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We consider work fluctuation theorems for isolated driven systems and the possibility to probe
them in mesoscopic systems. In this context non-equilibrium fluctuation theorems (NFTs) relate
work performed on a system as its Hamiltonian varies with time, to equilibrium data of the initial
and final states. In a classical context the system energy can be directly measured, while a quantum
implementation requires the incorporation of a work-agent. Here, as a work agent we consider a
dynamical single-coordinate object, which exchanges energy with the system. The work done on the
system is defined as the energy reduction of the work agent, which requires an energy measurement
of the agent (only) at the end of the process. To justify the applicability of the NFT we require the
agent’s trajectory to be weakly affected by the energy exchange with the system. We furthermore
argue that the uncertainty in the energy measurements imposes an inherent quantum limitation on
the validity of the NFT. We demonstrate our findings for a two-level system, and discuss applications
to more complex mesoscopic systems.

I. INTRODUCTION

Stochastic thermodynamics describes non-equilibrium
processes of small systems governed by large fluctua-
tions. As originally observed in classical processes, e.g. of
stretching a molecule of RNA [1, 2], individual measure-
ments of the work W are intrinsically random. However
after gathering sufficient statistics, it had been demon-
strated that the nonequilibrium work distribution func-
tion (WDF), P (W ), satisfies general relations involving
solely equilibrium free energy differences, such as the
Jarzynski and Crooks relations [3, 4], known as non-
equilibrium fluctuation theorems (NFTs) [5–7].

Quantum extensions of stochastic thermodynamics
have been formulated [6, 8–16], particularly, via the “two-
time measurement protocol” [6, 13], which incorporates
projective measurements of the energy of the system be-
fore and after the non-equilibrium processes.

While an implementation of a projective energy mea-
surement is possible in few-level quantum systems, see
e.g. Ref. [17], measurement of the energy change in
many-body systems is not feasible. One common ap-
proach to overcome this problem is to measure energy
changes of the system, which involves continuous mon-
itoring of only a small sub-system. For example exper-
iments in few-electron quantum dot (QD) systems [18–
23] demonstrated NFTs, by continuously monitoring the
charge state of the QD. However as in the Zeno effect,
continuous monitoring leads to backaction and hence
does not allow to study the WDF of quantum systems.

Furthermore, the two-time measurement protocol goes
against the ideology of thermodynamics. In a thermody-
namic formulation, work W and heat Q are determined
via measurements of external bodies. The engineer is
probing the energy that is transferred to reservoirs R or
from work agents A, respectively, while the system itself
should not be measured.

Indeed, one can blur the distinction between work and
heat, and decide to change the experimental setup such
that work is converted into heat, and then a calorimetric
measurement is carried out. In the proposed implemen-
tation [24] the coupling between the quantum system and
the calorimeter is the dominant energy relaxation chan-
nel, and accordingly further sophistication is required if
one wants to keep the system itself coherent during the
stage when work is being performed.

Thus, verification of NFTs in general quantum systems
requires a more sophisticated measurement setup. An
inspiring approach [25–28] uses an ancilla qubit which
controls the system’s Hamiltonian, and allows to extract
the work statistics from the qubit’s tomography. This
approach is suitable to certain controllable systems like
cold atoms, however it is not clear how to apply it in
mesoscopic systems [18–23] in which we are interested
here. Furthermore, it should be realized that this method
does not allow direct measurement of P (W ), but of the
associated characteristic function, which might be tricky
for analysis in a practical implementation.

Here, we study a direct approach to measure the WDF
based on a “quantum work agent” [29, 30]. In this ap-
proach, we measure the energy change of a work agent.
This requires the work agent to be a dynamical degree of
freedom, which however introduces important limitations
on experimental testing of NFTs.

A. Work agent

The concept of a dynamical work agent is well studied
in the quantum information literature in various forms.
Let us review this literature and then emphasize the dis-
tinction of our approach which is motivated by experi-
ments with mesoscopic systems.

An intensive line of study, considers as a work agent a
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FIG. 1. (a) Thermodynamic processes driven by a work agent
A performing work on the system S via a time dependent
parameter X(t) controlling the system’s Hamiltonian. Some
of it gets dissipated into a reservoir R. (b) We generalize the

work agent A into a dynamical quantum coordinate X̂ which
performs work on the system. Its measurement after a half
cycle allows to extract work W = −∆EA. (c) Mesoscopic
system: S contains a QD. Its energy level ϵd(t) is driven by
an agent A realized by an LC circuit such as a microcavity.

