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Non-equilibrium fluctuation theorems (NFTs) relate work performed on a system as its Hamilto-
nian varies with time, to equilibrium data of the intial and final states. Testing these remarkable
relations is currently restricted to classical systems or to simple quantum systems whose energy
state can be directly measured. Here we introduce the concept of a quantum work agent in thermo-
dynamic processes, and suggest that it can allow to probe NFTs in general quantum systems. We
elaborate on a simple model in the framework of mesoscopic systems, and discuss future applications.

Introduction — Stochastic thermodynamics, as cul-
minated by Jarzynski’s equality [1] and the Crooks re-
lation [2], describes non-equilibrium thermodynamics of
small systems governed by large fluctuations [3–5]. In
classical tests of thermodynamic processes [6, 7], e.g.
stretching a single molecule of RNA [8, 9], measurements
of the work W yield an intrinsically random result at
each realization, but nevertheless allow to verify powerful
non-equilibrium fluctuation theorems (NFTs) after gath-
ering sufficient statistics and constructing the work distri-
bution function (WDF) P (W ). Quantum extensions of
stochastic thermodynamics have been theoretically for-
mulated [4, 10–18], particularly, via the “two-time mea-
surement protocol” [15], which incorporates projective
measurements of the energy of the system before and
after the non-equilibrium processes. However, measure-
ment of the energy change is not feasible in general sys-
tems, such as in many-body systems.

An example of a tunable platform in which one would
like to probe NFTs is that of mesoscopic quantum dot
systems. Experiments [19–24] in few-electron quantum
dot systems have demonstrated NFTs, but their method-
ology is based on continuous monitoring of the charge
state of the QD, and leads to strong backaction, limit-
ing these experiments to the classical regime [25]. Thus,
the role of stochastic thermodynamics is basically out
of experimental reach except for realizations [26–28] or
proposals [29–32] in simple quantum systems.

Furthmore, the “two-time measurement protocol” goes
against the ideology of both Themordynamics and Quan-
tum Mechanics. In a thermodynamic formulation, work
(W ) and heat (Q) are determined via measurements of
external bodies. The engineer is probing energy that is
transferred to reservoirs R or from work agents A, re-
spectively. The system itself in not measured. Moreover,
in Quantum Mechanics, once an initial measurement is
done, aka “preparation”, the state of the system is no
longer that of thermal equilibrium, but a pure state.

Scope — In the common formulation of Jarzynski’s
equality the control parameter X(t), for example the
coordinate of a piston, is regarded as a classical coor-
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FIG. 1. (a) Thermodynamic processes driven by a work agent
A performing work on the system S via a time dependent
parameter X(t) controlling the system’s Hamiltonian. Some
of it gets dissipated into a reservoir R. (b) We generalize the

work agent A into a dynamical quantum coordinate X̂ which
performs work on the system. Its measurement after a half
cycle allows to extract work W = −∆EA. (c) Mesoscopic
system: S contains a QD. Its energy level ϵd(t) is driven by
an agent A realized by an LC circuit such as a microcavity.

dinate, see Fig. 1(a). Here we formulate a quantum
demonstration of NFTs which incorporates a dynamical
apparatus, referred to as a “quantum work agent” [33].
Of particular interest might be a sweep protocol, say
X(t) = −X0 cos(ωt) for t = 0 → π/ω. For the pur-
pose of an experiment we replace X(t) by a quantum
dynamical coordinate X̂, namely, an harmonic oscilla-
tor, see Fig. 1(b). The energy of this single degree of
freedom can be measured at t = π/ω, independently of
the complexity of the system.

