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An active network is a prototype modeling of a system where the ‘particles’ have a self-propulsion
mechanism. We highlight the emergent aspect of topological stochastic disorder (TSD), and discuss
its consequences. We illuminate 3 different routes to under-damped relaxation: (a) delocalization of
a relaxation mode due to drift; (b) topological symmetry breaking of a relaxation mode; (c) TSD-
induced mixing of different relaxation modes. The localization of the relaxation modes due to TSD
plays a major role in the analysis. This type of novel non-Hermitian localization is very different
from the conservative Anderson-type localization.

I. INTRODUCTION

Gas that consists of particles that perform self-
propelled stochastic motion is a novel paradigm in sta-
tistical mechanics [1–4]. We are interested in the im-
plications of disorder, and the possible manifestation of
localization effect in the relaxation modes of such sys-
tems. Consider for example a system that consists of
Janus particles [5–7]. Those are spherical-like nano-
particles (∼100nm size), coated at each of their two hemi-
spheres with different materials. Immersed in solution,
and radiated with light, they produce self-propelled mo-
tion. Fig.1(a) shows a caricature of a Janus particle in
one-dimensional system. Such system can be ‘disordered’
due non-homogeneity of the background environment, or
because of the non-homogeneity of the illumination. It is
the latter type of disorder which we find intriguing, since
it has to do with the self-propulsion mechanism. As ex-
plained below such type of disorder is topological rather
than conservative.

We consider a minimal configuration for such self-
propelled particle in a random environment. Namely,
we assume that the dynamics takes place on a quasi one-
dimensional grid, see Fig.1(b). If the particle is facing
the right, we say it has positive helicity. If its black-
white orientation is opposite, we say that it has negative
helicity. Accordingly, its states |n, y〉 are defined in terms
of position (n = integer) and spin coordinate (y =↑, ↓).
Below we refer to the system as ‘lattice’ that consists
of ‘sites’. Each two sites with the same index n form a
‘cell’, and two adjacent cells, along with their connect-
ing bonds, form a ‘tile’. The dynamics is described by a
stochastic rate equation

d

dt
p = W p (1)

where p is vector of probabilities, and the off-diagonal el-
ements of the W matrix are the transition rates w (with
an appropriate bond index). The diagonal elements −γ
(with an appropriate state index) are implied by conser-
vation of probability (the sum of each columns has to be
zero). The matrix W is given explicitly in Appendix A.
The rate of transition between two sites, connected by a

FIG. 1. Model geometry. (a) A Janus particle in 1D ran-
dom environment. The non-uniform illumination(arrows) in-
duce self-propulsion in the direction of the head (white semi
circle). (b) One tile of the lattice is plotted. The ring consists
of N tiles with periodic boundary conditions. The transition
rates along the vertical bonds are w=1 in both directions, rep-
resenting random flips of the self-propelled motion (‘helicity’).
The horizontal bonds are biased: the stochastic field there (E)
is written as the sum of a drift (fn) and a self-propulsion term
(φn). The four parameters of the model are: the average drift
(f̄); its non-uniformity (σf ); the average propulsion (φ̄); and
the topological disorder (σφ). The latter reflect that we are
dealing with an active network. (c) An illustration for a repre-
sentative segment of the lattice. The black sites are those that
serve as sinks for the stochastic flow in the presence of strong
disorder. They support the floor-level relaxation modes.

bond (b), is characterized by a stochastic field

Eb = ln

(
w−→
b

w←−
b

)
(2)

whose sign indicates the preferred sense of transition.
Thus the rates on a given bond can be written as
wb exp(±Eb/2). In the geometry of Fig.1(b), the vertical
bonds represent random flip of helicity, and therefore are
characterized by a zero stochastic field. In contrast the
horizontal bonds are biased. The stochastic field on the
bond b = (n, y) that connects node |n, y〉 to |n+1, y〉 is
conveniently written as a sum of drift and self-propulsion
terms, namely,

En,↑ = fn + φn (3)

En,↓ = fn − φn (4)
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Type aka Relevant models Comments

Type-I Diagonal disorder Anderson model (random potential) Might have a mobility edge

Type-II Bond disorder Debye model; Random-resistor-network Might lead to a percolation transition

MFD Phase Disorder Anderson with random vector potential The topological aspect is not pronounced

CSD - Sinai model of random stochastic transitions Reduces to type-I via a gauge transformation

RSD Sign Disorder Random excitatory and inhibitory connections non-hermiticity cannot be gauged away

TSD - Generic active networks non-hermiticity is of topological origin

TABLE I. Different types of disorder.

The activity of the network is reflected in having non-
zero circulations, aka affinities (analogous to magnetic
field). The circulation of the n-th tile is Bn = 2φn. If all
the circulations are zero, a gauge transformation can be
used in order to show that W is similar to a symmetric
matrix H, hence all the eigenvalues are real, as for her-
mitian Hamiltonians. Otherwise we are dealing with the
physics of non-hermitian matrices, where the spectrum
might become complex [8–19]

Model parameters.– The motion of the Janus parti-
cles of Fig.1 can be biased either due to a non-zero av-
erage drift field f̄ , or due to a non-zero average self-
propulsion φ̄. Disorder may arise due to the non-
homogeneity of the background environment, or due to
the non-homogeneity of the illumination source. Respec-
tively, we distinguish between conservative stochastic dis-
order (CSD) for which the fn acquire a random term
∈ [−σf , σf ], and topological stochastic disorder (TSD) for
which the φn acquire a random term ∈ [−σφ, σφ].

A. Related studies

The topological nature of the NESS for the model that
we are considering, without disorder, has been discussed
in [20, 21], and a connection has been established with
the Su-Schrieffer-Heeger model following the work of [22]
on topological boundary modes in isostatic lattices. In
the present work we are not considering the NESS, but
rather the relaxation modes, and their bulk localization
properties due to disorder. We note also that the NESS of
similar non-disordered quasi-one-dimensional models has
been investigated in the context of traffic with exclusion
rules, see for example [23, 24]. The main focus in the
latter case was the formation of a polarization wall due
to the entering and the exiting rates at the boundaries.

