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Abstract. Two models for the investigation of the quantum damped kicked-rotator problem are
introduced and analysed in a unified fashion. For the first model we follow the Caldeira—Leggett
approack while the second constitutes a simplification of the Ditirich-Graham modef. These
models enable one to investigate the effects of noise and dissipation for systems that exhibit chacs
in the classical limit and quantum localization otherwise. The rotator is coupled via its angle
coordinate to a heat bath that is held at an arbitrary temperature. Noise time-autocorrelations
which may arise from such coupling and the validity of the Markovian approximation are
discussed.

1. Introduction

The kicked rotator constitutes a prototype system for the investigation of Hamiltonian chaos
f11. Quantum mechanically, the chaotic nature of the dynamics is suppressed {2] due to
localization [3]. It has been found by Ott, Antonsen and Hanson [4] that uncorrelated white
noise desiroys coherence and hence localization. However, if noise arises from the coupling
to a heat bath then a more detailed treatment is desired. Such a treatment shounld take into
account two effects. One is noise autocorrelations which are expected at low temperature
[5]. The other is friction which results in damping and dissipation of energy. While noise
results in recovery of diffusion, dissipation of energy tends to balance it and a steady state is
reached. Similar interplay of noise and dissipation is found in the study of Zener dynamics
[6].

Dittrich and Graham (DG) [7, 8] introduced a model for the investigation of the combined
effect of noise and dissipation in the damped quantum kicked-rotator (QKR) problem. Using
the master-equation approach [9] they were able to compute the quantum mechanical time
evolution of the system. Taking the himit of # — 0 they were also able to consider the
semiclassical limit which led them to the following conjecture: regardless of the quantization
scheme ‘in the semiclassical limit, dissipative quantum maps reduce to the classical maps
with additional Gaussian noise terms determined by quantum theory’. However, this
important pioneering work left open the following questions.

(i} The master-equation approach of this work involves a Markovian treatment of the
dynamics [5]. Consequently, long-range noise time-autocorrelations, which may arise, are
automatically ignored.

(ii) The effect of finite temperature has not been explored since a zero-temperature heat
bath has been assumed.

(iii) The relation of DGs results to the earlier work by Ott e# al {4] bas not been
demonstrated.
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(iv) The classical limit of the DG model is not explicit and has not been investigated.

(v) The implications of the DG conjecture are not clear. Both the DG model and the
master-equation approach originated from atomic physics [9]. In the latter context the
classical limit is usually of less interest. Evidently, this is not the case in the field of
‘quantum chaos’ where the fingerprint of the classical limit on the quantum dynamics is
considered to be a main issue. Indeed, a different kind of model and analysis are therefore
desired.

The main complication that arises once one is interested in coupling a rotator to 2 bath
is how to formulate a coupling scheme that does not ignore the natural periodicity of its
angle variable, Otherwise, if one replaces the angle by an extended coordinate, one obtains
a new, different problem which has been investigated and named ‘the quantum kicked-
particle problem' in which it was possible there to use the Caldeira-Leggett (CL) coupling
scheme [11] which is linear in the position variable. The latter has been used to treat the
damped-particle [12] and the damped-oscillator {13] problems and later on was also applied
to investigate time-dependent problems [5]. However, it turned out [10] that the quantum
kicked-particle problem has quite unique features that are not shared by the QKR problem.
In particular there is a stronger sensiftivity to noise due to a spreading mechanism for the
destruction of coherence. Thus, we again face the complication of how to formulate an
appropriate coupling scheme which does not ignore the periodicity of the position variable.
One strategy is simply to introduce the coupling via the momentum coordinate. Such
a model has been introduced [14] and the effect of low-temperature correlated noise on
coherence has been investigated. However, it was demonstrated that friction in this latter
model does not result in dissipation of energy and therefore this model is also inappropriate
for the investigation of the damped-QKR problem.

The purpose of the present work is to analyse, in a unified way, two models for the
investigation of the damped-QKR problem. The first model is obtained via modification of
the standard CL model. The second constitutes 2 simplification of the DG model. Besides
dealing with questions that were mtroduced in a preceding paragraph we shall also consider
the following approximations:

(i) a semiclassical treatment of the dynamics;

(i1} replacement of the bath by a c-number noise source; and

(iii) Markovian treatment of the dynamics,

By ‘classical treatment of the dynamics’ we mean that the rotator can be treated as a
classical object. This does not mean that the quantum nature of the bath may be ignored.
Thus we are able to distinguish between quantum effects that originate in the bath (and are
therefore model-dependent) and quantal effects that are associated with the quantum nature
of the rotator itself. This distinction is crucial in order to resolve such an ambiguity in the
DG conjecture.

Replacement of the bath by a c-number noise source is expected to be legitimate on
a time scale which is much shorter than the relaxation time. Within the framework of
the Markovian treatment, noise time-autocorrelations that may arise due to the quantum
nature of the bath are ignored. In a classical treatment of chaotic dynamics this should
not bother us since, due to the exponential instability of the phase-space trajectories, we
expect no memory for long-range noise time-autocorrelations, In the quantum mechanical
problem, the situation is quite different due to long-range dynamical correlations [15, 10].
The interplay of the latter with the former may lead to either enhancement or reduction of
the induced diffusion [15, 10, 14].

The outline of the paper is as follows. In sections 2 and 3 the ‘ohmic model’ and
the ‘simplified Dittrich-Graham model’ are introduced and a classical treatment of the
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dynamics is considered. Diffusion in the quantum kicked-rotator problem is analysed in
section 4 where the combined effect of noise and dissipation is also discussed. Finally,
the conclusions are summarized in section 5. The four appendices at the end of the paper
include the details of some calculations.

2. The ohmic model

Consider a particle that is free to move in one dimension and whose unperturbed Hamiltonian
may be time-dependent

Ho=1p2+ V(1) (2.1)
where ¥ and p are conjugate coordinates [, p] = ii. A bath is defined by the Hamiltonian
Fos = 3 2 E tmawlg? (2.2)

— g 2 ela

with [y, Pe] = th. The simplest Hamiltonian for the investigation of the damped-particle
problem has been proposed by CL [11-13], namely

c 2
H= Ho-:-z Pe + Lingw? (q,, L x) 2.3)

My w2
where C, are coupling constants. Note that the coupling is linear, namely

Hinl. = —X Z: ch&a (2'4)
o

and that the particle experiences the same environment irrespective of its spatial position.
‘The bath is characterized by the spectral function

2

c
J@y=23" =50 - wo). @5)

@ e

The significance of this spectral function will be apparent in the following.