We focus on the feasibility of the quantum work agent
concept, considering a generic prototype model. We char-
acterize the ability to extract useful thermodynamic in-
formation via Jarzynski’s equality, and explore the de-
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pendence on generic model parameters. The system is
characterized by a typical classical energy scale X0, on
which we would like to measure work, and a typical quan-
tum energy scale ϵ that is related to the internal system
dynamics. We distinguish two effects that are ignored
within traditional treatment of the NFTs: (a) Back re-
action of the system - the dynamics of the system is
driven by the work agent coordinate X̂(t), but also af-
fects it; (b) Quantum uncertainty of the work agent -
being a quantum coordinate, the work agent yields an un-
avoidable uncertainty in the work measurement. In the
Born-Oppenheimer limit, where the agent is very heavy,
backreaction is minimized. We demonstrate that one can
select the parameters of the quantum work agent to min-
imize also the quantum uncertainty, and then our ap-
proach allows to probe the NFTs both in the quasi-static
limit and in the nonequilibrium limit.

In the mesoscopic experiments in Ref. [19–21, 23, 24]
X(t) is a time dependent voltage applied on a QD, con-
trolling its energy level and driving it across the Fermi
level. As a mesoscopic realization of the quantum agent,
we propose using an LC circuit, see Fig. 1(c), e.g. a
microwave resonator. The measurement is done at the
end of the process, only on the external LC circuit (the
“agent”), and not on the system. In conclusion we dis-
cuss the experimental realization and the novel possibili-
ties that it opens to study stochastic thermodynamics of
complex quantum many-body systems.

Two-time protocol for WDF — Consider an ex-
ternal parameter X = X(t), controlling the Hamiltonian
HS(X) of the quantum system. We assume that the sys-
tem is initially at thermal equilibrium. One performs
projective energy measurements at t = ti, and at the
end of the process at t = tf . Let |a⟩ and |b⟩ be eigen-

states of HS(X(ti)) and HS(X(tf )), with eigenvalue E
(i)
a

and E
(f)
b , respectively. According to the two time proto-

col [15], the WDF is defined as

P (W ) =
∑
a,b

pa|⟨b|U |a⟩|2δ(W − (E
(f)
b − E(i)

a )), (1)

where U = T exp
[
−i
∫ tf
ti

dtHS(X(t))
]

is the evolution

operator of the closed system, and pa = e−E(i)
a /T /Zi.

The initial partition function is Zi = Tr[e−HS(X(ti))/T ],
and similarly we define the final Zf . Jarzynski’s equality
follows directly from these definition [15, 33], namely,

⟨e−W/T ⟩ =
∫

dWP (W )e−W/T =
Zf

Zi
≡ e−∆F/T . (2)

Remarkably, this identity holds for an arbitrary system
and for any non-equilibrium protocol. However, it is un-
practical to perform an energy measurement of a many-
body quantum system. Below, we determine the work
via an energy measurement of an external work agent,
which we model as a single degree of freedom oscillator.

Model system — We first illustrate the WDF ac-
cording to the two-time measurement protocol, where X
is a classical coordinate. We consider a two level system
(TLS) with Hamiltonian

HS(X) = ϵσx +
1

2
(σz − 1)X. (3)

The instantaneous ground state |g⟩ and excited state |e⟩
are schematically shown in Fig. 2(a). The protocol is
X(t) = −X0 cos(ωt) from ti = 0 to tf = π/ω. We start

with a thermal state ρ
(i)
S = (1/Zi)e

−HS(−X0)/T which
can be written as pg|g⟩⟨g|+ pe|e⟩⟨e|, with probabili-

ties pg,e = e±x/(ex + e−x), where x =
√

ϵ2 + (X0/2)2.
The sweep of X(t) induces a Landau-Zener (LZ)
transition, namely, |g⟩ → √

pd|e⟩+
√
1− pd|g⟩, where

pd = |⟨e|U |g⟩|2 is the diabatic transition probability.
Specifically forX0 ≫ ϵ, The well known LZ formula reads
pd = e−π/α, where α = ωX0/ϵ