It is customary to distinguish between two types of
disorder, so called Type-I and Type II [25, 26]. We ex-
plain these terms in the present context, and highlight
new type of disorder that has not been illuminated so
far. The different types of disorder are summarized in
Table I.

Random fn, as in the Sinai model (aka random walk
in random environment) [27–30], translates, under gauge-
like transformation, into Type-I disorder [12], which is a
diagonal on-site disorder as in the Anderson model (elec-

tron in a random potential). We shall call it below con-
servative stochastic disorder (CSD).

Random wb, as in random resistor network models
[31], or as in the Debye model (balls connected by non-
identical springs), translates into Type-II disorder, which
is an off-diagonal bond disorder. The latter type of disor-
der can lead to a percolation-like transition that affects
the relaxation modes [17], and we shall not consider it
further.

In the present work we consider a new type of dis-
order that we call topological stochastic disorder (TSD).
This type of disorder originates from having random φn,
and unlike CSD, cannot be gauged-away. We note that
physically, TSD arises naturally also in situations other
than active particles. For example the affinities Bn may
reflect non-conservative drift-fields that are induced by
electro-motive-forces.

With the substitution φn 7→ iφn our TSD becomes
magnetic-field-disorder (MFD) that has been discussed
in the past, e.g. [32] and references therein. One should
be aware that there is an essential difference between
TSD and MFD: the latter has qualitatively the same ef-
fect as the usual Type-I Anderson disorder, while TSD
makes the spectrum complex.

Another meaningful comparison is between the TSD
and the random sign disorder (RSD) of [16]. The lat-
ter concerns non-Hermitian localization in biological net-
works, where the wb have random sign, corresponding to
random excitatory and inhibitory connections. It should
be realized that RSD has nothing to do with topology:
the model of [16] is a single channel tight binding model
with near-neighbor transitions. In contrast, TSD requires
at least two channels, as in the case of a random magnetic
field. Also it should be realized that it is not possible to
control the strength of RSD: once it is introduced the
spectrum becomes complex, while for TSD we shall see
that the percentage of the complex eigenvalues, and their
dispersion, is tunable.

B. Outline

The relaxation modes are the right eigen-vectors ofW .
They are associated with eigenvalues {−λr} that can be
either real or come in complex-conjugate pairs, corre-
sponding to over-damped or under-damped relaxation,
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respectively. In Section II we demonstrate that an ac-
tive network can exhibit 3 routes to complexity (under-
damped relaxation): (a) delocalization of a relaxation
mode due to drift; (b) topological symmetry breaking of
a relaxation mode; (c) TSD-induced band-mixing of real
relaxation modes.

In Section III we provide the detailed account for the
symmetry-breaking mechanism in the absence of disor-
der. We emphasize that self-propulsion makes the spec-
trum partly-complex, exhibiting ‘exceptional points’. See
[8, 9] for an introduction for the physics of non-hermitian
degeneracies. In Section IV we explain how the spec-
trum is affected by the introduction of TSD, and why
the threshold for complexity diminishes due to the disor-
der.

In Section V we introduce several measures for the
characterization of a relaxation mode: the number of
lattice sites that support the mode (M); the number
of floor-level sites that are involved (Q); their polariza-
tion (D); their localization lengths (L); and the effective
circulation that they experience (B). These measures
help to gain a deeper insight into the spectrum.

As will be shown later, CSD is responsible to the ro-
bustness of reality, meaning that eigenvalues remain real
even if not-too-strong circulations are introduced. In con-
trast TSD leads to complexity via topological mixing.
But there is a twist: we observe in SectionVI that strong
stochastic disorder, irrespective of its nature, induces
“lattice dilution”, leading to the formation of a floor-
level. Consequently the effective dimensionality of the
lattice reduces, and a robust reality is gained within this
floor-level. The topological-index perspective of the dis-
order, and its connection to the floor level phenomenol-
ogy is further discussed in Section VII.

Two routes to complexity, the symmetry-breaking
route and the TSD band-mixing route, reflect that we
are dealing with an active network. These mechanisms
are local is some sense, and are not associated with global
delocalization of the eigen-modes. In the concluding Sec-
tion VIII we re-phrase some of our insights using a phys-
ically illuminating language.

II. DIFFERENT ROUTES TO COMPLEXITY

We first remind the reader the simplest result for the
relaxation spectrum of particles that diffuse in a single-
channel biased ring. This result illustrates the delocal-
ization route to complexity. For any non-zero bias the
spectrum becomes fully complex λ = Dk2 + ivk, where k
is the wave-number, D is the diffusion coefficient, and
v is the drift velocity. Similar expression applies for a
tight binding model, see e.g. [18]. If stochastic disor-
der is added, the complexity appears only if the bias
exceeds a finite threshold, aka delocalization threshold
[10, 11]. As discussed in [18] the low relaxation modes
(small Re[λ]) get delocalized first, while the high lying
relaxation modes remain real.

We consider a two-channel ring of N unit cells with pe-
riodic boundary conditions (Fig.1(b)). This is the sim-
plest example for an active network, and we are going
to find two additional routes to complexity that have to
do with the non-trivial topology of the model. We dis-
tinguish between the circulation that is induced by the
drift, and the circulation that reflects the self-propulsion,
namely,

Sf =
∑

fn ≡ Nf̄ (5)

Sφ =
∑
Bn ≡ 2Nφ̄ (6)

where Bn = 2φn is the affinity of the n-th tile. For
simplicity we assume that all the couplings are identi-
cal (wb = 1 for any b). In the absence of disorder, W is
translationally symmetric and can be written very simply
using momentum and spin operators:

W = (σx − 1) +
∑
±
e±

1
2 (f̄+φ̄σz) (e∓ip − 1

)
(7)

The Pauli operator σx term induces the random change
in the propulsion direction (vertical transitions in Fig.1),
the ± terms generate the forward and backward tran-
sitions, while the “-1” terms provide the diagonal ele-
ments (“decay rates”) that are required for conservation
of probability. The operators e±ip and σi are written
using explicit Dirac notations in Appendix A.