“weight”. The weight is an energy storage device, con-
trolled by the gravitational potential and has an Hamil-
tonian being proportional to its coordinate, Hweight =

MgX̂. Explicit processes have been demonstrated [31] in
which the extracted work from the system to the weight
equals the free energy difference. In this line of studies,
thermodynamic processes are described by a unitary evo-
lution of the combined system, weight, and reservoir [32],
and also quantum coherence in these quantum thermo-
dynamic processes have been considered [33, 34]. This
approach also allowed the derivation of generalized NFT
theorems [35]. Yet, in all these studies, the weight is not

dynamical, namely, the kinetic energy P̂ 2/2M is ignored.
Instead, certain quantum operations (whose experimen-
tal realization is not obvious) are routinely applied on
the weight, exchanging its energy with the system [31].

In another approach [36], work is mediated by a “con-
trol system”, which interacts unitarily with the system,
and then measured, while the system itself is not mea-
sured at any time. This is another approach to avoid
Zeno effects and include coherent effects in the system. In
another recent study the energy storage device is referred
to as a “battery”, where the interaction with the system
takes the form of emission and absorption of bosons [37].

As we describe below, our approach is unique in that
our work agent is meant to simulate a desired time depen-
dent parameter X(t). The work agent is a single degree
of freedom such as a spring whose Hamiltonian and initial
conditions are designed such that its semiclassical equa-
tions of motion coincide with the desired time dependent

parameter. Yet, because it is dynamical, it exchanges en-
ergy with the system. This approach was considered [30]
taking only classical effects with a continuously moni-
tored system. Here, we consider the evolution of a closed
system containing solely the system and the work agent.

B. Scope

In the common formulation of Jarzynski’s equality the
control parameter X(t), for example the coordinate of a
piston, is regarded as a classical coordinate, see Fig. 1(a).
Here we formulate a quantum demonstration of NFTs
which incorporates a dynamical apparatus, referred to
as a “quantum work agent” [29]. Of particular interest
might be a sweep protocol of the form

X(t) = −X0 cos(ωt), for t = 0 → π/ω. (1)

For the purpose of an experiment we replace X(t) by a

quantum dynamical coordinate X̂, namely, an harmonic
oscillator, see Fig. 1(b). The energy of this single degree
of freedom can be measured at t = π/ω, independently
of the complexity of the system to which it couples.

We focus on the feasibility and limitations of the quan-
tum work agent within a conceptual experimental re-
alization. We characterize the ability to extract use-
ful thermodynamic information via Jarzynski’s equality.
We distinguish two effects that are ignored within tradi-
tional treatment of NFTs: (a) Quantum uncertainty of
the work agent - being a quantum coordinate, the work
agent yields an unavoidable uncertainty in the work mea-
surement. The quantum uncertainty of the work agent
can be regarded as a variant of two-time measurement
protocols with generalized measurements, including the
non-demolition limit [38–40]. (b) Back reaction of the
system - the dynamics of the system is driven by the work
agent coordinate X̂(t), but also affects it; While special
attention was given to the regime of strong interaction
between the system and the bath, where thermodynamic
quantities have to be properly defined [41], we emphasize
that here, since the agent drives the process, its coupling
to the system is naturally strong and comprises most of
the energy of the system. Thus, the energy stored in the
interaction is an integral part of our definition of work.
In the Born-Oppenheimer limit, where the agent is very
energetic compared to the interaction energy, we show
that backreaction is minimized. We demonstrate that
one can select the parameters of the quantum work agent
to minimize also the quantum uncertainty.

In the mesoscopic experiments in Ref. [18–20, 22, 23]
X(t) is a time dependent gate voltage applied on a QD,
controlling its energy level and driving it across the Fermi
level. To appreciate the problematic issue of continuous
measurements applied in these experiments, consider e.g.
a double QD coupled to a lead, where we control the gate
voltage of one QD. Clearly, a continuous charge measure-
ment of one QD results in a suppression of the coher-
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ent oscillations within the probed system - the quantum
Zeno effect. Thus, continuous measurement destroys the
quantum coherent dynamics that one would have liked
to probe, which motivates the realization of the quan-
tum work agent in such systems.

As a mesoscopic realization of the quantum work
agent, we propose using an LC circuit, see Fig. 1(c),
e.g. a microwave resonator. The measurement is done at
the end of the process, only on the external LC circuit
(the “agent”), and not on the system.

