1

X1 X1

X2X2
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B

n=0

n=3 n=2 n=1

R

off−plane section along     =0

FIG.2: Illustration of the pumping cycle. See the text for further

details. For a large cycle that encircles the whole shaded region

we have Q ≈ N . Position of the monopoles: a no interactions, b

with interactions. c, the energy levels along the X1 = 0 axis are

schematically plotted for an N = 3 system.
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FIG.3: Conductance during the first half of the pumping cycle. a, the conductance G2 as a function of the on-site potential ε, for various

values of U . The other parameters are N = 16 particles, κ = 0.0003/
√

2 and (k1 − k2)/
√

2 = 0.0001/
√

2. As the interaction U becomes

larger one observes the crossover from a single to individual peaks in the conductance. b, the U -dependence of the integrated charge Q∗,

calculated for wide rectangular cycles for which X2 is varied within [−∞, ε∗]. The values of ε∗ are indicated by arrows of the same color

in the main panel.
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FIG.4: Evolution of the energy levels, the site occupation and the conductance. Further details relating to the data of Fig. 3. We refer

to four representative values of U , which are indicated on top of each set of panels. Upper panels: The lowest N+1 energy levels En which

dominate the conductance G2 are plotted as a function of X2 = ε. The insets represent magnifications of the indicated areas. Middle

panels: the site occupations n0 (blue 4), n1(black ◦), n2 (red 2). Lower panels: The corresponding conductance G2 as a function of ε.

Numerical results are represented by solid black lines while the dotted red line corresponds to the analytical result (10) in b and to (12)

in c, d
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