We are now in position to explain how each of the
parameters in the model affects the complexity of the
spectrum.

CSD.– Conservative stochastic disorder arises if all the
φn are zero while the fn ∈ [−σf , σf ] have finite dispersion
and zero average. Such type disorder can be derived from
a stochastic potential that features activation barriers, as
discussed by Sinai and followers [27]. The asymmetry of
the W matrix can be gauged away, hence it is similar to
an hermitian matrix, and the relaxation spectrum comes
out real. The corresponding eigenstates are Anderson-
localized.

Propulsion.– Without disorder the relaxation spec-
trum can be found analytically (see Section III). Adding
self propulsion φ̄, unlike drift, leads to a very different
route to complexity, that is not related to delocaliza-
tion of the eigenstates. For low self-propulsion the spec-
trum remains real, while above some critical value the
relaxation modes undergo a symmetry-breaking transi-
tion. Consequently a circle of complex eigenvalues ap-
pears. In Fig.2 this circle is indicated by a solid line. If
we add weak stochastic disorder the spectrum is blurred,
as illustrated in Fig.2 for TSD, and in Fig.3(a) for CSD.

TSD.– Another route to complexity has to do with
mode mixing due to TSD. Even if the propulsion is
zero on the average, we still can have finite disper-
sion φn ∈ [−σφ, σφ]. Then the problem becomes non-
Hermitian in a very essential way, and part of the spec-
trum becomes complex. This is illustrated in Fig.3(b),
where we turn off the propulsion for the system of Fig.2,
but keep the TSD. It should be clear that if we turn off



4

the propulsion for the system of Fig.3(a) the complexity
vanishes and we get a real spectrum.

Drift.– Without disorder, finite non-zero drift f̄ has
the same effect as for a single-mode ring, leading to delo-
calization of the spectrum. We demonstrate in Fig.3(c,d)
the drift-induced delocalization route to complexity. The
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FIG. 2. Representative relaxation spectrum. The spec-
trum for finite propulsion (φ̄ = 2) and TSD (σφ = 1) with
n = 500. The eigenvalues are presented in the complex plane.
Each associated eigen-mode is characterized by various mea-
sures: The real and Im[λ] > 0 points are color-coded by the
participation numberM , while the conjugate Im[λ] < 0 points
are color-coded by the effective propulsion B. See text for
definitions. The solid line illustrates the spectrum of the non-
disordered system Eq.(13).
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FIG. 3. Representative relaxation spectra. Same
presentation as in Fig. 2; conjugate eigenvalues excluded.
(a) Same propulsion as in Fig.2, but with CSD (σf = 1) in-
stead of TSD. (b) Same TSD as Fig.2, but the average propul-
sion is zero. (c) Same as (b), but with weak drift (f̄ = 0.02).
(d) Same as (b), but with stronger drift (f̄ = 0.8).

drift can delocalize the lower (small Re[λ]), and possibly
also the upper (large Re[λ]) part of the spectrum, where
we have single mode physics. We also see the interplay
of the drift and the TSD in the middle part of the spec-
trum where the two channels overlap. For strong drift the
TSD induces an avoided crossing, while for weak drift the
TSD-induced complexity predominates.

III. TOPOLOGICAL SYMMETRY BREAKING

The W matrix formally operates above an Hilbert
space of states whose standard representation is

|ψ〉 =
∑
n,y

ψn,y |n, y〉 (8)

The right eigenvectors of W are the relaxation modes
of the network. The eigenvector that corresponds to the
zeroth eigenvalue λ0 = 0 is the non-equilibrium steady
state (NESS), while all the the other eigenvalues are writ-
ten as {−λr}, with Re[λr] > 0.

For our geometry, beside the NESS, there is an-
other special mode with the eigenvalue λ=2. This
can be seen by considering the left eigenvector∣∣2̃〉 =

∑
n (|n, ↑〉 − |n, ↓〉). All the λ 6= 2 eigen-modes are

orthogonal to this special left eigenvector, hence the sum∑
n ψn,y has to be equal for positive and negative helici-

ties. Consequently it is implied that the NESS has equal
weight for clockwise and anticlockwise motion, while for
all the relaxation modes the sum of amplitudes vanishes
for each direction. The same considerations also give the
time-dependence of the total polarization

D =
∑
n

Dn =
∑
n

(pn,↑ − pn,↓) (9)

Multiplying Eq.(1) from the left with
∣∣2̃〉, one obtains a

universal decay law Ḋ = −2D.
In the absence of disorder the W matrix is block-

diagonal in the basis |k, y〉, where k is the wave-number.
For φ̄ = f̄ = 0 the spectrum consists of two bands
along the real axis, namely, λk,+ = 2 + 2 cos(k) and
λk,− = 4 + 2 cos(k). The existence of the 2-channel
topology is reflected by having an overlap 2 < λ < 4.
Note also that all the eigenvalues are doubly degenerate
due to k 7→ −k symmetry. This holds true also for φ̄ 6= 0
(we still keep f̄ = 0). But now the spectrum becomes
complex. The k-th block of the W matrix is

W (k) = bσx − iaσz + c1 (10)

where b = 1, and

a =

[
2 sinh

(
φ̄

2

)]
sin(k) (11)

c =

[
2 cosh

(
φ̄

2

)]
cos(k)−

[
1 + 2 cosh

(
φ̄

2

)]
(12)
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The matrix above is similar to a real matrix bσz − iaσy.
Such matrices are usually encountered if there is an anti-
unitary symmetry such as “T” or “PT” [8, 9]. How-
ever we shall stick with the physical representation of
Eq. (10). The eigenvalues are either real or come in
complex-conjugated pairs, namely,

λk,s = −
[
c±

√
b2 − a2

]
(13)

where s = 1, 2 labels the lower and upper band re-
spectively. The spectrum is real for |a| < |b| and com-
plex for |a| > |b|. The latter possibility is realized
if 2 sinh(φ̄/2) > 1, leading to a critical value for self-
propulsion:

φc ≈ 0.96. (14)

Fig.2 shows a representative spectrum for φ̄ > φc, where
the solid line is based on Eq.(13).