Consider now a rotator whose unperturbed Hamiltonian is still (2.1); however, periodic
boundary conditions are imposed on the interval [0, 2]. A heuristic visualization of the
system is to consider a particle which is free to move in a one-dimensional ring. The
simplest choice for the interaction term Hiy that constitutes a linear coupling scheme is to
replace £ in (2.4) by 2 periodic function of %, e.g. sin(%). However, for such a choice the
particle experiences a non-homogeneous environment, i.e. in different parts of the ring the
local environment is different. In order to overcome this problem we propose to take

ﬁint == Z Cotétx'\/:_)- sin(® + @a) (2.6)
with phases ¢, such that

ZZ

— J(w) 2.7)
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where J{w} is the spectral function (2.5) of the bath. Thus, if we consider a partition of the
bath oscillators into subsets of oscillators whose frequencies w, are the same, then, within
each subset, the ¢, are distributed uniformly. Finally, the total Hamiltonian of the system
plus the heat bath is

H = Ho + Hin + Hoan- (2.8)

The quantum state of the particle may be represented by the Wigner function p(x, p).
The time evolution of the Wigner function for finire time and sufficiently small £ may be
approximated by that of a classical distribution in phase space. We shall now use such
an approximation and we shall title it a ‘classical treatment of the dynamics’. The latter
term implies that the system is considered to be classical while the bath gets full quantum
mechanical weatment. The limit # — 0 is not taken. The equations of motion of classical
points that form a distribution in phase space are X = p and

p=-Vx) + f de ~/2 cos(x + PYF,(t) 29
where

Folt) =Y Cagal)5(0 — 00). (2.10)

The variables g, (¢) satisfy the equation

o do(t) + mawlqe(t) = Cav/2sin(x(2) + ¢4) (2.11)

which can be solved explicitly, i.e.

qu(t) = g (0) cos(wy?) + P.©) sin(we!)
Py,
'
+ f Ca sinew, (f — t’)«/isi.n(x(r’) + ) dr’. (2.12)
r=0 MWy

Substitution of (2.12) into definition (2.10) yields

:Fw - Fériction + Fg (2-13)
with
Fp= 8(¢p — ¢u)Ca [°°s(w«r)4a<0> + Si“(“’“’)&@] @19
~ Mgy
while
L. t
Fifion _ f 20t — 1V2sin(x (') + @) dr'. (2.15)
0

The response kernel (¢t — t') is defined for positive times (¢ > £} as follows:

o —t) = j:o (—i:;—o.f(w) sinfe(r — 1)]. (2.16)
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The definition of the response kernel for negative times is of no significance. For simplicity,
we adopt the convention a¢(z — ") =0fort <.

In order to make further progress, a specification of the initial state of the system plus
the bath is needed. We shall assume that initially (at time ¢ = Q) the system is prepared in
some arbitrary quantum state while the bath oscillators are in thermal canonical equilibrium
with some reciprocal temperature f. The Wigner-function representation of the probability-
density matrix is then (see appendix A)

Pi=0(%, P’ Ga» Pa) = Preo(@, P) | | Pea(Gar Pec) @.17)
o

where

( )= 1 exo | — tanth(1 phw,) ( PE
Pealler Pe) = T Tty 0| P\ Tnan ) \2ma

Using (2.18) one obtains the expectation values

+ %mngqg):' . (2.18)

2z
(%9“) = (Ima@2g,(0)?) = 1haw, coth(1 fhw,) (2.19)

and hence it is easily found that {F,(¢)} = 0, while

8p — ot — 1) (2.20)

1
(FoDFy (@) = 5=

where
¢t —1tH = foo d?w.](w)h coth(%ﬁﬁw) cos[w(t — t'}]. (2.21)
[

Now we may turn back to the equation of motion (2.9), substitute the expression (2.13) and
use the results (2.15) and (2.20) in order to cast the equation into Langevin’s form, namely

p- = _Vl(x) + Ffrictinn + F(t) (2.22)

The friction term F™® originates from Fii%i°® and takes the form
t
Flrction . __ f 20(t — t) sin{x(t) — x ()] de'. (2.23)
0

The noise term F(f) originates from Fp(¢) and satisfies (F(¢)} = 0, while locally
(FOYF(hy = ot — 1). (2.24)

The Langevin equation (2.22) together with (2.23) and (2.24) constitute a complete

description of the reduced dynamical behaviour of the system on a time scale such that

guantum to classical correspondence is expected.

. Further simplification of the expression (2.23) for the friction term is possible if ()
decays by time scale 7, which is small compared with the dynamical time scales of the

unperturbed problem. The validity of this assumption should be established once we let
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J{(w) have some specific functional form. We may then substitute x{(z) — x(¢') = p(t ~ t")
into (2.22) and obtain the result

Fction — _ san(p)J(w = | pl) (2.25)

where J(w) is the spectral function of the bath. If we further assume that the heat bath is
an ‘chmic heat bath’ in the sense of CL [11, 13], namely

J(w) = nwe™ @/ (2.26)
then the friction is proportional to velocity
Ffricﬁnn

= —np. @27)

It is assumed that the cutoff w, is much larger than all other relevant frequencies of the
problem. The noise, using (2.21), has the autocorrelation function [5]

rp[ 2—12 n 1 1 4 2
=t - 1422 - 2
=7 [(r& T2 | T 25 2nmp | Gynpe ~ \simnter /) 228
where 7, = 1/w.. It has two regimes of behaviour; the short time where
An 1 p
(b('[') = —?r—z or RT K E‘B (229)

and the long-time regime

¢(t) = —2%% exp (—21 %) for hg & 1. (2.30)

It satisfies the sum rule
*® N
JICEE 22, @.31)
—00

In the limit of high temperatures, i.e. if A8 is smaller then the relevant dynamical time
scales, this autocorrelation function may be replaced by the well known classical expression

$(x) = 2%8&) (2.32)

representing white (uncorrelated) noise.

One may have the incorrect impression that the functional form of the interaction term
(2.6} is essential in order to obtain the ‘chmic behaviour’ (2.27). We therefore make a
digression to show that this s not actually the case. Let us now assume a more general
form for the interaction term, namely

Hige =— Z Coguu(x + @) (2.33)
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where u(yp) is some 2Zm-periodic function. However, we restrict ourselves to the case of
the ohmic bath. The spectral function J(w) has the CL form (2.26) and consequently, using
(2.16), the response kernel is

a /2 T
2&(1‘) = —7?-5-; (;I'— W) for O<r (234)

with T; = 1/e;. Assuming . to be shorter than the dynamical time scales of the unperturbed
problem one may use instead the expression

2a(7) = %nwca(r) - né'(1). (2.35)

Using the same procedure that previously led to (2.23), one obtains equations (2.6), (2.9),
(2.11), (2.12) and (2.15), with the replacement +/2sin( )} — «( ) and V2 cos( )= (),
and consequently

Flction = —n[ f ')’ dfpi|i- (2.36)

The factor in the square brackets can be rescaled to 1 by an appropdate normalization of u
with no loss of generality to obtain the desired expression (2.27).

