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Sparse systems

In our study we consider systems that are ”sparse” or ”glassy”,

meaning that many time scales are involved.

Standard thermodynamics does not apply to such systems.




The model
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Current sign reversals in the Sinai regime
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The number of sign changes depends on the sparsity ~ /7o




Statistics of the Current in the Sinai Regime
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Single barrier approximation for the current Barrier distribution
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The stochastic potential and SMF

Steady state rate equations:

I = wipn — WPt

Stochastic field:
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Stochastic Motive Force:

In {M] = 7{5(51:) dzx if no driving = 0
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Our model: Sinai diffusion [1982]:

Telescopic correlations: Random, Uncorrelated & non symmetric

E(xn) ~ Ay = (En—Fn+1) transition rates

Yet... we have sparsely distributed couplings ~> Buildup of activation barrier B ~ v/ N
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SMF vs. Driving intensity
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Coarse grained random walk:
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Expected number of sign changes ~ /7o




Barrier Statistics

Activation Barrier = Occupation range of a random walk.

B~ % [max{U} — min{U}] =2R

e Joint probability that a RW occupies the interval [z,, zp]:
Pi(xq,xp) = Prob(z, < z(t') <zp), t €]0,t]
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e A random walk process occupies range R: 1000 2000 3000
f(R) = 0%|R P(R)]
Survival probability of a diffusion process with initial uniform dis- —simulation

tribution: P.(R) - - -expression
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Summary of main results

. Number of current sign changes is determined by log-width of coupling distribution,

Expected number of sign changes ~ /7o.

. The current in the Sinai regime may be estimate by a single barrier approximation,

I(v) ~ + we e~ B 2sinh (8—0)

N 2

. Exact expression for (non-canonical!) NESS occupation probability

Pn ( 1 )ge—w(n)—Ua(n))

w(Tn)

reflects crossover from Sinai spreading to resistor network picture.

. Distribution of currents reflects underlying Barrier ,

random walk occupation range statistics,

Prob {barrier < B} ~ exp [—% (%)2}, with 04 = 2A2N M.