The rest of the paper is organized as follows. After
reviewing the two-time protocol to measure the WDF in
Sec. II, we introduce our protocol based on the quan-
tum work agent in Sec. III. In Sec. IV we write down a
generic model of interest for discussion of work in meso-
scopic systems, and then give a general argument for the
validity regime of our work agent approach. In Sec. V
we present a simple model of the two-level system which
corresponds to a double dot system, and then in Sec. VI
we demonstrate on this model our general argument. We
discuss the experimental realization of the quantum work
agent in Sec. VII, and conclude in Sec. VIII.

II. THE TWO-TIME PROTOCOL

Consider an external classical parameter X = X(t),
controlling the Hamiltonian HS(X) of a general quantum
system. We assume that the system is initially at ther-
mal equilibrium. One performs projective energy mea-
surements at t = ti, and at the end of the process at
t = tf . Let |a⟩ and |b⟩ be eigenstates of HS(X(ti)) and

HS(X(tf )), with eigenvalues E
(i)
a and E

(f)
b , respectively.

According to the two time protocol the WDF is defined
as [13]

P (W ) =
∑
a,b

e−E(i)
a /T

Zi
|⟨b|U |a⟩|2δ(W−(E

(f)
b −E(i)

a )), (2)

where

U = T exp

[
−i

∫ tf

ti

dtHS(X(t))

]
(3)

is the evolution operator of the closed system and

Zi(f) = Tr[e−HS(X(ti(f)))/T ]. (4)

Jarzynski’s equality follows directly from this definition
of P (W ) [13, 29], namely,

⟨e−W/T ⟩X(t) =

∫
dWP (W )e−W/T

=
Zf

Zi
≡ e−∆F/T . (5)

This identity holds for any system and for any non-
equilibrium protocol. However, it is unpractical to per-
form an energy measurement of a many-body quantum

system. Below, we determine the work via an energy
measurement of an external work agent, which we model
as a single degree of freedom oscillator. We will exclu-
sively consider protocols of the form X(t) = −X0 cos(ωt)
from ti = 0 to tf = π/ω.

III. THE WORK-AGENT PROTOCOL

In this section we provide a protocol to measure work.
Our guiding definition of work is the one of the two-time
protocol; our subsequent protocol gives an experimen-
tally accessible approximation of the latter.

The variable X in reality is a dynamical coordinate of
a work agent which we take to be an harmonic oscillator.
The total Hamiltonian is H = HS(X̂) + HA where

HA =
ω

2

(ℓP̂)2 +

(
X̂

ℓ

)2
 . (6)

Both X̂ and ℓ have energy units, while [X̂, P̂ ] = i. It is
important to emphasize that there is no ambiguity here
with regard to the definition of the agent’s energy. The
system Hamiltonian is strictly defined as in the two-time
protocol context, and includes the interaction term with
X. The agent Hamiltonian is “added” in a straightfor-
ward manner and does not include any system’s variable.

Let us emphasize that the full Hamiltonian contains
the system, the agent and the interaction between the
two. We include the interaction Hamiltonian inside the
system’s Hamiltonain HS(X̂), and use the conservation
of the total energy

d

dt

(
⟨HS(X̂)⟩ + ⟨HA⟩

)
= 0, (7)

to infer the work from the changes in the agent’s energy.
As in the two-time protocol, the total system is closed,
which contains the system and the agent.

The isolated agent’s Hamiltonian has a solution which
is the desired time dependent parameter whose WDF we
intend to measure. In this case, this solution is ⟨X̂(t)⟩ =
X(t) = −X0 cos(ωt). This can be generalized beyond

the simple harmonic oscillator. If the operator X̂ in the
system’s Hamiltonian could be replaced by its classical
version X(t), then the agent would exactly simulate the
classical external parameter, and would perform exactly
the desired WDF on the system.

Our protocol is as follows:
(i) Prepare the initial state of the agent in a coherent
state at X = −X0, decoupled from the system which
is prepared at a thermal state according to a classical
parameter −X0. Namely, the initial state is

ρ(i) = ρ
(i)
S ⊗ | −X0⟩⟨−X0|, (8)

where ρ
(i)
S = e−HS(−X0)/T /Zi and |−X0⟩ = eiP̂X0 |0⟩ is a

coherent state with X0/ℓ ≫ 1. The initial energy of the
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work agent is E
(i)
A ≈ (ω/2)(X0/ℓ)

2, where we neglect the
numerically negligible zero point energy.
(ii) Let the system and agent evolve according to H till
tf = π/ω, yielding a final state

ρ(f) = e−iHtf ρ(i)eiHtf . (9)

After this process, the agent exchanged energy and got
entangled with the system.
(iii) Perform an energy measurement of the agent, rather
than of the system. The energy measurement yields

an eigen-energy EA,n ≈ ωn with probability ρ
(f)
n =

TrS [⟨n|ρ(f)|n⟩], where TrS [· · · ] is a trace over system de-
grees of freedom. We define the WDF as

PA(W ) =
∑
n

ρ(f)n δ(W − (E
(i)
A − EA,n)). (10)

We do not perform a measurement of the initial energy
of the agent because we want it to drive the process as a
coherent state, rather than a Fock state.