2. Accordingly

P (W ) =
∑

j=0,1,2

pjδ(W + jX0), (4)

which is illustrated in Fig. 2(b). The diabatic peak at
W = 0 has the weight p0 = pgpd, corresponding to tran-
sition form the ground state, as opposed to the thermal
peak at W = −2X0, that has weight p2 = (1 − pg)pd,
corresponding to the diabatic transition from the ther-
mal excited state. The adiabtic peak at W = −X0 is
the sum of transitions from both the ground and excited
states, and has weight p1 = 1 − pd. In the adiabatic
limit α ≪ 1 only the adiabatic peak survives, while in
the sudden limit α ≫ 1 it diminishes. It is easily checked
that Eq.(4) satisfies Jarzynski’s equality Eq.(2), which is
guaranteed in-advance by definition. Note that for large
X0 we get Zf/Zi ≈ eX0/T .
Quantum work agent — The variable X in reality

is a dynamical coordinate of a work agent. The total
Hamiltonian is H = HS(X̂) +HA where

HA =
ω

2

(ℓP̂)2 +(X̂

ℓ

)2
 . (5)

Both X̂ and ℓ have energy units, while [X̂, P̂ ] = 1. Our
protocol is as follows: (i) We prepare the initial state
of the agent in a coherent state at X = −X0, decou-
pled from the system, so that the initial state at ti = 0 is

ρ(i) = ρ
(i)
S ⊗|−X0⟩⟨−X0|, where |−X0⟩ = eiP̂X0 |0⟩. The

initial energy of the work agent is E
(i)
A ≈ (1/2)ω(X0/ℓ)

2,
where we neglect here and below the numerically negligi-
ble zero point energy. Namely, we assume that the oscil-
lator is in a semiclassical state withX0/ℓ ≫ 1. (ii)We let
the system and agent evolve according toH till tf = π/ω,
yielding a final state ρ(f) = e−iHtf ρ(i)eiHtf . After this
process, the agent has exchanged energy and got entan-
gled with the system via the thermodynamic process.
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(iii) We perform an energy measurement of the agent,
rather than that of the system. The energy measure-
ment yields an eigen-energy EA,n ≈ ω

2 n with probability

p
(f)
n = TrS [⟨n|ρf |n⟩], where TrS [· · · ] is a trace over sys-

tem degrees of freedom. We define the WDF as

PA(W ) =
∑
n

p(f)n δ(W − (E
(i)
A − EA,n)), (6)

We do not perform a projective measurement of the ini-
tial energy of the agent because we want it to drive
the process as a coherent state. Results are plotted in
Fig. 2(c). Although we can identify the diabatic, adi-
abatic and thermal peaks of P (W ), these peaks have
been shifted and smeared out in PA(W ). Below, we iden-
tify the regime within the parameter space {X0, ℓ, ω, T}
where one can accurately use the quantum agent to verify
the Jarzynski equality.

Testing the NFT — The above example allows to
test the applicability of the NFT within the quantum-
work-agent framework. Assume that PA(W ) of Eq.(6)
is experimentally determined, and then used to ex-
tract the free energy via e−∆F ′/T = ⟨e−W/T ⟩A =∫
dWPA(W )e−W/T . The various distortions of the peaks

in Fig. 2(c), result in ∆F ′ ̸= ∆F . To quantify this de-
viation, in Fig. 3 we plot the quantity e−(∆F ′−∆F )/T as
function of ℓ and T . This quantity tends to unity in the
desired validity regime. As we can see that as a function
of ℓ there is an intermediate regime of validity of the work
agent approach.

The non-monotonic behavior of ⟨e−(W−∆F )/T ⟩A versus
ℓ can be understood from the combination of a broaden-
ing ∆(ℓ) and shift δ(ℓ) of each peak in P (W ). Note
that the shift is also responsible for the splitting of the
adiabatic peak. Consider for the sake of estimate that

δ(W + X0n) 7→ 1√
π∆

e−
(W+nX0−δ)2

∆2 . Then we get〈
e−

W−∆F
T

〉
= e−

δ(ℓ)
T e−

∆(ℓ)2

4T2 . It follows that the va-

lidity regime of the NFT is restricted by the condition

{∆(ℓ), δ(ℓ)} ≪ T. (7)