Classical treatment of the dynamics implies treating the system as a classical object while
the bath is considered to be a quantal entity. We were able to obfain the reduced equations
of motion for the system and to distinguish between ‘noise’ and ‘friction” effects. One may
wonder whether a similar (corresponding) reduction is possible within the framework of a
full quantum mechanical treatment and, furthermore, whether the distinction between noise
and friction is still meaningful. In particular, inspired by the results of the classical reatment,
one is interested in the question as to whether the effect of the bath is the same as that
of a c-number noise source if friction is ignored. Indeed the Feynman—Vernon formalism
[16] enables one to consider the exact reduced dynamics of a system that is coupled to a
bath. A detailed presentation of this formalism will not be given in this paper, only some
observations which are needed for later discussions are referred to in what follows.

The Hamiltonian of the system combined with the bath is (2.8) with interaction terms
given by (2.4) for the CL model and (2.6) for our ohmic model. The system and the bath
are assumed to be prepared initially as in (2.17}. A path-integral formula enables one
to compute the reduced propagator K of the system. The time evolution for an arbitrary
preparation is

prlxe, pr) = f K (%, pelxo, podor=o(x0, po) dxodpo (2.37)

where p(x, p) is the Wigner-function representation of the reduced probability-density
matrix of the system, The reduced propagator is found to be a functional of the external
potential V{(x,t}, the response kernel a(r) and the noise autocorrelation function ¢(t),
namely

K = K[V{x; 1), a(t), ¢(r}]. (2.38)

Using (2.38), it is found that if {t) decays on time scale 7., which is small compared
with the time scales of the unperturbed problem, and if ¢he noise is white (i.e. ¢(r) is a2
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3-function) then a Markovian reatment of the dynamics is exact, That is the propagator X
can be factorized and be written as a convolution of shorter time steps. For example

Ic(xrzr P Xy, Pry) = f’c(xn ) Prol%eys P:;)}C(er P %0, Pry) dxr. dPt.- (2.39)

More details may be found in [5] where the validity of the Markovian treatment is discussed.
A further observation [16, 5] is that the true reduced propagator (2.38) may be obtained using
the following prescription:

(i) add an appropriate driving force F to the external potential V(x; £);

(i) set ¢(7) in equation (2.38) to zero;

(iii) compute the resultant fictitious ‘noiseless’ propagator Kp; and

(iv) to obtain the true propagator K, average Kg over realizations of F taken from a
Gaussian ensemble.

Thus the ‘noiseless’ propagator Kp corresponds to a specific realization of F, while the
true propagator K corresponds to the influence of a c-number noise source that is represented
by F. To illustrate this prescription let us refer first to the cL model. The proper definition
of the ‘noiseless’ propagator for the CL model is

Ke = K[V(x;t) — xF(t)a(r), 0] (2.40)

where F(t) is a real function of time. To obtain K, the ‘noiseless’ propagator Xr should
be averaged over realizations of F(¢) such that {F(¢)) = 0 and

(FOF() =@ —1) (241)

where (...} denotes here the average that is taken over the realizations of F(f). Since K¢
corresponds to the time evolution in the presence of friction, it follows that, as long as the
friction effect is negligible, the Hamiltonian (2.3) may be replaced by

H =My — £F(@) (2.42)

where average over realization of F(t) is implicit. This argument can also be extended for
the purpose of investigation of our ohmic model. Namely, one may replace the Hamiltopian
(2.8) with (2.6) by

H="Hy— f de F¢(t)~/5 sin(X + ¢) (2.43)
where Fy(t) satisfies (F,(t)} = 0 and

(Fo(t)Fp (f')) = %3 (p— oG —1). 244)

Thus, we conclude the following: the effect of the bath may be represented by the
combination of friction and a fluctuating c-number classical force. The time-autocorrelations
of the latter are determined by the nature of the bath and the coupling scheme through the
single spectral function J(w). In particular:

(i) the distinction between noise and {friction, which is modelled by the classical
Langevin equation, is also a natural consequence of the quantum mechanical treatment;

(ii) on time scales such that the friction effect is negligible, the effect of the bath is the
same as that of a c-number noise source;

(iii) Markovian treatment of the dynamics is valid provided the noise is white.
Condition (iii) is met only at high temperatures.
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3. The Dittrich-Graham mode! and its simplification

Dittrich—Graham (DG} [7, 8] have considered the quantum kicked rotator coupled to a zero-
temperature bath. The unperturbed Hamiltonian of the rotator is of the general form (2.1)
and the bath is defined via

Flous = 3_ hogl} . (3.1)
o
The interaction term is
Him = 3 hgo(Fal +12,) (3.2)
o
where the g, are coupling constants and
~ (o)
f=> " aln - nl+]—n+ 14-n). (3.3)
n=0

The eigenstates |n) of p are such that pln) = An|n}. The bath, which has been considered
only for zero temperature, is chosen so that

1
D 8@ — ) =51 (3.4)

(see [7], equations (3.10)-(3.16)). The disadvantage of this model in the present form is
that the classical limit is not explicit. Therefore, one is urged to rewrite it in a somewhat
more convenient form. First, one substitutes

R Mo V2, 1 vz,
a“E( ;ﬁ“) qa+|( ) B (3.5)

rmywy

50 that the bath Hamiltonian (3.1) takes the standard form (2.2). Then I is expressed via
the dynamical varjables of the rotator

£ = 3 Vi) n) + ] ~ n)(~nD)

n=0

= e | % 8(p) +¢* | %9(—;3) (3.6)

where the operator /| p| is defined via its diagonal representation and 8 is the step function.
The interaction term (3.2) can now be cast into the form

?:zint =10 Z Caéa + D Z éaﬁcz- (3'7)
o o

The operators # and # are \/E%(I‘T + I') and \/ﬁé ('t — I'), respectively. The coupling
constants are Cy = +/2Mawy gy and Cy = +/2/ My g and the spectral functions of the
bath with respect to the dynamical variables & and ¥ are, respectively,

T CE, _n =2 _1
> ; mamﬂa(m —w) =3 Zu:mawacaé‘(w —wy) = L. (3.8)
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The essential features of the DG model are now transparent; the heat bath is non-ohmic
(i.e. its spectral function does not have the CL form (2.26)) and the coupling to the bath
is momentum-dependent (i.e. & and ¥ also depend on the momentum j, unlike in (2.33)).
In order to see the momentum dependence more clearly we introduce for conereteness the
explicit expression for i, namely

it = VR + T = Lcos 2/15] + 1Bl cos £) + O@). (3.9)

It will be apparent in the subsequent discussion that the proportionality & o m is crucial
in order to obtain friction that is proportional to velocity in the case of coupling to this
non-ohmic bath,