From energy conservation, Eq. (7), each result of an
energy measurement of the agent yields a corresponding
energy change of the system. However, as we discuss in
the next sections, the definition in Eq. (10) does not co-
incide with the two-time measurement protocol due to:
(i) backreaction - namely X̂ in HS(X̂) does not coincide
with the desired classical protocol X(t); (ii) uncertainty
- even the initial energy distribution of the coherent state
has a finite variance. Our goal is to formulate a validity
regime in terms of the agent’s parameters, where our pro-
tocol Eq. (7) will reproduce the two-time measurement
protocol.

IV. THE DOT-LEAD SYSTEM - GENERAL
CONSIDERATIONS

Aiming for measuring the WDF in a general dot-lead
system, let us consider a generic form of the Hamiltonian
(but still within a single electron description),

H = X̂|0⟩⟨0| +
∑
k ̸=0

Ek|k⟩⟨k| + ϵ
∑
k ̸=0

(|k⟩⟨0| + |0⟩⟨k|)

+
ω

2

(ℓP̂)2 +

(
X̂

ℓ

)2
 . (11)

Here |k ̸= 0⟩ denote single particle states in the lead and
|0⟩ denotes the QD level. As displayed in Fig. 2, regard-

ing X̂ as an external control parameter, the energy of
the QD varies from −X0 to +X0. An electron originally
in the QD will end up in one of the lead energy levels,
or remain in the QD. This process can be viewed as a
sequence of Landau-Zener transitions; the work will dis-
play a distribution function that reflects the energy at
which the electron left the QD. Rather than solving for
P (W ) with or without the agent in this model, we intro-
duced this model in order to set the stage for the type of

𝑋0

−𝑋0

𝑋0

−𝑋0

𝑊

𝑡𝑖𝑚𝑒

FIG. 2. Illustration of the multilevel dot-lead model. In the
upper panel the dot level and the lead levels are represented
by horizonatl balck line. The variation of the gate voltage is
represented by the red arrow, and the emission of the electron
from the dot to one of the lead levels by a green arrow. In the
lower panel the adiabatic variation of the levels is illustrated
as a function of time.

problems we are interested in. The aim of this section is
to provide general arguments for the applicability of the
protocol of Sec. III.

Let us denote the typical (positive) work done on the
system by W0. We assuming that the control parameter
X varies from −X0 to +X0. Then W0 ∼ X0. We do
not assume here any special choice of units, neither any
type of agent-system interaction. In order to minimize
the backaction of the system onto the agent, it is clear
that we have to require that the initial energy of the

agent ω
2

(
X0

ℓ

)2
should be much larger than W0. This is

essentially a Born-Oppenheimer condition,

ℓ

X0
≪

(
ω

W0

)1/2

. (12)

It should be noticed that this is a purely classical con-
dition, that has nothing to do with quantum mechan-
ics. If we were using units with ℏ ̸= 1, and then go to
units with ℏscaled = 1, then the transformation would be
ℓscaled =

√
ℏℓ and for the energy ωscaled = ℏω. Hence the

ℏ dependence cancels in the above inequality.
The second limitation comes from the unavoidable

quantum uncertainty of the energy measurement, which
derives from the uncertainty in X. It is implied by the
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preparation procedure that this uncertainty is dX ≡ ℓ.
The associated uncertainty in the energy of the agent
is dE = (ω/ℓ2)X0dX = ωX0/ℓ ≡ ∆(ℓ). This uncer-
tainty has to be much smaller than W0, hence we get the
quantum condition ∆(ℓ) ≪ W0. Combining the classical
and the quantum conditions we obtain a condition for
ℓ = dX, (

ω

W0

)
≪ ℓ

X0
≪

(
ω

W0

)1/2

. (13)

In order to find ℓ that satisfies this double inequality the
left-most expression should be smaller than the right-
most expression, leading to the necessary condition

ω ≪ W0. (14)

This condition means that the sweep process should be
in some sense quasi-static. Clearly it is also implied that
the uncertainty of the X coordinate should be small:

ℓ ≪ X0. (15)

One can rewrite Eq.(13) in terms of the range of energies
that can be resolved by a given measurement setup: The
energy scale W0 can be regarded not just as the typical
work that we want to measure, but rather as the energy
scale that one wants to resolve, which might be compara-
ble with the temperature. Accordingly we write Eq.(13)
as

ω
√

Nph ≪ {W0, T} ≪ ωNph, (16)

where Nph = 1
2 (X0/ℓ)

2 ≫ 1 is the average number of
photons in the oscillator (recall that here ℏ = 1). This
form of the condition stresses that the agent must be in
a semiclassical state with a large number of photons.

