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Current versus driving

Driving ~» Stochastic Motive Force ~» Current

Regimes: LRT regime, Sinai regime, Saturation regime
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Master equation description of dynamics

Htotal — dla’g{E’rL} T f(t)vnm —I_ F(t)an _l_ Bath

Quantum master equation for the reduced probability matrix:

dp 2

- = —ilHo.pl = 5[V, V., pl] + WPp

Corresponding stochastic rate equation:
dp
d_tn — Zm: WrmPm — WmnPn

Steady state equation:
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The Stochastic Motive Force

If we had only a bath
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We define a "field”
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The "potential” variation along a segment
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The emergence of Sinai regime

Sinai [1982]: Transport in a chain with random transition rates.
Assume transition rates are uncorrelated.
~» exponential build up of a potential barrier &~ o< v N
~» exponentially small current.

But... we have telescopic correlations: &, 41 ~ A, = (En—FEnt1)

2 € < 1/gmax

€
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Build up may occur if g, are from a log-wide distribution.




“Sparsity” of weakly chaotic systems
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Motivation for this line of study

B The Kubo—Greenwood conductivity and
the Edwards—Thouless relationships

Writing (but being aware of the subtleties) the matrix elements of x in terms of those of
v, noting, for example, that for positive @, @ = w,,, one expresses the low-frequency
real conductivity oy, from eq. A.7 inserting the volume of the system, Vol, as

RPE -
R = 223 o5 (0 — :
eo(w) Volhw - |Ugr:r[ (e wng}: (B.1)

where the cartesian index x has been dropped for the diagonal conductivity, oy, = 0.
For noninteracting quasiparticles the excited states are particle-hole excitations where
the hole can be created anywhere between € and € — hiw. Replacing the |v,,|? in this
small range by an average value v?, one obtains, since the excitations are electron-hole
oncs

we’h

Vol

where N(0) is the single-particle density of states per unit energy N (0) = n(0). Vol.
This is called the Kubo—Greenwood formula. Note that this is valid for a large enough

system having effectively a continuous spectrum. How to handle the discrete spectrum
in mesoscopics is discussed in chapter 5.

o0 =Reo(w— 0) = VNP, (B.2)

usual expression for o from eq. 5.1, one straightforwardly obtains the low-temperature
d.c. conductivity by replacing the sums by integrals and assuming that |{/|{]k)|* has
some typical value denoted by |(v)|* near e (see appendix B),

ok = me* Vol hi|(v)|*[n(0)]2. (5.3)

Here 7(0) is the density of states per unit volume, at €z. This is the Kubo—Greenwood
conductivity (Kubo 1957, Greenwood 1958).

Appendix + Chapterb from the book of Joe Imry

Question:
How to go beyond linear response?
e Average value?

e Typical value?

Answer:

“Resistor network average”

G = 7T92 <<‘Vnm|2>>

Estimate:

“Effective range hopping”

Applications:

Heating of cold atoms due to vibrating walls
[beyond the “wall formula” of Swiatecki]
Mesoscopic conductance of EMF-driven rings
[beyond the “Drude formula”]

Low frequency absorption of metallic grains

[beyond Gorkov-Eliashberg]




Rate of heating

Hiorar = {En} — [ Vo ) )W
(([Vaml*))s

gs =
<<‘Vnm|2>>a 4 mQUg N
Lwall f2

Dipr = ge 3 2

f(t) = low freq noisy driving The “Wall Formula”]

: : : ®
~» diffusion in energy space:

Degpr = gsDLRT

~» energy absorption: i
_ . o\
E = (particles/energy) x D Dywr = ge (f)

[The “Drude Formula”]




Beyond the “Wall Formula”

[ Dependence on deformation U |

= LRT (quantum)
+ SLRT (untextured)
e SLRT
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numerical results

Beyond the “Drude Formula”

[ Dependence on disorder W ]
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RMT modeling, generalized VRH approx scheme

finite bandwidth b

log-normal distribution s

(median /mean)?
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The energy absorption rate: the LRT to SLRT crossover

Hiotal = dlag{En} - f(t)vnm + F(t)an + Bath

A Y
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£? = Driving intensity

Ts = Bath temperature

diffusion

T

Dt = wq

-1
Dsirr = |1/wn)

Expressions above assume
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near-neighbor transitions only.

thermal bath

Heat (Q) Work (W) Bath = Driving




The generalized Fluctuation-Dissipation phenomenology

: D
W rate of heating i

Q rate of cooling

Hence at the NESS:

T, = (1429 p
system  — + Dg B

1/Tx
D' + D(e)~1

Experimental way to extract response:

Q)
D(e) = = - D
S Tos wo T S

Bath
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Heat (Q) Work (W)

D(e) exhibits LRT to SLRT crossover

SLRT requires resistor network calculation

Drprr Wn,

1
Dsprr = [1/wn}

Semi-linear response:
DD w] = AD[w]
D[w® +w’] > D[w*]+ D[w"]

Experimental implication:
D[)\S’(w)] - /\D[é(w)]
but...




Beyond the Fluctuation-Dissipation phenomenology:

Topological term in EAR formula

1
——EAR
—e— Ring - Chain ]
- = = Topological term
A Current
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The EAR is correlated with the current.




Why “sparsity” is interesting
The energy absorption rate (EAR) requires a resistor network calculation.
Semi-linear response characteristics, beyond LRT.
Sparsity implies a novel NESS that has glassy nature.
Novel quantum saturation effect.
Current versus driving: emergence of a Sinai regime.

Applications:
Heating rate of cold atom in billiards with vibrating walls [beyond Swiatecki]
Absorption of low frequency irradiation by metallic grains [beyond Gorkov-Eliashberg]

Conductance of mesoscopic EMF-driven ballistic rings [beyond Drude]
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Conclusions

(*) Wigner (~ 1955): ”The perturbation is represented by a random matrix
whose elements are taken from a Gaussian distribution.” Not always...

. “weak quantum chaos” =— log-wide distribution, “sparsity” and “texture”
. The heating ~ a percolation process.

. Resistors network calculation to get the response coefficient.

. RMT modeling ~» generalization of the VRH estimate.

. Experimental fingerprint: semi-linear response characteristics.

. SLRT applies if the driving is stronger then the background relaxation.
. The stochastic NESS has glassy characteristics (wide distribution of microscopic temperatures).

. Definition of effective NESS temperature, and extension of the F-D phenomenology.

. For very strong driving - quantum saturation of the NESS temperature (7" — Tw).

. Topological aspects: The emergence of the Sinai regime.

. Topological term in the formula for the heating rate.

. Applications: beyond the “Drude formula” and beyond the “Wall formula”.
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