We shall introduce now a simplified model that has the same essential features as those
of the DG model. The bath is assumed to have the Hamiltonian (2.2) while the interaction
term is

Fi == 3 _ Cada3[v/2sin(E + go /1] + HC]. (3.10)

The spectral function of the bath is non-chmic and has the form
Jpc(w) = ne™/* (3.11)

which is different from the CL form (2.26). The phases ¢, are distributed uniformly so that
(2.7) is satisfied. The same procedure that led to the Langevin form (2.22) of the classical
equation of motion may be used (appendix B) to obtain

o p + Gfricl:ion + G(l‘)
p = ~V'(x) + Ficton . p(p), (3.12)

The friction term that is responsible for the damping effect is

pioction . _ fo : 20t — ")/1p(Op(t)] sinlx(t) — x(¢)] dt’ (3.13)

instead of (2.23). The kernel a(t — 1) is defined as in (2.16) with the appropriate speciral
function (3.11). Further simplification is possible if 1, = 1/w, is shorter compared with
other time scales of the problem, leading to (appendix B)

FReton — _ 3o = |pDp = —np (3.14)

instead of (2.25). Hence, in spite of the non-ohmic bath (3.11), the friction is indeed
proportional to the velocity as for the ohmic model. The expression for the non-generic
friction term is found in a similar fashion (appendix B) leading to

friction ,_ _ 1 ® 2
G = sgn(p)‘/; Tr cos (mcu) dy, (3.15)

This friction term diverges in the limit p/w, — 0, This unphysical divergence may be
avoided by putting a lower cutoff on the function J(w) in the vicigity of e == 0. Furthermore,
we shall immediately see that such a Iower cutoff is required to make the model well defined



Noise, dissipation and the classical limit in the QKR problem 4815

for finite temperatures. We turn to discuss the noise terms which appear in (3.15). These
noise terms (appendix B) satisfy {F({#)} = (G(¢}) = 0 and

(FQYF(") = |pldps(t — ) (3.16a)
1

(GG = ZIFI%GU -1t} (3.16b)

(F(HG(E)) =0. (3.16¢)

Note that (3.16¢) is not self-evident. The autocorrelation function ¢pg{t — ¢} is obtained
by substitution of the non-ochmic spectral function (3.11) in the usual definition (2.21). This
autocorrelation function is ill defined at finite temperature since it then constitutes a Fourier
transform of 1/frequency fluctuations spectrum, i.e.

pa(@) = 2% H—‘ for || < % (3.17)

Consequently, the variance of the noise which is given by ﬁ;” ¢(w)dw/x is infinite. A well
defined expression for ¢pg(t — ¢’} is obtained only at zero temperature:

dpG(t — 'y =hnd(t — 1) (3.18)

which is a white uncorrelated noise unlike the chmic model where (2.29) applies.
Dittrich and Graham ([7], equation (4.9)) have considered a map that constitutes the

discrete-time version of the Langevin equation (3.12). It reads:

X=X, =+ pr1 +

Pt = Ap,—i + 1, + driving term. (3.19)
The damping parameter A corresponds in our notation to e™" while the noise terms ¥, and
7. satisfy {n:) = () = 0 and

(ene) = | pe—1|BA(1 — X)3¢ ¢

1 ,a-»
4Hpe-al A

(n¥w) = O. (3.20)

(¥, ‘.b't'} = B

This characterization of these noise terms should be compared with our result (3.16) for
the noise terms F(¢) and G{). The map (3.19) has been obtained by DG from the
full quantal propagator after applying the master-equation formalism {9] and taking the
‘semiclassical’ limit. The significance of these approximations should be clarified. The
master-equation approach is based on a Markovian treatment of the dynamics. Thus, noise
time-autocorrelations that may arise are automatically ignored and therefore we cannot tell
whether the noise terms in (3.19) are white due to some special feature of the model or due
to the Markovian approximation involved. By ‘taking the semiclassical limit’, DG meant that
the condition (k) <« min(A, 1—2) should be satisfied. This condition implies in my view
that the discretization of the momentum variable p = #in is fine enough to support classical
structures that are affected by the damping. By inspection of (3.19) it is observed that the
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relevant classical scales after one iteration are £{)X) and O(1 — A) for either the residual or
the change in the momentum, respectively. DG have chserved that the noise terms ¥, and
7; are R-dependent and disappear in the limit of # — 0. Their conclusion has been that,
regardless of the quantization scheme, ‘in the semiclassical limit dissipative quantum maps
reduce to the classical maps with additional Gaussian noise terms determined by quantum
theory.” However, it is evident that the procedure which has been adopted to obtain their
map does not enable one to distinguish between quantal effects that are due to the quantum
nature of the zero(!)-temperature bath and those quantal effects that are associated with the
quantal nature of the rotator itself. The reason is that their ‘semiclassical’ limit has been
taken afier the elimination of the bath degrees of freedom. Furthermore, the DG approach
does not permit comparison with the classical limit since the latter is not explicit in their
model, In the present work, the classical limit of the rotator has been studied explicitly,
leading to the conclusion that (3.19) could be obtained by treating the rotator as a classical
object while the bath is quantum mechanical. A comparision between the two approaches—
the DG approach versus our approach—is illustrated in figure 1.

Quantat Rotator Classical Rotator
coupled to coupled to
nonohmic Heat Bath The classical limit nonohmic Heat Bath
of the DG model
as discussed in
Markovian, this work
Master Equation Ciassical
approach treatment
used by DG of the dynamics
Reduced
Quantal Equations of motion
Reduced Propagator (Eq. 53.12)
"Semiclassical”
stochastic map
The "semiclagsical" {Egq. 3.19)
limit as taken in the
original work by DG fdentification of
the "semiclassical"
limit of DG with the
classical treatment

Figure 1. Hlustration of the relation betwesn the DG results and the classical limit.