V. TWO LEVEL SYSTEM (TLS)

We consider a TLS with Hamiltonian

HS(X) = ϵσx +
1

2
(σz − 1)X. (17)

The instantaneous ground state |g⟩ and excited state |e⟩
are schematically shown in Fig. 3(a). We start with a
thermal state ρ(i) = e−HS(−X0)/T /Zi.

Let us first illustrate the WDF according to the two-
time measurement protocol, where X is a classical coor-
dinate. The sweep of X(t) induces a Landau-Zener (LZ)
transition, namely,

|g⟩ → √
pd|e⟩ +

√
1 − pd|g⟩, (18)

where pd = |⟨e|U |g⟩|2 is the diabatic transition probabil-
ity. Specifically for X0 ≫ ϵ, the well known LZ formula
reads pd = e−2π/α, where α = ωX0/ϵ

2. Accordingly

P (W ) =
∑

j=0,1,2

qjδ(W + jX0), (19)

which is illustrated in Fig. 3(b). The explicit expressions
for the weights qj are

q0 = pdρ
(i)
g , at W = 0, (20)

q1 = 1 − pd, at W = −X0, (21)

q2 = pdρ
(i)
e , at W = −2X0, (22)

corresponding to the diabatic, adiabtic and thermal

peaks. In these expressions ρ
(i)
g(e) is the initial probability

to be in the ground (excited) state. The latter are the
eigenvalues of the initial thermal state,

ρ(i) =
1

Zi
e−HS(−X0)/T (23)

= ρ(i)g |g⟩⟨g| + ρ(i)e |e⟩⟨e|, (24)

yielding the probabilities

ρ(i)g,e = e±x/(ex + e−x), (25)

where

x =
√

ϵ2 + (X0/2)2. (26)

The diabatic peak at W = 0 corresponds to a transi-
tion form the ground state, as opposed to the thermal
peak at W = −2X0 that corresponds to the diabatic
transition from the thermal excited state. The adiabatic
peak at W = −X0 is the sum of transitions from both the
ground and excited states. In the adiabatic limit pd ≪ 1
only the adiabatic peak survives, while in the sudden
limit it diminishes. It is easily checked that Eq.(19) sat-
isfies Jarzynski’s equality Eq.(5). Note that for large X0

we get Zf/Zi ≈ eX0/T .
Results for the quantum work agent protocol are plot-

ted in Fig. 3(c). Although we can identify the diabatic,
adiabatic and thermal peaks of P (W ), these peaks have
been shifted and smeared out in PA(W ). Below, we iden-
tify the regime within the parameter space {X0, ℓ, ω, T}
where one can accurately use the quantum agent to verify
the Jarzynski equality.

VI. TESTING THE NFT WITH TLS

The TLS example allows to test the applicability of the
NFT within the quantum-work-agent framework. As-
sume that PA(W ) of Eq. (10) is experimentally deter-
mined, and then used to extract the free energy via

e−∆F ′/T = ⟨e−W/T ⟩A =

∫
dWPA(W )e−W/T . (27)

The various distortions of the peaks in Fig. 3(c), result
in ∆F ′ ̸= ∆F . To quantify this deviation we define a
fidelity measure

F ≡ e−
∆F ′−∆F

T =
〈
e−

W−∆F
T

〉
= e−

δ(ℓ)
T e−

∆(ℓ)2

4T2 , (28)
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𝜖/𝜔 = 2.5

𝑇/𝑋0 = 1.1

𝑇/𝑋0 = 0.25

𝑊

−𝑋0−2𝑋0 0

𝑞0𝑞1
𝑞2

𝐸𝑇𝐿𝑆

↑

↓

↑

𝑋

↓

(c)

(a)

𝑊
0−𝑋0−2𝑋0

𝑃(𝑊)

𝑞0

𝑞1

𝑞2

(b)

𝑃𝓐(𝑊)