The eigen-modes are labeled as |k, s〉. In the Bloch
sphere representation they reside in the XY or in the YZ
plane, depending on whether they are associated with
real or complex eigenvalues, respectively. Close to the
so-called exceptional point (a = b) they coalesce into the
same Y direction. Disregarding normalization, the eigen-
modes are

|k, s〉 =
∑
n

eikn
(
|n, ↑〉 ± e±iϕ |n, ↓〉

)
(15)

where tan(ϕ) = q/
√

1− q2, with q = a/b. We see that
self-propulsion with large q makes ϕ imaginary, and
consequently the symmetry with respect to the helic-
ity is broken, and the modes become helical, meaning
that clockwise modes are separated from anti-clockwise
modes. On top we note that the |k, s〉 have a systematic
degeneracy for k 7→ −k.

The spectrum of the non-disordered model is further
analyzed in Appendix B, and is illustrated in a few rep-
resentative cases in Fig.4. It is composed of two bands.
As discussed above, in the absence of f the bands are
deformed into the complex plane provided φ > φc. Pan-
els (a-c) illustrate this deformation for increasing values
of φ. It is important to notice that the ±k symmetry is
not broken, hence each of the two −λk,s trajectories is
degenerated and encloses a zero area. This is no longer
true of if we add a non-zero f . In the latter case the ±k
degeneracy is removed, and the λk,s trajectories encloses
a finite area.

IV. THE INTRODUCTION OF TSD

We now consider what happens if the illumination is
non-uniform. Thus we have TSD with some variation σφ
on top of the average value φ̄. At this point one may
wonder whether it is feasible to introduce TSD with zero
average propulsion (the illuminated particles in Fig.1 are
always self-propelled in the direction that they are fac-
ing). After little reflection one realizes that it is possible

0.2
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1

Im
(λ

)

1

0

1

0 2 4 6
Re(λ)

0.25

0.00

0.25

FIG. 4. The Bloch spectrum λk,s. The two bands are
s = 1 (blue) and s = 2 (red). In panels (a) to (c) we have
φ = 0.98, 1.2, 1.6, while f = 0. Note that φc ≈ 0.96. Eq.(13)
has been used. For presentation purpose the horizontal pieces
of the band have been shifted off the real axis. Panel (d) is
for the same φ as in (a), but with an added f = 0.01 that lifts
the ±k degeneracy. The black arrows show the direction in
which λk is changing as k ∈ [0, 2π] is increased from zero, and
eventually comes back.

to introduce such TSD if the black-white coating of the
particle is reversed in its lower half. Then one can use
two sources of illumination: upper illumination source
that induces self-propulsion to the right, and a lower il-
lumination source that induces self-propulsion to the left.
If the two sources are of equal average intensity, the com-
bined effect is to have zero average propulsion, and hence
unbiased TSD.

Let us see how the diagonalization procedure for W
is affected in the presence of non-uniform illumination,
without assuming any restrictions on the values of φ̄ and
σφ. The standard site-basis is |n, y〉. In order to get rid
of the vertical coupling we can switch to the basis |n,±〉,
where ± are the modes that are defined by σx. In the ab-
sence of propulsion (or TSD) we get two non-interacting
chains, see illustration in Fig.5. Each chain can be diag-
onalized hence we go to the basis |k,±〉. If we introduce
disorder and neglect the inter-band couplings, the spec-
trum is still real, and can be labeled |α,±〉. The α-states
unlike the k-states are not ‘free waves’ and become local-
ized as disorder is increased. In the |α,±〉 basis we can
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FIG. 5. Diagonalization procedure. We go from the site-
representation |n, y〉 of Fig.1(b) to the mode representation
|α,±〉, which is illustrated on the left. The diagonal arrows
represent anti-hermitian couplings due to self-propulsion. The
thick double-sided arrows represent the hermitian hopping el-
ements between cells. The disorder affects all those couplings,
and also adds vertical hopping elements. The unperturbed di-
agonal ‘energies’ are λ = 2 and λ = 4. With hopping we get
two bands [0, 4] and [2, 6] that are illustrated by solid line on
the right. Neglecting the inter-band couplings the spectrum
is still real, represented by the blue vertical segments. The
complex spectrum appears due to band mixing, as explained
in the main text.

write

W = H +A, (16)

where H is hermitian, and A is an anti-hermitian ma-
trix due to the self-propulsion. The disorder-induced her-
mitian and anti-hermitian couplings are represented, re-
spectively, by the vertical and diagonal arrows in Fig.5.

In the absence of disorder A couples only states with
the same k, hence W takes the block-diagonal form
Eq.(10) where A = iaσz are the anti-hermitian inter-
band couplings. Then we get the Bloch eigenstates
|k, s〉 where s = 1, 2. With weak TSD the matrix W
is no longer block-diagonal. Rather A becomes banded.
It does not require strong disorder in order to induce
band mixing. The condition for band mixing is to have
A-couplings that are larger compared with the level-
spacing. This is a very easy condition which is implied
by perturbation theory, see Appendix C. Consequently
very weak disorder is enough to induce complexity within
the range 2 < Re[λ] < 4. We note that the appearance
of disorder-induced hermitian couplings in H of Eq.(16)
does not change this picture: it scramble the levels of the
two bands, but does not alter much their density in the
overlap region.