4. Diffusion in the QKR problem

‘We consider a rotator whose unperturbed Hamiltonian is

oD
Ho=3p*+ Kcosk Z 3¢t —n). 4.1)

H==—00
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Note that X' and % are the dimensionless parameters of the Hamiltonian since the mass of
the rotator, the spatial periodicity of the kicking potential and its time pericd are fixed in a
naturat way. The total Hamiltonian of the rotator plus the bath is (2.7). If the dynamics of
the rotator are treated classically then the Langevin equations (3.12) apply. Integration of
these equations over one time period {damped propagation + kick) yields the stroboscopic
map

x() = x(t—1) + %cl — e Mp(t—1) + g(0)

pO)=ep(t—1)+ Ksinx(t) + f(t) {4.2)

where ¢ will denote a discrete (integer) time variable from now on. The noise terms are
given by

H
F) = f le‘"("")F(t’)dr’ (4.3)
.
and
f T”
gt) = f I f le:“’f“”"f'hf?(r’) dr’ dr”. 4.4
=1 Je—

Note that for the ohmic model g(¢) does not include an F(t)-independent component since
a G{f) term, as in (3.12), is absent. For the sake of later convenience we define the
discrete-time autocorrelation function

v(t — ) = () FED) (4.5)

and denote the variance v(0) of the noise by v. The general expression for v(t — ¢’} in the
ohmic model is

] f
v —1') = f f gt =gy (T — ) dr dr. (4.6)
=1 Jr =t

In the weak-damping regime (n¢ < 1), one may use the simpler relation

H s
vt —1tY) = f Dotmic (T — T dr dr’. 4.7
4

=1 =1

For the sake of later comparison, we note that similar considerations in the simplified DG
model also yield, after inessential simplification, the map (4.2). The noise term f(¢) then
has, in the weak damping regime, the discrete-time autocorrelation function

t ¢

vp{t — ') = {|pl) f $pe(r — v)drdr’ (4.8)

=1 J¢—1

instead of (4.7). The noise variable g(z} includes, in the latter case, two contributions: one
is a spreading term analogous to (4.4) and the other is the discrete-time version of the noise
variable G(¢) that appears in equation (3.12). If the dynamics take place far enough from
|p| = O then the G(¢) term is negligible.
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Focusing on the weak damping regime, explicit expressions for the noise autocorrelation
function w{f — #') are found by substitution of results (2.28) and (3.18) into (4.7) and (4.8),
respectively. In the zero-temperature DG model the noise is white and its variance depends
on the region in momentum space where the dynamics take place, namely

vpe =hn{ipl). 4.9)

At finite temperature, v = o0 due to the 1/frequency component (3.17) of the noise-
fluctuation power spectrum. In the ohmic model, on the other hand, the noise is
homogeneous in phase space and is controlled by the temperature. At high temperatures
the noise is white with

v=2n/8  forhf <1 (4.10)

As the temperature is lowered, v decreases. But when /8 becomes larger than the period of
the kicking (which is 1 in our system of units) the variance stops decreasing and acquires
a cutoff-dependent logarithmic term, namely

2 R
-—g—h +2—'71nwc for 1 < h. @.11)
Details of computation are presented in appendix C. The parameter &, is related there to

w.. The noise possesses, in the latter case, long-range autocorrelations

—-H(I + Ind) forf=1t]=1
14
Bp 1 ,
bt — 1) = —?qlt—’lz for 1 < |t — '| K AP @.12)
17 2n ( ) ,
— ex t—t forhB < |t =1
‘B 75 =P hﬁ‘ ' B« I

Within the framework of the Markovian treatmenti, the autocorrelation function is taken to
be

UhMarkovian treatment(f — ') = vy (4.13)

Thus, if the noise is not white, as in the case of the low-temperature ohmic model, its
autocorrelations are ignored in this approximation. I the system is chaotic and is treated
classically, the neglecting of noise time-autocorrelations is justified by the exponential
instability of the phase-space trajectories. In this case we expect no memory for long-
range noise autocorrelations. For the quantum mechanical problem the situation may be
quite different due to long-range dynamical correlations. The effect of the latter will be
discussed later in this section.

In what follows we are interested in the time evolution of the momentum-dispersion
function, namely

E(t) = (((p(t) — pCO)?))

where {{)) denotes here the uniform statistical average over initial conditions. The diffusion
coefficient is then

D =I£I&(E(t + 1) — E@)). (4.15)
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In the absence of noise and friction as the value of K is increased, the classical dynamics
that is generated by the map (4.2) follow the KAM scenario [1]. For X «< K, (K, =~ 0.9716)
diffusion is impossible (2 = 0) due to the existence of KaM curves. For K, < K the last
KAM trajectories that bound diffusion in momentum space have already been destroyed. For
large enough K (say 5 < K) a reasonably good approximation for the diffusion coefficient
is

Daassical = [1 — 2(K)1K? (4.16)

where 7, denotes the Bessel function of order two. The leading term (D = %K 2y may
be obtained from the map (4.2) by assuming that successive values of the variable x
are uncorrelated. The deviations from this value constitute 2 manifestation of dynamical
correlations. The latier become negligible for *harder’ chaos (1 < K). The effect of noise
on classical diffusion has been studied by Karney et af [17]. If the noise is strong (v ~ I)
then dynamical correlations are destroyed and the expression D = %K 2 becomes exact.
Furthermore, if v is of the order K2, or larger, then enhanced diffusion with coefficient
D= %K 2+ is attained. The diffusion in momentum space may be described by a Fokker—
Planck equation [1]. Taking into account the weak-damping effect, the time evolution of
the momentum-distribution function g(p) is determined by

dp 18 3

—_—==—(D — . 4.

ryiat apz( o)+ 3p (npe) (4.17)
The immediate result of the Fokker—Planck equation is that diffusion in momentum is
suppressed on a 'timc scale f, = 1/n. For t, « 1, a steady state is reached

Pos(P) = (J—T%)m e~/ (4.18)
and thus
{p™ee =D/ 4.19)

We turn to the case of strong damping (1 < #). Inspection of the map (4.2) reveals that
strong damping tends to atiract the classical trajectory to the curve p = sinx leading to a
strange attractor [18]. However, the effect of noise is to smear the fine structures of this
attractor [B].

So far the rotator has been treated as a classical object. We turn now to analyse the
gquantum mechanical time evolution. As a first step let us define the parameter regime which
is of special interest. The case of strong dissipation (1 < #) is not of great interest since the
steady state is achieved within several time steps and quantum-to-classical correspondence
is expected to hold. Indeed, DG have introduced numerical evidence that, in the limit of
strong dissipation of the damped QKR problem, their semiclassical map (3.19) ‘suffices to
reproduce all observable effects’ [8). However, we have demonstrated that, in essence,
the same map may be obtained by treating the rotator as a classical object. We therefore
conclude that classical treatment of the dynamics is satisfactory for any practical purpose
in the case of strong damping,

From now on we focus our discussion on the weak-damping regime (n <« 1) of the
damped QKR. Here the damping effect is negligible on the time scale ¢ < ¢, and therefore
to determine the diffusion in momentum space it is legitimate to replace the bath by an
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equivalent c-number noise source as in (2.43). The one-step propagator that corresponds to
the classical map (4.2) within this time domain is

!
0= T exp [—if (Ho — quo Fqg\/isin(i +9)) dt:l . 4.20)
t-1

The operation 7 exp denotes time-ordered exponentialization. An explicit expression for
U/ can be obtained only in the absence of noise. In what follows we shall adopt the
conveniional approach: the operator U is to be approximated by its discrete-time version

U=exp [——(K cosi + Vm)] exp [—-—%p ] 4.21)

with an interaction term that is assumed to be effective only during the kick process. Thus
P = [ do 1V EsinG +) “.22)

where f,(¢) are real functions of the discrete-time variable ¢ that satisfy upon averaging

(fe(®)) =0 and

1 t 3
N = —8(p — ¢ - . .
{fo @) f D} T (p so)j:_] Mcb(f ') dr dr’ (4.23)

One may wonder whether any physics is missed by switching from the exact expression
(4.20) to its discrete-time version (4.21). Indeed, the discrete-time version does not take
into account the spreading effect: it is easily found that the classical map that corresponds
to (4.21) is the same as (4.2) except that the noise term g(¢) is absent. The latter is
associated with the noise term f(t) via spreading in the x-direction. The insignificance of
this spreading in the QKR problem has been discussed in section 5 of [10]. We therefore
consider {(4.21) to be a reasonable approximation for the true propagator.