Next we obtain the following estimates:

∆(ℓ) ≈ 1

2
ω
X0

ℓ
, δ(ℓ) ∼ ℓ2

ω
. (8)

The estimate for ∆(ℓ) follows from the observation that
there is an “error” in W that reflects the quantum un-
certainty of X. In order to distinguish the peaks in
Fig. 2(c), the width ∆(ℓ) has to be smaller than T .
Irrespective of that, there is a backreaction effect that
leads to the shift δ(ℓ). Also this shift should be smaller
than T . To get the estimate for δ(ℓ), consider the adi-
abatic transition | ↑⟩ → | ↓⟩. After the transition the
effective Born-Oppenheimer potential in H is shifted,
namely it becomes V↓(X) = (1/2)ω(X/ℓ)2 −X instead
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FIG. 2. (a) Energy levels for a TLS S described by Hamilto-
nian Eq.(3). As a classical work agent A acts on the system by
varyingX from −X0 toX0, the recorded work gives stochasti-
cally one of the values seen in (b), corresponding to a diabatic
transition from the thermal state (W = −2X0, dotted), adia-
batic transitions (W = −X0, dashed), and diabatic transition
from the ground state (W = 0, long dashed). (c) The work
agent is now an oscillator with energy quantization ω (ℏ = 1)
and coordinate uncertainty ℓ, prepared in a coherent state at
position −X0. We plot the resulting WDF PA(W ) according
to Eq.(6) for different ℓ/ω and T/X0 denoted with red dots in
Fig. 3. We discuss in the main text and in Fig. 3 the regimes
in which PA(W ) gives a good approximation to P (W ) which
allows to verify the fluctuation-dissipation theorems.

of V↑(X) = (1/2)ω(X/ℓ)2. The positive turning point
X ′ is implied by energy conservation V↓(X

′) = V↑(−X0)
and satisfies X ′ > X0. We refer to this deviation as back-
reaction. Consequently the energy measured by the agent
is shifted by δ(ℓ) ≈ ℓ2/ω. Similarly it can be seen that
the thermal peak shifts by δ(ℓ) ≈ 2ℓ2/ω. In both cases
we ignore a negligible change in the turning point time.

The two inequalities of Eq.(7) are plotted by red dashed
lines in the regime diagram in Fig. 3 and are highly con-
sistent with the simulations of the protocol. Note that
for T ∼ X0 the validity regime is

1 ≪ ℓ/ω ≪
√

X0/(2ω), (9)

which is located between the region washed out by the
quantum uncertainty of the energy of A and the region
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FIG. 3. Regime diagram: we plot e−(∆F−∆F ′)/T for X0/ω =
150 and ϵ/ω = 2.5, or α = 24. The red dashed curves cor-
respond to Eq.(7), which identifies the validity regime of the
work agent approach. In Fig. 2(b) we have plotted the WDFs
PA(W ) for the marked red dots. In the “validity regime” both
the uncertainty of the agent’s coordinate, and the backreac-
tion of the system onto the agent, are small.

with strong backreaction in Fig. 3. The validity regime
in Fig. 3 corresponds to the case where PA(W ) nicely
approximates P (W ) as seen in the red curves in Fig. 2(b).
The WDF in Fig. 2(b) has a dominating diabatic peak at
W ∼ 0, which shows that the quantum work agent can
operate near the sudden limit where the system is driven
strongly out of equilibrium.