FIG. 3. (a) Energy levels for a TLS S described by Hamil-
tonian Eq.(17). As a classical work agent A acts on the sys-
tem by varying X from −X0 to X0, the recorded work gives
stochastically one of the values seen in (b), corresponding to a
diabatic transition from the thermal state (W = −2X0, dot-
ted), adiabatic transitions (W = −X0, dashed), and diabatic
transition from the ground state (W = 0, long dashed). (c)
The work agent is now an oscillator with energy quantization
ω (ℏ = 1) and coordinate uncertainty ℓ, prepared in a coherent
state at position −X0. We plot the resulting WDF PA(W )
according to Eq.(10) for different ℓ/ω and T/X0 denoted with
red dots in Fig. 4. We discuss in the main text and in Fig. 4
the regimes in which PA(W ) gives a good approximation to
P (W ) which allows to verify the fluctuation-dissipation the-
orems.

where the last equality provides an analytical prediction
that is explained below. This fidelity measure is plotted
in Fig. 4, for a given ω and X0, as function of ℓ and T .
It tends to unity within the validity regime. As we can
see there is an intermediate regime (bright yellow region)
where validity of the NFT is expected.

The non-monotonic behavior of F versus ℓ can be un-
derstood from the combination of a broadening ∆(ℓ) and
shift δ(ℓ) of each peak in P (W ). Note that the shift is
also responsible for the splitting of the adiabatic peak.
For the sake of estimate we have assumed that

δ(W + X0n) 7→ 1√
π∆

e−
(W+nX0−δ)2

∆2 . (29)

Then we got the final expression in Eq.(28). It follows
that the validity regime of the NFT is restricted by the

Uncertainty Backreaction

Validity regime

∝
𝜔

2ℓ ∝
2ℓ2

𝜔𝑋0

ℓ/𝜔

𝑇

𝑋0

FIG. 4. Regime diagram: we plot the fidelity F of Eq.(28)
for X0/ω = 150 and ϵ/ω = 2.5. The red dashed curves corre-
spond to Eq.(30), which identifies the validity regime of the
work agent approach. In Fig. 3(b) we have plotted the WDFs
PA(W ) for the marked red dots. In the “validity regime” both
the uncertainty of the agent’s coordinate, and the backreac-
tion of the system onto the agent, are small.

condition

{∆(ℓ), δ(ℓ)} ≪ T. (30)

Next we obtain the following estimates:

∆(ℓ) ≈ 1

2
ω
X0

ℓ
, δ(ℓ) ∼ ℓ2

ω
. (31)

The estimate for ∆(ℓ) follows from the observation that
there is an “error” in W that reflects the quantum un-
certainty ℓ of X. In order to distinguish the peaks in
Fig. 3(c), the energy uncertainty ∆(ℓ) has to be smaller
than T . Irrespective of that, there is a backreaction ef-
fect that leads to the shift δ(ℓ). Also this shift should
be smaller than T . The way to obtain the estimate for
δ(ℓ) from conservation of energy is straightforward and
is presented in the appendix.

The two inequalities of Eq. (30) are plotted by red
dashed lines in the regime diagram in Fig. 4 and are
highly consistent with the simulations of the protocol.
Note that for T ∼ X0 the validity regime is

1 ≪ ℓ/ω ≪
√

X0/(2ω), (32)

which is located between the region washed out by the
quantum uncertainty of the energy of A and the region
with strong backreaction in Fig. 4. This condition co-
incides with Eq. (13) which was derived independently
of the details of the model. Within the validity regime,
where the fidelity is close to unity, PA(W ) nicely approx-
imates P (W ), see e.g. red curves in Fig. 3(b), where the
WDF features a dominating diabatic peak at W ∼ 0,
demonstrating that the quantum work agent can operate
near the sudden limit where the system is driven strongly
out of equilibrium.
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VII. EXPERIMENTAL REALIZATION

Consider the thermodynamic process of ramping up
or down an energy level of a QD coupled to the rest
of the system as in Refs. [18–20, 22, 23], see Fig. 1(c).
Rather than using the noninteracting model Eq. (11), let
us consider a general Hamiltonian

HS = X(t)n̂QD + Ht + Hr (33)

where Ht describes tunneling between the QD and the
rest of the system which has Hamiltonian Hr. Our
TLS example is realized if the rest of the system is

another QD, where n̂QD = c†1c1, and Ht = ϵc†1c2 + h.c.,

while Hr = vc†2c2 with a single electron residing in the

double QD, namely
∑

i=1,2 c
†
i ci = 1. We now replace

the time dependent gate voltage X(t) by a dynamical
variable

X̂ =
e

CG
Q̂, (34)

where Q = C0V is the charge of a capacitor of an LC-
circuit, and CG = (Cg + Cr)C0/Cg, see Fig. 1(c). The
Hamiltonian is

HA =

[
1

2C0
Q̂2 +

c2

2L0
Φ̂2

]
, (35)

where [Q̂, Φ̂] = i. Comparing with Eq.(6) we identify

ω =
1√
L0C0

, (36)

ℓ2 = e2
C0

C2
G

ω. (37)

In order to probe the NFT using this LC-circuit we have
to satisfy Eq.(32), leading to ω ≪ (C0/CG)2[e2/C0], and
initial voltage V0 ≫ e/CG.