Quantum mechanically, in the absence of noise and friction, the classical diffusive
behaviour is suppressed (Dguantar = 0) [2]. In order to explain this effect it has been argued
[3] that the eigenstates |} of the one-step propagator I are localized in the p-representation
with localization length i which is given by & = 1Dy /5® [19]. Here Dy denotes the initial
diffusion rate. It may be estimated [19] by using the classical result (4.16) with X replaced
by (2 sinh/2)(K/R). The elgenvalues of U are denoted by e~i% where w, are the quasi-
energies. Assuming that the rotator is prepared ,in momentum eigenstate |p}, it follows
that the quantum state of the rotator is approximately a superposition of § quasi-energy
eigenstates {r). For short time ¢ < ¢* (#* ~ 2£), a classical-like diffusive behaviour is
followed, but on larger time scales the dynamics appears to be quasiperiodic. For the sake
of completeness, we note that the proper definition of the energy function is now

E(@t) = {pl(p(t) — p)?Ip) 4.24)

where the bar denotes the uniform statistical average over the states |p}. The latter
expression can be written in the form (4.14) to emphasize that a particular representation is
not essential. From now on the notation {{ }) stands for quantum statistical average, i.e.

() = lim_ ,%r trace(d) (4.25)
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where N denotes the dimension of the basis that is used to compute the trace. Expression
(4.14) reduces io (4.24) if the momentum representation is used in this computation. It also
corresponds to the classical statistical average in the semiclassical limit.

The introduction of weak noise into the QKR system results in the destruction of
localization. Using a heuristic picture Ott, Antonsen and Hanson [4] have argued that the
coherence time is simply the period it takes for the neise to ‘mix’ neighbouring momenta.
The diffusion that is induced by the noise (disregarding the interplay with the kicks) is
8p*(t) = vt and the condition 8p =~ % for destruction of coherence leads to the result
tc = h*/v. Within the framework of an apalytical approach, a satisfactory definition of
the coherence time should be z, = I'"!, where I" denotes the (average) decay constant of
the quasi-energy eigenstates. A formal approach to analyse the decay process has been
presented by the author [10]. A generalization of this approach for the chmic model will
be outlined briefly in the present paragraph. This generalization takes into account that
the noise is not necessarily white. A first-order perturbative estimate for the transition
probability from state |r) to state |s) after time ¢ is

eron(slr) = 3 3 o) P e VirlED .26)

=] 1'=1

where w,, denote differences in quasi-energies. Note that the Schridinger picture is used
here. Substituting (4.22), and averaging over realizations of the noise, one obtains the
transition probability per unit time

Wmﬂ=[0 |H—Eﬂﬂﬁﬂn

] V(g (4.27)

where V() = ¥ oo oo p(z)e'®® is the noise-fluctuation spectrum. The average decay rate
is

= lim FZ W(s|r). (428)

This expression can be cast into the form
2 sr
r= (l) f 9 @) 4.29)
h g 2w
where
Clw) = f?x 9% tim L Z| sIvasinG + o)lr}| 278 — @) (4.30)
2= N—)ooN ars ’

An alternative way to present the latter result is
C(r)v(r 4.31
haz;c)(> (4.31)
where C(1) = C:(1) + Cc(r) with the real symmetric functions
Cy(r) = {{sin £(z) sin 2(0)}))

{4.32)
C.(t) = {{cos £ (r} cos X (0))}.
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The interaction picture is used in later definitions. It is easily verified that C(z = 0) = 1.
Thus, for white noise, one immediately obtains

M= (4.33)

and therefore the heuristic result t, = A?/v is formally recovered. However, if the noise
is not white then knowledge of the global behaviour of C(t) is needed. Incidentally
C(r = 1) = 0 and there are indications [19] that the other first few correlations are
given approximately by the classical expressions with K replaced by 2sin{h/2)(K /h).
Classically, the long-time correlations drop to zero due to the exponential instability of
the phase-space trajectories. It has been demonsirated quantum mechanically [10] that
dynamical correlations decay only after a relatively long time period ¢*. The slow decay
of dynamical correlations is a manifestation of the localization effect that is responsible for
the suppression of chaos in the QKR systemn. We shall assume, based on the results of a
preceding study [10], that the following expression holds:

¢ |t}
Clr) ~ —55 exp (_t_*) for 1 < 7| (4.34)
where ¢ is of order unity. We turn now to perform an explicit estimate of I'. At high
temperatures the noise is white, its variance is given by (4.10) and (4.33) applies. Hence

n{?2
FN=={— for h . 4.35
h(hﬁ) orhff 1 (4.35)
At very low temperatures one should substitute (4.11)+4.12) and (4.34) into (4.31) and
perform the summation (appendix D). The result is

I'= g [c; + ¢z lné, 4 ;c; (63 - %(04 + 1ﬂf*))i| (4.36)

where all the ¢’s are of order unity, namely ¢; = (%/3), ¢z = (2/%), ¢3 = (7%/6) — 1 and
¢4 =2 0.4. This expression includes three terms. The third is a manifestation of the interplay
between noise time-autocorrelations and dynamical correlations. By setting ¢ to zero, one
obtains the Markovian approximation. In the case of the zero-temperature DG model, the
noise is white. Substitution of (4.9} into (4.33) leads to the result

r= ,—':(I pl)  for the DG model. (4.37)

Here the decay rate is different for eigenstates that are located in various regions of
momentum space. In particular, for those eigenstates that are in the vicinity of the origin
{Ipl = 0), the expression I" ~ n& roughly holds, while for eigenstates that are located
around a distant site p = fing with £ < |ng| the expression I =~ nng applies.