The explanation above illuminates why uniform φn,
unlike random φn that has the same average intensity,
requires a finite threshold Eq. (14) in order to induce
complexity in the spectrum. Fig.6 displays how the over-
all fraction of complex eigenstates depends on σφ, while
Fig.7 shows their percentage within the range 2 < λ < 4.
Section VI will provide a detailed discussion of both fig-
ures.
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tion of complex eigenvalues (out of all eigenvalues), divided
into the different spectral windows. In some realizations of
the system there are residual complex eigenvalues in the first
window (Re[λ] < 2), with small imaginary part. It is not clear
whether these are numerical issues or not. The threshold for
complexity here is Im[λ] > 10−4. The plots are for rings of
N = 500 cells. Each point is one realization, and all the real-
izations have the same random seed.
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total fraction of complex eigenvalues for a simple ring. Each
point in the plots is averaged over 100 realizations. The solid
and dashed lines are respectively for σ=3 and σ=6. The dif-
ferent lines (from bottom to top at B > 4) are for rings of
length L = 5, 10, 20, 30, 60.
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V. TOPOLOGICAL CHARACTERIZATION OF
THE EIGEN-MODES

Assuming square-integrable normalized eigenstates we
formally define Pn,y = |ψn,y|2 and Pn =

∑
y Pn,y, such

that
∑
Pn =

∑
Pn,y = 1. Additionally we define, using

an harmonic average, a topological weight for each tile:

P ∗n = 8

[ ∑
site∈n

P−1
n,y

]−1

(17)

where site ∈ n refers to the 4 sites from which the n-th tile
is formed. The prefactor is chosen such that P ∗n = 1/N
for a uniform occupation. A vanishingly small P ∗n means
that the n-th cell does not form a closed ring.

It is now possible to introduce several measures that
characterize a given eigen-modes:

M =

[∑
n,y

P 2
n,y

]−1

(18)

L =

[∑
n

P 2
n

]−1

(19)

L∗ = L
∑
n

Pn (20)

Q =
∑

(n,y)∈floor

Pn,y (21)

The first two measures characterize the volume that is
occupied by the eigen-modes: M is the number of sites
that participate in the formation of the eigen-mode, while
L is the respective localization length. The topological
localization length L∗ is further discussed below. The
definition and the significance of Q will be discussed in
the next section.

It is important to realize that the eigenstates might
be helical, meaning that Pn,↑ − Pn,↓ is not zero. Helicity
can arise either due to symmetry breaking, as discussed in
SectionIII, or due to the formation of a floor-level, which
is discussed in the next section. For a strictly helical
eigenstate L = M as opposed to L = M/2. Numerical
results for M and L and L∗ are presented in Fig.8(d).

The topological localization length L∗ reflects the ef-
fective circulation which is experienced by a given eigen-
mode. It is determined by the total topological weight∑
P ∗n , which is the occupation probability of the re-

gion that experiences propulsion. If the total topological
weight is much smaller than unity, it means that the non-
hermiticity can be gauged away from the volume that
supports the eigenmode, hence the eigenvalue is real (or
with very small imaginary part). If the total topological
weight is non negligible, it makes sense to define the ef-
fective circulation that is experienced by the eigen-mode
as follows:

B =
∑
n

PnBn (22)
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FIG. 8. The participating sites for each eigenmode.
(a) The participation number M versus Re[λ] for σφ=1 and
σf=0.1. (b) Same as (a) but with the disorder parameters
reversed: σf=1 and σφ=0.1 (c) The floor-level occupation
Q versus Re[λ] for σφ=8. (d) The various occupations vol-
umes versus σφ. In (a) and (b) the points are color coded
by Im[λ]. In (c) each point is an average over all the eigen-
states within 2 < Re[λ] < 4. The inset shows that the inverse
localization length has roughly quadratic dependence on the
disorder strength, as in the Anderson model.

In the absence of disorder, the eigen-modes are uniform,
and and we get B = 2φ̄. In the presence of disorder, the
eigen-modes get localized, but if they are uniform within
the localization volume (with zero helicity) we still get
B ≈ 2φ̄. On the other extreme, if the eigen-modes are
completely helical we get a vanishing B. For intermediate
situation, where the eigen-mode is supported partially by
topologically connected cells, and partially by dangling
sites, the bare 2φ̄ is multiplied by the total topological
weight of the eigen-mode.

The effective circulation for each state in Eq.(22) can
be estimated using the measures L and L∗ as follows:



8

0.00 0.05 0.10 0.15 0.20 0.25 0.30√
L ∗ /L

1.5

1.0

0.5

0.0

0.5

1.0
B

σφ = 4

σφ = 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
L ∗ /L

0

1

2

B̃

FIG. 9. (a) The effective circulation B of the eigenstates

versus their
√
L∗/L, calculated for TSD with σφ = 2 (red)

and σφ = 4 (blue). The solid and dashed lines are given by

Eq.(23). (b) We define B̃ =
∑
n Pn|Bn| and verify that it

agrees with the estimate ∼ (L∗/L)σφ. Both panels refer to
the same set of eigenstates, namely, those that reside in the
spectral window 2 < Re[λ] < 4.

By definition,
∑
Pn = L∗/L. There are L∗ terms in the

sum, accordingly each term can be estimated as ∼ 1/L.
It follows that B is normally distributed with zero mean
and standard deviation

Std(B) =

√
L∗

L
Std(Bn) = 2

(2σφ)√
12

√
L∗

L
(23)

This estimate is tested in Fig.9. We conjecture that B
affects the complexity of the eigen-mode. A hand-waving
argument that supports this conjecture goes as follows:
All the asymmetric transition of dangling bonds can be
gauged away using a similarity transformation; hence
W is similar to a matrix H +A where H is real and
symmetric, while the anti-symmetric matrix A is sup-
ported only by the topologically connected cells. Mul-
tiplying Wψ = λψ from the left by ψ† we deduce that
Im[λ] =

∑
AijIm[ψ∗i ψj ]. Consequently we conclude that

from statistical perspective Im[λ] is proportional to the
topological weight of the eigen-mode.