The LC circuit could be a microwave resonator as in
a recent experiment [42]. Our protocol involves the fol-
lowing experimental challenges: (i) prepare a coherent
state in the LC circuit but initially keep it decoupled
from the system, which is prepared at a thermal equilib-
rium with fixed voltage; (ii) start “suddenly” the sweep
process by coupling S to A, see switches in Fig. 1(c);
and (iii) measure “instantly” the energy of A. In prac-
tice the switches have to be fast only compared to the
typical scales of the system. For a double quantum dot
this would be the maximum of the tunneling rate ϵ and
dephasing rate which is on the order of GHz [42]. Such
time control can be achieved using superconducting qubit
technologies.

We may extrapolate our discussion towards explor-
ing many body physics. The same agent Hamiltonian
can be used for probing a general many-body quantum
system. Considering Refs. [18–20, 22, 23], the rest of
the system of Fig. 1(c) is a spinful metallic lead with

n̂QD =
∑

σ=↑,↓ d
†
σdσ, and

HS = ϵdn̂QD + Ud†↑d↑d
†
↓d↓

+
∑
k,σ

[ϵkc
†
kσckσ + t(c†kσdσ + h.c.)]. (38)

By coupling this Anderson model to the LC-circuit we
can study the WDF in a process connecting two different
many-body states, say, an empty state nQD = 0 with
a Kondo state at nQD = 1. As the potential X varies
from −X0 to X0, an electron enters the QD at some
X. With a similar reasoning as in Sec. IV, as long as
Eq. (32) is satisfied PA(W ) gives an increasingly good
approximation for P (W ) even in many-body systems.

VIII. SUMMARY

We discussed the experimental feasibility of measur-
ing work by employing a single-coordinate quantum ob-
ject that plays the role of a “work agent”. To demon-
strate generic aspects of testing NFTs for quantum sys-
tems we considered a TLS toy model that can be directly
realized [17, 43]. Then we discussed the application for
many body systems of experimental interest, emphasiz-
ing that past protocols were based on continuous moni-
toring, hence likely to affect adversely the dynamics via
e.g. a quantum Zeno effect. Consequently, we have dis-
cussed the actual experimental realization of the simple
model, as well as the potential applications for exploring
many-body and Kondo physics in QDs.

There are numerous future applications of the possi-
bility to measure P (W ). For example quantum critical
Kondo systems [44–46] have a nontrivial WDF with Kib-
ble–Zurek scaling [47]. Also, by measuring the dissipated
work one may be able to extract relative entropy [48–50]
and entanglement entropy [51, 52].
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Appendix A: Quantum vs classical driving of the
TLS

In the two-time measurement scheme
X(t) = −X0 cos(ωt) is a classical control parameter
that has no uncertainty nor back reaction. Below we
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focus numerically on two related aspects which compare
this classical control parameter to the one driven by the
dynamic agent.

In Fig. 5(a) we consider the same protocols discussed
in Fig. 3 of the main text, for T/X0 = 0.25, X0/ω = 150
and three values of ℓ/ω. We display the time depen-
dence of the expectation value of the position opera-
tor of the agent, in comparison with its classical value
X(t) = −X0 cos(ωt). As we can see, the relative devia-
tions become significant for the largest ℓ/ω. They stem
from backreaction and are given by ℓ2/(ωX0) as discussed
below.

In Fig. 5(b) we plot the Landau-Zener probability pd,
when the process is driven by the agent. Namely, we
initiate the TLS in the spin-↑ state, and let it evolve
together with the agent for the time t = π/ω. We define
pd as the probability to find the TLS in the spin ↑ state.
We are not discussing here the measurement aspect, but
the agent-driven transitions versus the classically-driven
transitions. The standard Landau-Zener formula for the
latter assuming linear classical driving X(t) = X0ωt with

LZ prob.

