The non-equilibrium steady state and induced current in mesoscopically glassy systems with non trivial topology: Interplay of resistor-network theory and Sinai physics

Daniel Hurowitz, Ben-Gurion University

- [1] D. Hurowitz and D. Cohen, Europhysics Letters 93, 60002 (2011)
- [2] D. Hurowitz, S. Rahav and D. Cohen, Europhysics Letters 98, 20002 (2012)
- [3] D. Hurowitz, S. Rahav and D. Cohen, arXiv (2013)

Sparse systems

In our study we consider systems that are "sparse" or "glassy", meaning that many time scales are involved.

Standard thermodynamics does not apply to such systems.

The model

System + Bath + Driving

$$w_{\overrightarrow{n}} = w_{\overrightarrow{n}}^{\beta} + \nu g_n$$
$$g_n = \text{couplings}$$

$$\frac{w_n^{\nu}}{w_{\overline{n}}^{\beta}} = \nu g_n$$

$$\frac{w_{\overline{n}}^{\beta}}{w_{\overline{n}}^{\beta}} = \exp\left[-\frac{E_n - E_{n-1}}{T_B}\right]$$

Histogram of couplings

 $\leftarrow \sigma = \text{few decades} \longrightarrow$ "sparsity" = log wide distribution of couplings

corresponds to $T_A = \infty$

corresponds to T_B = finite

Current sign reversals in the Sinai regime

 $\mathcal{E}_{\circlearrowleft}$ - Stochastic Motive Force B - Effective Activation Barrier

The number of sign changes depends on the sparsity $\approx \sqrt{\pi\sigma}$

0.5 logv [scaled]

Statistics of the Current in the Sinai Regime

Single barrier approximation for the current

$$I(\nu) \sim \frac{1}{N} w_{\varepsilon} e^{-B} 2 \sinh\left(\frac{\mathcal{E}_{\circlearrowleft}}{2}\right)$$

 $\mathcal{E}_{\circlearrowleft}$ - Stochastic Motive Force B - Effective Activation Barrier

Barrier distribution

Prob {barrier
$$\langle B \rangle \sim \exp \left[-\frac{1}{2} \left(\frac{\pi \sigma_{\rm B}}{2B} \right)^2 \right]$$

$$\sigma_{\rm B}^2 = 2\Delta^2 N \, \frac{\ln(g_{\rm max}\nu)}{\sigma}$$

The stochastic potential and SMF

Steady state rate equations:

$$I = w_{\overrightarrow{n}} p_n - w_{\overleftarrow{n}} p_{n+1}$$

Stochastic field:

$$\mathcal{E}(x_n) \equiv \ln \left[\frac{w_{\overrightarrow{n}}}{w_{\overleftarrow{n}}} \right] \approx - \left[\frac{1}{1 + g_n \nu} \right] \frac{E_n - E_{n-1}}{T_B}$$

Stochastic potential:

$$V(x) = -\int^{x} \mathcal{E}(x')dx' \approx \sum_{n} \left[\frac{1}{1 + g_{n}\nu} \right] \frac{E_{n} - E_{n-1}}{T_{B}}$$

Stochastic Motive Force:

$$\mathcal{E}_{\circlearrowleft} \equiv \ln \left[\frac{\prod_{n} w_{\overrightarrow{n}}}{\prod_{n} w_{\overleftarrow{n}}} \right] = \oint \mathcal{E}(x) dx \text{ if no driving} = 0$$

Our model:

Telescopic correlations:

$$\mathcal{E}(x_n) \sim \Delta_n \equiv (E_n - E_{n+1})$$

Yet... we have sparsely distributed couplings

Sinai diffusion [1982]:

Random, Uncorrelated & non symmetric transition rates

 \leadsto Buildup of activation barrier $B \sim \sqrt{N}$

 \sim Exponentially low current $I \sim e^{-\sqrt{N}}$

SMF vs. Driving intensity

Stochastic Motive Force

$$\mathcal{E}_{\circlearrowleft}(
u) \approx -\sum_{n=1}^{N} \left[\frac{1}{1+g_n \nu} \right] \frac{E_n - E_{n-1}}{T_B}$$

$$au \equiv rac{1}{\sigma} \ln(g_{\mathsf{max}}
u), \quad au_n = rac{1}{\sigma} \ln\left(rac{g_{\mathsf{max}}}{g_n}
ight)$$

$$\sigma = \ln \frac{g_{\text{max}}}{g_{\text{min}}}, \quad [\text{log-width of distribution}]$$

Coarse grained random walk:

$$\mathcal{E}_{\circlearrowleft}(\tau) = -\sum_{n=1}^{N} f_{\sigma}(\tau - \tau_n) \frac{E_n - E_{n-1}}{T_B}$$

$$f_{\sigma}(t) \equiv [1 + e^{\sigma t}]^{-1}$$
 ["step" function]

Sinai regime:
$$\frac{1}{g_{\text{max}}} < \nu < \frac{1}{g_{\text{min}}}$$

 $0 < \tau < 1$

Barrier Statistics

Activation Barrier \equiv Occupation range of a random walk.

$$B \approx \frac{1}{2} \Big[\max\{U\} - \min\{U\} \Big] \equiv 2R$$

• Joint probability that a RW occupies the interval $[x_a, x_b]$:

$$P_t(x_a, x_b) \equiv \operatorname{Prob}(x_a < x(t') < x_b), \quad t' \in [0, t]$$

$$f(x_a, x_b) = -\frac{d}{dx_a} \frac{d}{dx_b} P_t(x_a, x_b)$$

- Make the transformation $X = \frac{x_a + x_b}{2}$, $R = x_b x_a$
- \bullet A random walk process occupies range R:

$$f(R) = \partial_R^2 \left[R \ P_t(R) \right]$$

Survival probability of a diffusion process with initial uniform distribution: $P_t(R)$

• Solution to diffusion equation

$$\rho_t(x) = \sum_{n=1,3,5,\dots}^{\infty} \exp\left[-D\left(\frac{\pi n}{R}\right)^2 t\right] \frac{4}{\pi n R} \sin\left(\frac{\pi n}{R}x\right)$$

$$P_t(R) = \int_0^R \rho_t(x) dx = \sum_{n=1,3,5,\dots}^{\infty} \frac{8}{\pi^2 n^2} \exp\left[-D\left(\frac{\pi n}{R}\right)^2 t\right]$$

$$P_t(r) \approx \exp\left(-\frac{1}{2}\left(\frac{\pi\sigma}{R}\right)^2\right)$$

Summary of main results

- 1. Number of current sign changes is determined by log-width of coupling distribution, Expected number of sign changes $\approx \sqrt{\pi\sigma}$.
- 2. The current in the Sinai regime may be estimate by a single barrier approximation, $I(\nu) \sim \frac{1}{N} w_{\varepsilon} e^{-B} 2 \sinh\left(\frac{\mathcal{E}_{\circlearrowleft}}{2}\right)$.
- 3. Exact expression for (non-canonical!) NESS occupation probability $p_n \propto \left(\frac{1}{w(x_n)}\right)_{\varepsilon} \mathrm{e}^{-(U(n)-U_{\varepsilon}(n))}$ reflects crossover from Sinai spreading to resistor network picture.
- 4. Distribution of currents reflects underlying Barrier, random walk occupation range statistics, Prob {barrier $\langle B \rangle \sim \exp \left[-\frac{1}{2} \left(\frac{\pi \sigma_{\rm B}}{2B} \right)^2 \right]$, with $\sigma_B^2 = 2\Delta^2 N \frac{\ln(g_{\rm max} \nu)}{\sigma}$.