The above conjecture provides a qualitative explana-
tion for the remarkable difference between TSD and CSD
in Fig.2 and Fig.3(b) respectively. The transverse scatter-
ing of the complex eigenvalues in the former case becomes
larger as the localization volume M becomes smaller.
Modes with larger B experience (by definition) a larger
effective propulsion, and therefore they are pushed to a
larger radius. CSD, unlike TSD, does not have a system-
atic (M dependent) effect on B, because the Bn are the
same for all cells.

The dependence of L on the strength of the disorder
is important for the understanding of Fig.7(a) where we
plot the fraction F of complex eigenvalues due to topo-
logical band-mixing. As already clarified in the previ-
ous section, very weak disorder is enough to make A in
Eq.(16) banded, and hence to induce complexity in the
spectrum. On the basis of standard Fourier-analysis ar-
gumentation the bandwidth of A is determined by the
inverse localization length 1/L, which is like uncertainty
in k. Thus Fig.7(a) can be regarded as a reflection of the
L dependence in Fig.8(a). One can also wonder what de-
termines the complexity saturation value of F . For one
dimensional rings that were studied in [17] an analytical
treatment has been introduced: for stronger disorder the
saturation value becomes smaller, and the approach to
this value is smeared, as illustrated in Fig.7(b). To test
that our qualitative understanding of F is indeed correct,
we show in Fig.7(a) how F is affected by adding CSD.
Increasing σf unlike increasing σφ affects the saturation
value. The analogy here is as follows: the σf of CSD is
by definition the σ disorder in a one dimensional ring,
while the σφ of TSD controls the effective B and hence
analogous to the affinity of the one dimensional ring. It
is true that further increase of σφ affects the L of the
eigenstates too, but this has almost no implication. To
see why, we illustrate in Fig.7(b) how the F of a simple
ring is affected by its length L, which plays the role of
localization length in the model under study.

VI. THE FORMATION OF THE FLOOR LEVEL

In the presence of strong disorder the NESS is mainly
supported by the floor-level sites that serve as “sinks” for
the probability flow. See Fig.1(c) for illustration. The
low lying relaxation modes mainly occupy the same sites.
This hypothesis is established by Fig.8(b), where we plot
the floor occupation Q that has been defined in Eq.(21).

In Fig.6(a) we show how the eigenvalues are distributed
with respect to Re[λ]. Generally speaking we see that
the spectrum is stretched upward along Re[λ]. This can
be easily explained noting that the diagonal elements of
the W matrix become very large for strong disorder.
Namely,

γn,y = 1 + eφn/2 + e−φn−1/2 (24)

But a careful look reveals that within Re[λ] ∈ [0, 2] we
have an approximate 25% fraction of real eigenvalues, ir-
respective of the TSD strength. The 25% is not surpris-
ing in the limit of weak disorder: their reality is implied
by the band structure. But their presence and reality
persist also for very strong disorder due to the formation
of the floor level. From Eq.(24) it follows that for sink
site 1 < γ < 3. Furthermore, as the disorder is increased
γ → 1. The hopping between the floor-level states (via
high lying states) leads to the formation of the floor-level
band, as established by Fig.8(c). If we have TSD only,
the fraction of floor-level sites is 25%. Adding propulsion
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FIG. 10. The floor-level occupation. (a) The fraction of
floor-level eigenstates drops down from 25% as φ̄ is increased.
Floor-level eigenstates are defined as those that have Q > 0.7.
This is compared with F from Eq.(25), and with the number
of states with Re[λ] < 2 (σφ = 8). (b) The fraction of floor-
level eigenstates versus σf and σφ. The average propulsion is
φ̄ = 2.

this fraction becomes

Ffloor =
(σφ − φ̄)(σφ + φ̄)

4σ2
φ

(25)

Consequently, as the disorder is increased we expect
a crossover from band-structure implied occupation to
floor-level implied occupation as illustrated in Fig.10(a).

Summarizing the TSD case (with zero average propul-
sion) we realize that in the absence of disorder, the low
lying eigen-modes are real and non-helical, because they
all belong to a single-channel symmetric mode |k,+〉 of
Eq.(15) with ϕ = 0. Increasing the disorder strength, the
low lying eigen-modes occupy only the floor level, hence
become helical (2 sites with the same n cannot both serve
as sinks), and therefore remain real. Note however that
we cannot exclude that what we call here “real” possesses
a very small imaginary part due some residual hopping.
On the basis of the numerics it is difficult to obtain a
conclusive statement, but from practical (physical) point
of view such conclusive statement is of no importance.

The same calculation of Eq.(25) holds if we have CSD
instead of TSD, namely, with σφ replaced by σf . See
Fig.10(b). In contrast with the TSD case, in the strong
CSD limit, we do not expect the floor-band to be re-
stricted to the region Re[λ] ∈ [0, 2]. This follows from the
fact that in the extreme case, for σf � φ̄, the system has
a mirror symmetry, so that the two floor-band are sep-
arated by ∆λ = 2 along the real λ axis. It follows that
in this limit, the fraction of states within Re[λ] ∈ [0, 2] is
approximately 12.5%.

VII. THE TOPOLOGICAL INDEX

The bulk-edge correspondence principle suggests that
localized states should appear at interfaces, connecting
regions of the sample characterized by a different topo-
logical number. Below we illuminate the relation between
this statement, and the floor-level phenomenology that
has been introduced in the previous section.