We are now ready to discuss the diffuston that is induced by the noise. Following the
heuristic picture that has been presented by Ott e al [4] we distinguish three noise regimes.
For weak noise (1* < f,), the diffusion process in momentum space is similar to a random
walk on a grid with spacing A& and hopping probability I". The diffusion coefficient in the
presence of weak noise is therefore D =~ (h£)?(1/t.). If the noise is not weak (¢, < #*)
then classical-like diffusion is recovered [4] and D =~ Dy. For even larger noise intensity
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this diffusion is enhanced [4] and is given by D = %K 2 4 v as in the classical case. A
formal analytical treatment of the diffusion process has been presented elsewhere by the
author [10]. In the weak noise regime it has been established that

*

t
D= I*Dor = r—Do. (433)

C

Using the relation r* ~ 2& ~ Dy/A?, one recovers the heuristic result up to a prefactor
that has not been determined in the original version., The decay rate I and the associated
coherence time f, should be determined via equation (4.31). Thus, the derivation that led
to (4.38) has proved that diffusion is affected by noise time-autocorrelations. Numerical
experiments to verify this conclusion and the validity of equation (4.38) have been performed
[15,10]. In the ohmic model, substitution of either (4.35) or (4.36) into (4.38) leads to

K* 4
Ck—4v for v < %5
4
D=1Dp for % Kv € K? (4.39)
%K2+v for K2 v

where v is a function of the temperature (see (4.10)~(4.12)). The factor C is of order unity
for white noise and is slightly larger (but still of order unity) at low temperatures due to the
noise time-autocorrelations. In the latter case, the factor includes the ratio of T, as given
by (4.36), to the same expression with ¢ = 0. In comparing the ohmic model with the DG
model, we also introduce the explicit expression for D for the latter case. Substitution of
{4.37) into (4.38) yields

K 2
Cr=zn for |p| < &=
K4 K® A 1
Ca—nlp| for - K Ipl K T35
Dipy=1{ & W: F’i (4.40)
1 K21
Dy for X7 «|pl K h
1 K11
S K tmlpl  for ey L pl

where C) and C, are constants of order unity, Here D is momentum-dependent leading,
in general, to a superdiffusive behaviour. The weak-noise regime |p| < %3/K2(1/n) is
effectively absent if its width is less then the localization length. Therefore, for strong
coupling ({1/£)? < n) the diffusion is essentially classical.

Eventually, we should discuss the steady state in the case of weak damping. The
phenomenological Fokker—Planck equation (4.17) should be valid whenever a stochastic
picture of the diffusion process applies. This is evidently the case if the noise is strong
(D =~ Dyassica). But this is also the case if the noise is weak provided 7, < t,. The most
difficult situation in which this latter condition should be satisfied is when the temperature
is very low, It is easily found that a sufficient condition for £, <« #, to hold is & < 1.
Whenever the Fokker-Planck equation holds, quantal effects enter only via the diffusion
process and the nature of the steady state is determined accordingly. For strong noise,
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D 22 Dassicqy and therefore the quantal steady state corresponds to the classical steady state,
If, on the other hand, the noise is weak, then T <« Dejassical and consequently the quantal
steady state does not correspond to the classical steady state, The investigation of this state
is left for future studies.

5. Conclusions

Two models for the investigation of the damped quantum kicked rotator (QKR)} problem
have been presented. The first model constitutes a generalization of the CL model for a
damped particle, to the case of the damped rotator, where the coupling of the bath degrees
of freedom is to the angle variable of the rotator. The second model is a simplification
of the DG model. The simplified DG model enables one to study the classical limit of the
original DG model.

The ohmic model yields complete correspondence with the classical Langevin equation
for a damped rotator (2.22). In this model there appears a friction term (2.27) that
is proportional to velocity irrespective of the detailed coupling scheme which is purely
position-dependent and noise which is white at high temperatures but exhibits long-range
time-autocorrelations at the limit of zero temperature (2,28). The DG model and its
simplification yield only partial comrespondence to the classical Langevin equation. Its
classical limit is represented by equation (3.12). There appears an ohmic-like damping
tern (3.14) due to the particular dependence of the coupling scheme to the bath (which is
not ohmic) on the momentum variable. However, there is also an anomalous friction term
{3.15) that diverges in the limit p — 0. The noise in the DG model and its simplification
(3.16) is inhomogeneous in momentum space, uncorrelated at zero temperature (3.18) and
turns out to be 1/frequency noise (3.16) at finite temperatures. These latter features make
the DG model and its simplification appear to be of less physical relevance compared with
the ohmic model.

In the strong-damping case, it has been shown via re-interpretation of the DG results
that a classical treatment of the dynamics for the rotator is also sufficient in the quantum
mechanical problem. We arrived at this conclusion (see figure 1 for illustration) by
demonstrating that the semiclassical stochastic map of DG may be derived using classical
equations of motion for the rotator. This point was not clear from the original analysis of
, DG since the limit of strong damping was taken only after the quantal propagator had been
computed, giving the impression that the quantal treatment is essential. The steady state, in
the case of strong damping, is reached after 2 few time steps and on this time scale there
is correspondence with the classical behaviour. The fine details of the classical strange
attractor are smeared due to the noise.

In the weak-damping case, the steady state is reached only after a relatively long
relaxation time. On shorter time scales damping is insignificant and the bath may be
replaced by an equivalent c-number noise source (2.43). For strong noise, classical diffusion
is recovered and therefore the interesting regime is that of weak noise. If the noise is weak,
namely t* « ?;, where ¢* is the breaktime and ¢, is the coherence time, then destruction of
localization may be treated within the framework of perturbation theory. One may determine
the average decay rate I' of the eigenstates (4.31) and thus the induced diffusion (4.38).
Indeed, explicit expressions have been obtained for the decay constant (equations (4.35)
and (4.36)) and for the diffusion coefficient (4.39), in the case of the ohmic model, and
compared with the corresponding results for the simplified zero-temperature DG model
(equations (4.37) and (4.40)). A Markovian treatment of the dynamics is found to be exact
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for white (uncorrelated) noise. At low temperatures the ohmic noise possesses long-range
time-autocorrelations (4.12} and it is found that the Markovian treatment in the latter case
underestimates the induced decay (equation (4.36) with 0 < ¢) and therefore the associated
diffusion (via equation (4.38)). This is quite different from what is found in the case of either
an vndriven particle or an undriven rotator coupled to an ohmic bath [12,5, 14, 10] or even
in the case of QKR coupled to an ohmic bath via its momentum variable [14]. For all those
examples it has been found that diffusion is either suppressed or reduced significantly due to
the noise time-autocorrelations at zero temperature. In the present case of damped QKR, the
effect of low-temperature noise autocorrelations is relatively small and of opposite trend,
i.e. diffusion is enhanced (equation {4.38) with {4.36) where 0 < ¢) but not significantly.
The origin for the dissimilar manifestations of noise time-autocorrelations in the case of
different dynamical systems is the difference in the dynamical correlations that are involved.
Destruction of coherence is determined by the interplay of noise autocorrelations with the
dynamical correlations, The latter are specific for each system and coupling involved.