Experimental realization — Consider the thermo-
dynamic process of ramping up or down an energy level
of a QD coupled to the rest of the system (ROTS), see
Fig. 1(c) as in Refs. [19–21, 23, 24], with Hamiltonian
HS = X(t)n̂QD +Ht +Hr, where Ht describes tunnel-
ing between the QD and the ROTS which has Hamilto-
nian Hr. Our TLS example is realized if the ROTS is
another QD, where n̂QD = c†1c1, and Ht = ϵc†1c2 + h.c.,

while Hr = vc†2c2 with a single electron residing in the

double QD, namely
∑

i=1,2 c
†
i ci = 1. We now replace the

time dependent gate voltage X(t) by a dynamical vari-
able X̂ = eQ̂/CG, where Q = C0V is the charge of a
capacitor of an LC-circuit, and CG = (Cg + Cr)C0/Cg,
see Fig. 1(c). The Hamiltonian is

HA =

[
1

2C0
Q̂2 +

c2

2L0
Φ̂2

]
, (10)

where [Q̂, Φ̂] = i. Comparing with Eq. (5) we iden-
tify ω = 1/

√
L0C0 and ℓ2 = ωe2C0/C

2
G. In order to

probe the NFT using this LC-circuit we have to satisfy
Eq.(9), leading to ω ≪ (C0/CG)

2[e2/C0], and initial volt-
age V0 ≫ e/CG.
The LC circuit could be a microwave resonator as in

a recent experiment [34]. One realizes that our proto-
col involves an experimental challenge. It requires to:

(i) prepare a coherent state in the LC but initially keep
it decoupled from the system, which is prepared at a ther-
mal equilibrium with fixed voltage; (ii) start “suddenly”
the sweep process by coupling S to A, see switches in
Fig. 1(c); and (iii) measure “instantly” the energy of A.
In practice the switches have to be fast only compared to
the typical scales of the system. For a double quantum
dot this would be the maximum of the tunneling rate
ϵ and dephasing rate which is on the order of GHz [34].
Such time control can be achieved using superconducting
qubit technologies.

Exploring Many body physics — The same agent
Hamiltonian can be used for probing a general many-
body quantum system. Considering Refs. [19–21, 23, 24],
the ROTS of Fig. 1(c) is a spinful metallic lead with

n̂QD =
∑

σ=↑,↓ d
†
σdσ, and HS = ϵdn̂QD + Ud†↑d↑d

†
↓d↓ +∑

k,σ[ϵkc
†
kσckσ+t(c†kσdσ+h.c.)]. The WDF in such many-

body systems can be constructed theoretically by ap-
plynig various techniques based on the sudden limit [16],
linear response [35], and near equilibrium [36], particu-
larly using Green function methods [37]. By coupling
this Anderson model to the LC-circuit we can study the
WDF in a process connecting two different many-body
states, say, an empty state nQD = 0 with a Kondo state
at nQD = 1. As the potentialX is swept from−X0 toX0,
an electron enters the QD at some X ′. The work done
is W = −X0 −X ′ with a continuous WDF with typical
range of O(2X0). With a similar reasoning regarding the
broadening and shift of the work agent measurement, as
long as Eq.(7) is satisfied PA(W ) gives a good approxi-
mation for P (W ) even in many-body systems.

Summary — We have introduced a strategy to mea-
sure work performed on arbitrary quantum systems, em-
ploying a single-coordinate quantum object that plays
the role of a “work agent”. We illustrated our protocol
using an elementary example of a TLS which is trivial
in the sense that the two time protocol can be directly
realized [27, 28]. Still, this example features the generic
aspects of testing NFTs for quantum systems.

There are numerous applications of the possibility to
measure work in stochastic processes. For example, by
measuring the dissipated work, one can extract relative
entropy [38–40], which have been shown to be linked with
entanglement in many-body systems [41, 42]. Conse-
quently we have discussed the actual experimental real-
ization of the simple model, as well as the potential appli-
cations for exploring many-body physics in QDs realizing
the Kondo effect. Even more interestingly, by changing
the QD energy one can control an effective magnetic field
on the Kondo impurity [43]. These experimentally feasi-
ble charge Kondo systems [44] become critical when the
ROTS contains multiple leads, yielding highly nontrivial
thermodynamics, as seen e.g. by its entropy [45]. The
present study could allow to test nontrivial predictions
about stochastic thermodynamcis in these systems [46].
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