A translationally invariant sample can be characterized
by the winding number

w =
1

2πi

∫ 2π

0

dk
d

dk
ln
(

det
[
W (k)

])
, (26)

which counts the number of times that the eigenenergies
encircle the zero energy. Similar to the case of a vanishing
band-gap in the Hermitian case, the winding number is
ill defined when dealing with a conservative system, that
always has a λ = 0 eigenvalue. To circumvent this prob-
lem, following [20, 21], one has to introduce an F -bias,
as explained in Appendix B.

Considering an interface between two bulk regions ”L”
and ”R” the topological index is defined as

δw = wL − wR (27)

The interface will localize left (right) zero-energy edge-
modes, if in some finite neighborhood of F = 0, the in-
dex δw is positive (negative) independently of F . It is
important to realize that two bands are not required
for observing topological phenomena in non-hermitian
Hamiltonian, which stands in contrast with Hermitian
systems [19].

In Appendix B we calculate the topological number of
a translationally invariant system given by Eq.(7). We
find that a non-zero topological index is associated with
interfaces between regions with opposite drift field, inde-
pendent of the self propulsion. We further observe that
probability density can accumulate also at interfaces be-
tween regions that have the same topological number.
We point out (see last paragraph of Appendix B) that
the localization in the latter case is less pronounced, and
diminishes if the length of the non-disordered regions is
increased.

The above observations lead to the conclusion that
CSD is more effective (compared with TSD) in introduc-
ing localized states. The implication of this observation
is demonstrated in Fig.8. We see in panel (b) a remark-
able increased in the likelihood to observe eigen-modes
with small M . Another way to phrase this conclusion
is to say that eigen-modes that reside in the floor level
tend to localize if CSD is dominating, and tend to be
more extended if TSD is dominating.
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VIII. SUMMARY AND DISCUSSION

The relaxation modes of a stochastic network can
be either over-damped or under-damped depending on
whether their λ-s are real or complex. In a non-active
unbiased disordered network, say a ring, the relaxation is
over-damped. But if we add bias (finite f̄) the low modes
become delocalized and we can have under-damped relax-
ation, which is associated with correlated currents over
the whole ring.

The picture of relaxation is much richer if we consider
an active network. Without disorder the self-propelled
motion (finite φ̄) implies that above a critical value (φc)
the relaxation modes become helical due to topological
symmetry breaking.

Once disorder is taken into account the picture changes
dramatically. An emergent feature of active networks
is a novel type of disorder - TSD. Random φn, unlike
uniform φn, does not require a finite threshold to induce
complexity in the spectrum.

We have presented a detailed investigation of the
Fourier-Laplace spectrum for a minimal model of an ac-
tive network Fig. 1. A time-domain illustration of the
dynamics is displayed in Fig.11. This illustration shows
how the under-damped relaxation due to self-propulsion
is blurred by the introduction of disorder. Our objective
was to provide a quantitative analysis for this dynamical
behavior.

A few remarks are in order: (1) If the average self-
propulsion is zero, the effect of CSD is to stabilize the
reality of the spectrum, while TSD induces complexity in
the central part of the spectrum via band-mixing. (2) If
we further increase the stochastic disorder the fraction
of complex eigen-modes become smaller. There are two
issues here: the formation of the floor-level due to the
effective dilution of the lattice; and the fragmentation of
the lattice into smaller regions that support the localized
eigen-modes. (3) Opposing to the common perspective
that ties between delocalization and complexity in a sin-
gle channel system [10], TSD both makes the spectrum
complex and localizes the states. (4) The effect of TSD
can be distinguished from the effect of CSD also if the
average self-propulsion is not zero (finite φ̄). The CSD af-
fects democratically all the under-damped modes, while
the TSD has larger effect on the more localized modes.

We can adopt a more general perspective with regard
to the floor-level phenomenology, that can be applied
for any active network. Strong stochastic disorder, ir-
respective of its nature, induces lattice dilution, leading
to the formation of a floor-level that is spanned by the
sites that serve as sinks for the stochastic flow. Conse-
quently the effective dimensionality of the lattice reduces.
In our geometry the floor-level sites form a single channel
chain, hence a robust reality is gained within the floor-
level band.

The floor level consists of local sinks of the stochas-
tic flow. In particular local sinks appear at interfaces
between segments characterized by a different topologi-

cal numbers that are determined by the sign of the drift
flow, irrespective of the self-propulsion. Still, we observe
that probability density can accumulate at interfaces be-
tween regions that have the same topological number,
e.g. in the presence of TSD and uniform drift. Our nu-
merical analysis shows that the degree of localization in
the latter case is less pronounced and smeared away if
the non-disordered regions are lengthy. This observation
highlights the role of topological protection and its impli-
cation on localization in non-equilibrium stochastic flow.
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FIG. 11. Simulation of polarization as a function of
time. The polarization Dn(t) as defined in Eq.(9) is imaged
as a function of time. In all the panels the initial perpetra-
tion is a modulated density with k = 2π/5. Only 50 sites
are displayed. (a) Over-damped oscillations for σφ = 0.5 are
observed since the self-propulsion is below the critical thresh-
old. (b) For σφ = 2, which is above the threshold, one ob-
serves under-damped relaxation due to topological symmetry
breaking. (c) Once disorder is added, the non-uniform NESS
pattern overtakes almost immediately. Parameters here are
as in Fig.2. (d) In the latter case we provide an image of

the time derivative Ḋ, hence one can resolve how the under-
damped relaxation is blurred. For presentation purpose the
color-code has been scaled.
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Appendix A: The W matrix

The matrix W can be regarded as the representation
of a non-hermitian Hamiltonian. It consist of 3 terms:

W = Wflip +Whop −
∑
n,y

|n, y〉 γn,y 〈n, y|

Using the Dirac’s bra-ket notations, the explicit expres-
sions for the flipping and hopping terms are

Wflip =
∑
n

|n, ↑〉〈n, ↓|+ |n, ↓〉〈n, ↑|

Whop =
∑
n,y

|n+1, y〉〈n, y| e
En,y

2 + |n, y〉〈n+1, y| e−
En,y

2

with En,y that are given by Eq.(3). The decay rate are
implied by conservation of probability:

γn,y = 1 + eEn,y/2 + e−En−1,y/2 (A1)

The translation operators e±ip of Eq.(7) are defined by
e∓ip |n, y〉 = |n±1, y〉. The σi operators are defined by
〈n, y′|σi |n, y〉 = (σi)y′yδn′n in terms of Pauli matrices.