The relaxation towards a steady state in the case of weak damping has been discussed
using the phenomenological Fokker—Planck equation (4.17). A steady state is reached when
diffusion is balanced by friction. Quantal effects manifest themselves only via the diffusion
process. For large noise, the steady state is classical-like, whereas in the case of weak
noise it does not correspond to the classical steady state. The complete understanding of
the relaxation process is left as an open problem for further study, The validity of the
Fokker-Planck equation is not justified if the coherence time is not much shorter than the
relaxation time. Furthermore, it would be nice to find a formalism (e.g. some modification
of the Feynman—Vernon formalism) that will enable us to find explicitly the non-classical

steady state that is reached due to the damping process.
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Appendix A. The Wigner function for the harmonic oscillator at equilibrium

The probability density matrix for a quantal system whose Hamiltonian is H{x, p) at
canonical thermal equilibrium is

1
Peq(x”, x') = —Z-(x”le"’”!x’) (A1)

where £ is the reciprocal temperature (1/kpT)and Z = trace(e ™) is the partition function.

For a harmonic oscilator, namely H = p?/2m + 1mw®x?, one obtains

no mw —mno 2 2 At
Pegx”, x} = | Tk S S o) exp [—Zﬁ Sinh(fho) ((x"™ + x™) cosh(fhw) — 2x"x ]

(A2)

This result may be derived using a variety of techniques [20]).
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The Wigner function is an optional representation of a quantal state, It is defined as
follows:

o0
plx, p) = f p(x+ irx — 4r)e PR gr, (A3)

—00

It is a real function that satisfies [ { dx dp/(2nh)p(x, p) = 1. Integration of p(x, p) over
either x or p yields, respectively, the probability distribution function of either the p or the
x variable. For the harmonic oscillator at thermal equilibrium one obtains the following
explicit expression:

o | tanh(zARe) (P_’ ; 22)
pm(x,p)_%mth(%ﬁkw)c}(p{ ,8( %ﬁhw ) 2m+2mco.v4: (A.4)

This result reduces to the classical limit provided that the temperature is large enough
compared with the energy quantization, namely hw < kgT.

Appendix B. The reduced equations of motion for the simplified DG model

Starting with the full Hamiltonian (2.8) with the interaction term (3.10), one obtains the
following equation of motion:

. . sgn{p)
X=p= ; Cnf‘.?a\/ism(x -+ Qoa) zm

P=—V(x)+ Y Cagav2cos(x + )/l (B.1)

while g (2) satisfies (2.11) with the replacement C, = C,./]p[. Using the same definition
(2.10) for F (), one obtains, instead of (2.9), the following equations

i g
fc=p—fu dqa«/isincxﬂo)f(ﬂﬁ?ﬂ)

2
p=-=V'(x)+ fo de /2 cos(x + @)\/L'Ti.ﬁ,(t). (B.2)

In order to eliminate the implicit dependence of (B.2) via F,(t) on the bath degrees of
freedom, one should solve the equation of motion for g, (¢} as in (2.12), substitute into (2.10)
and introduce the result into (B.2). One then obtains the following explicit expressions for
the friction terms:

piction _ __j; et — £/ | p(t) p(t7)] sinfx () — x(t)]dt

feiction _ f et — iPz (r)(f )( ) cos[x(z) — x(t"H]dr'. (B.3)



Noise, dissipation and the classical limit in the QRR problem 4827

The response kernel is defined as in (2.15) with the appropriate spectral function (3.11).
The explicit expression is

T

[P dw _n_ T
a(t) = fo ?J(w) sin{wt) = e 4

(B.4)

It is assumed that T, = 1/, is much shorter than any other relevant time scale, thus the
approximations p(f) =~ p(t') and x{(t) — x(t") >~ p(t — ') may be used in (B.3). The results
(3.14) and (3.15) then follow immediately.

The computation of the noise terms for the simplified DG model is quite straightforward.
Equation (2.20) still holds provided that the appropriate autocorrelation function, namely
¢pg(t — ¢’), is used. The latter is found by substitution of the non-chmic spectral function
(3.11) in (2.21). The second-order moments {F()F({t')}, (GG(')) and (F()G(")) of
the appropriate terms in (B.2) may then be computed to obtain (3.16).

Appendix C. Zero-temperature noise in the damped QKR ohmic model

The variance v of the noise in the damped chmic model may be found by substitution of
(2.28) into (4.6). For weak damping, in the zero-temperature limit, one obtains

_ ~0% g P 1y
u_—ffo (r2+(t’ )2)2dtdr—?r21n 1+(rc)' (C.1)

The autocorrelations with 1 < t may be found in a similar way, i.e. by substitution of
(2.29) into (4.7). The result is somewhat clumsy. However, for any practical calculation,
the result may be approximated by the time-discrete version of the corresponding time-
continuous expression {2.29), namely

hn 1
o~ for 1 . C2
v(T) p orl <zt (C.2)

In order to find v(z:1) one may use the identity Z_w v{t) = 0 that follows the sum rule
(2.31). Using the equality 3 -2, 1/t* = 7%/6 one obtains

2
w(1) = ’g {(’%2 - 1) —ln 1+ (_rl) ] . (C.3)

The above result may be represented in the form of equations (4.11) and {4.12) provided
one uses the following definition

2 1\?
@ =g %11+ (—-) . (C4)

T

For 1. « 1 it leads to &, ~ 0.2w,. The advantage of using expressions (4.11) and (4.12)
stems from the fact that both the cutoff-dependent and the cutoff-independent components
of v(t) satisfy the sum rule }_%_ v(r) =
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Appendix D. Decay rate in the limit of zero temperature

Consider the damped QKR ohmic model in the limit of zero temperature. Weak coupling is
assumed. The decay rate I may be found by substitution of (4.11), (4.12) and (4.34) into
(4.31). One obtains

1 1 1
- el (7(2)-1): ®D

The second term originates from the noise iime-autocorrelations. The function f(A) is
defined as follows.

o0

1
fay=3 . (D2)

=]

The variable A is assumed to be very small (A < 1) since the breaktime ¢* is typically large
compared with unity. Since C{|z| = 1) = 0, it follows that one should omit the first term
in (D.2) which leads to the substraction of one from f(A) in equation (D.1}.

The sum (D.2) may be evaluated for A < 1 using standard ‘tricks’. Its second derivative
with respect to A is 3 oo.; e~*" and therefore f”(A) = 1/A. Also, its first deriviative may
be approximated by an exponential integral leading to f'(A) = y 4 InA, where y = 0.577
is Euler’s constant. It follows that the function f(A) itself may be approximated by the
expression

JT?’
f)y= Y3 Aln A — 7) (D.3)

where =~ 1 —y ~ 0.4, while ®?/6 equals the sum (D.2) for A = 0. Substitution of (D.3)
and (4.11) into (D.1) leads to (4.36).
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