ℓ/𝜔 = 10

ℓ/𝜔 = 3.5

ℓ/𝜔 = 1

𝜖/𝜔
5 100

0

1

𝑝𝑑

𝑡𝜔/𝜋

𝑋 𝑡

𝑋0 0

1

-1

0 10.2 0.4 0.6 0.8

Classical 

ℓ/𝜔 = 10

ℓ/𝜔 = 3.5

ℓ/𝜔 = 1

(b)

(a)

FIG. 5. (a) Time dependence of the position of the agent, for
three values of ℓ/ω. All other parameters are the same as in
Fig. 3 of the main text. As ℓ/ω becomes larger, the deviation
due to backreaction is larger. (b) Direct computation of the
Landau-Zener transition probability, i.e. the probability to
obtain spin ↓ from an initial spin-↑ state of the TLS, after
its evolution together with the agent for the process time t =
π/ω.

t ∈ [−∞,∞], yields

pd = exp

[
−2πϵ2

ωX0

]
. (A1)

As we can see, this formula works rather well even though
our protocol (i) assumes sinusoidal time dependence and
(ii) is driven by the quantum agent and not by a classical
parameter. As ℓ becomes smaller, the energy uncertainty
of the agent might lead to a deviation in pd that can be
minimized if the average were taken over the exponent of
Eq.(A1), see Ref. [53].

Appendix B: Back Reaction - TLS model

The aim of this appendix is to derive Eq. (31) for the
energy shift for the TLS. Let us consider the adiabatic
transition ↑ to ↓ where the system’s energy is reduced,
leading to an overshot of X above X0. After the transi-
tion the effective Born-Oppenheimer potential is shifted,
namely it becomes V↓(X) instead of V↑(X), where

V↑(X) =
ω

2

(
X

ℓ

)2

, (B1)

V↓(X) =
ω

2

(
X

ℓ

)2

−X. (B2)

Here, we include the interaction between the system
and the agent, in the agent’s potential. The posi-
tive turning point X ′ is implied by energy conservation
V↓(X ′) = V↑(−X0), yielding

X ′ =
ℓ2

ω
+

√(
ℓ2

ω

)2

+ X2
0 . (B3)

Note that in the TLS-model we have X ′ > X because
energy is taken by the agent. By our definition the work
reported by the agent is

W =
ω

2

(
X0

ℓ

)2

− ω

2

(
X ′

ℓ

)2

. (B4)

This leads to

W =

{
0, for ↑ to ↑ (diabatic transition)

−X ′, for ↑ to ↓ (adiabatic transition),
(B5)

Substituting X ′ ≈ X0 + ℓ2/ω we get for the adiabatic
transition

W ≈ −X0︸︷︷︸
classical

−ℓ2/ω︸ ︷︷ ︸
backreaction

. (B6)

The fact that X ′ differs from X0 is our probe as illus-
trated in Fig. 1(b) in the main text, but in the TLS model
there is an additional adverse effect, namely, the WDF
does not reproduce the exact classical work W = −X0

because the classical process X : −X0 → X0 is distorted.
Consequently the energy measured by the agent is shifted
by δ(ℓ) ≈ ℓ2/ω. This should be smaller than X0, leading
again to Eq.(12).
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Appendix C: Back Reaction - multilevel model

Returning to the more general dot-lead system
Eq. (11), we note that the δ(ℓ) complication that we
have discussed for the TLS is minimized, provided that
the time dependent gate affects only the dot level, and
has no effect on the potential of the lead, see Fig. 2.
To be specific, consider the Hamiltonian Eq. (11). The
Born-Oppenheimer potentials are

Vk=0(X) =
ω

2

(
X

ℓ

)2

+ X, (C1)

Vk ̸=0(X) =
ω

2

(
X

ℓ

)2

+ Ek, (C2)

where Ek are the levels of the lead. In this case, for an
initial state in the dot, and a final state denoted by k,

the work done by the agent on the system is

W =

{
X0 + X ′, k=0,
X0 + Ek, k ̸=0.

(C3)

Note that in this example the agent “provides” work
(W > 0). Thus for a scenario where the electron does
not stay in the dot, X ′ does not affect the work, and
there is no associated shift in the peak position. Indeed,
in this case energy conservation Vk=0(−X0) = Vk ̸=0(X ′)
gives

ω

2

(
X0

ℓ

)2

−X0 =
ω

2

(
X ′

ℓ

)2

+ Ek, (C4)

hence the work, as given by the initial minus the final

energy stored in the agent, is W = ω
2

(
X0

ℓ

)2− ω
2

(
X′

ℓ

)2
=

X0 + Ek. Irrespective of that, we already explained that
the general condition Eq.(13) applies also to this more
general model.
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