Appendix B: The non-disordered spectrum

Pedagogically it is useful to consider a single-channel
tight binding model, which is biased by stochastic field f .
Additionally we introduce an F -bias [20, 21], which af-
fects the off-diagonal rates, but not the diagonal ele-
ments. Accordingly

W = −2 cosh

(
f

2

)
+
∑
±
e±( f

2 +F) e∓ip (B1)

The Bloch spectrum is {−λk} with

λk = 2 cosh

(
f

2

)
− 2 cosh

(
f

2
+F

)
cos(k)

+ i2 sinh

(
f

2
+F

)
sin(k)

This spectrum goes through the origin for F = 0, which
reflects the existence of the NESS for a conservative ma-
trix. But for any non-zero F we can define the winding
number w of the −λk trajectory relative to the origin.
Namely,

w = sign [|f + 2F | − f ] (B2)

If we have two regions (left and right) that do not have
the same f , the difference δw ≡ wL − wR is well defined
in the limit F → 0 and does not depend whether we take
the limit from the positive or from the negative side.
For the topological index of Eq.(27) we get δw = 1. By
the bulk-edge correspondence principle it is implied that
a bound state should reside at one of the two interfaces
between the two bulk regions which acts as a sink for the
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FIG. 12. The NESS for a system that is composed of two
regions. The probabilities on the upper and lower chains are
plotted in dashed-blue and solid-red lines. (a) The two re-
gions are with opposite f . The sink interface is located at
n=10, while the other interface is at n=60. (b) The [10, 60]
region is with φ only, and the other region is with f only.
(c) The two regions are with opposite φ. Strong localiza-
tion near the interface is observed only in case (a) where the
topological index is non-zero.

flow. (We assume periodic boundary conditions, so the
interface is in fact two locations along the ring.)

We now can consider on equal footing our model sys-
tem Eq.(7). Here the winding number is calculated from
the 2× 2 matrix W (k). As in the single-channel example
the topological-index calculation requires to introduce an
F -bias. The resulting matrix reads:

W (k) = bσx + 2 cosh

(
f + φσz

2
+ F − ik

)
−b− 2 cosh

(
f + φσz

2

)
(B3)

with eigenvalues {−λk}, where

λk,s = b− 4 cosh

(
φ

2

)
sinh

(
f+F−ik

2

)
sinh

(
F−ik

2

)

∓

√
b2 + 16 sinh

(
φ

2

)2

cosh

(
f+F−ik

2

)2

sinh

(
F−ik

2

)2

where s = 1, 2 corresponds to ∓. Note consistency with
Eq.(B1) upon the substitution b = φ = 0. The spectrum
in a few representative cases has been illustrated in Fig.4.
The ±k degeneracy is removed if we add a non-zero f in
a way that is very similar to the single-channel analy-
sis. This has been demonstrated in Fig.4(c). With an
additional F -bias the loop looks similar but does not go
through the origin. Our analysis shows that the presence
of a finite self propulsion does not alter the topological
index. Namely, the expression for w is Eq.(B2) as for a
single chain.
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If we have an interface between two regimes, that do
not have the same (f, φ) bias, there is still a possibility
to observe interface-states, even if the topological-index
is zero. This is demonstrated in Fig.12. We see there
that strong localization near the interface is observed
only in panel (a) where the δw 6= 0. In panel (b) the
high-probability interface and the low probability inter-
face are mediated by a linear variation in the zero drift
(f = 0) region, as in Ohmic systems. In panel (c) the
sink in one chain is in-fact a saddle, due to its coupling
to the other chain, hence the localization is weak. If a
longer sample is taken, the hump in panel (c) is smeared
out (not shown).

Appendix C: Linear algebra of non-Hermitian
matrices

A non-hermitian operator A has right-eigenvectors
that satisfy A |x〉 = λx |x〉. Where |x〉 is chosen to
have the normalization 〈x|x〉 = 1. These eigenvectors
are in general non-orthogonal: 〈x|y〉 6= 0. To any right-
eigenvector we can associate left-eigenvector through the

adjoint operator: A† |x̃〉 = λ∗x|x̃〉. The right- and left-
eigenvectors form a bi-orthogonal set and we choose the
normalization of the left-eigenvectors such that 〈x̃|y〉 =
δx,y. For a complete basis 1 =

∑
x |x〉〈x̃|. The matrix

representation By,x of an operator B, in the basis |x〉
is defined via B |y〉 =

∑
xBx,y |x〉. One deduces that

Bx,y = 〈x̃|B|y〉, and B =
∑
x,y |ỹ〉Bx,y〈x|.

Given a non-hermitian matrix H0 and some perturba-
tion V , we define the right and left unperturbed eigen-
vectors |n〉 and 〈m̃|. In this basis H0 is diagonal with

eigenvalues λ
(0)
n . The perturbed eigenvalues in second

order are [33]:

λn = λ(0)
n + λ(1)

n + λ(2)
n (C1)

λ(1)
n = 〈ñ|V |n〉 (C2)

λ(2)
n =

∑
m

〈ñ|V |m〉 〈m̃|V |n〉
λ

(0)
n − λ(0)

m

(C3)

Note that Vn,m will take different forms depending
on the normalization of the basis, while the product
Vn,mVm,n is independent of normalization due to the bi-
orthornormality.
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