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Imperfections in multimode systems lead to mode mixing and interferences between propagating modes.
Such disorder is typically characterized by a finite correlation time (in quantum evolution) or correlation
length (in paraxial evolution). We show that the long-scale dynamics of an initial excitation that spread in
mode space can be tailored by the coherent dynamics on a short scale. In particular we unveil a universal
crossover from exponential to power-law ballisticlike decay of the initial mode. Our results have
applications to various wave physics frameworks, ranging from multimode fiber optics to quantum dots and
quantum biology.
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Introduction.—The prevalence of wave coherent trans-
port in multimode systems in the presence of noisy
environments is a research theme, with relevance to a
range of physics frameworks. For example, in the frame-
works of quantum electronics, optics or matter waves the
quest to develop methods that control coherence in many-
particle systems at the quantum limit has inspired new
quantum computation and information technologies that
are emerging of late [1–4]. Recently, in the seemingly
remote field of quantum biology [5–11], researchers have
also provided experimental evidence of wavelike (coher-
ent) energy transfer in “warm, wet, and noisy” environ-
ments. A prominent example is the establishment of the
important role of coherence in optimizing photosynthesis.
Such findings triggered a number of tantalizing questions
like the possible role of coherent (quantum) physics in
brain functions, etc. It is natural, therefore, to ask whether
there are universal design principles that enforce coherence
dynamics in various wave transport settings where dynami-
cal disorder (noise) cannot be ignored.
The same basic question emerges, yet, in classical wave

transport in the framework of fiber optics [12]. Optical
fibers have revolutionized many modern technologies
ranging from medical imaging and information-transfer
technologies to modern communications. Along these
lines, multimode fibers (MMFs) [13–16] have recently
been exploited as alternatives to single mode fibers—
the latter experiencing information capacity limitations,
imposed by amplifier noise and fiber nonlinearities. What
makes MMFs attractive is the possibility to utilize the
multiple modes as extra degrees of freedom in order to
carry additional information, thus increasing the informa-
tion capacity of a single fiber. On the counter side, MMF
suffer from mode coupling due to external perturbations
(index fluctuations and fiber bending and twisting) and from
polarization scrambling effects due to fiber imperfections

(core ellipticity and eccentricity, bending, etc.). Both effects
cause cross talk and interference between propagating
signals in different modes or polarizations. To make things
worse, the fiber imperfections vary with the propagation
distance z (aka quenched disorder). It is, therefore, imper-
ative to develop theories that take into consideration the
role of disorder in the modal (and polarization) mixing and
provide a quantitative description of light transport inMMFs.
Outline.—We utilize a random matrix theory (RMT)

approach in order to unveil a physical mechanism that
shields wave coherent effects in the presence of disorder.
After a short discussion of the modeling assumptions, we
specifically consider a MMF that consists of N modes with
propagation constants βn ¼ nΔ, where n ¼ 1;…; N. Given
an initial mode excitation (labeled n0), the main objective is
to study the decay of its survival probability PðzÞ towards
the ergodic limit ∼1=N. The mode mixing is due to
quenched disorder associated with external perturbations
along the propagation direction z of the MMF. It is
characterized by its strength ε and by a correlation length
zc. From a practical as well as a physical point of view the
interest is mainly in moderate disorder of strength ε, that
can be characterized by a Fermi golden rule rate

Γ ¼ 4π

Δ
ε2; ðΔ < ε <

ffiffiffiffi
N

p
ΔÞ: ð1Þ

Consequently, we will introduce two length scales:

zΔ ≡ 2π

NΔ
; zΓ ≡ 1

Γ
: ð2Þ

The former is the short length scale over which the
bandwidth is resolved, while the latter characterizes the
nonstochastic coherent decay of an excitation. We distin-
guish between short correlation length (zc < zΔ) and long
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correlation length (zc > zΓ). In the latter regime we dis-
covered a ballisticlike decay PðzÞ ∼ 1=z as opposed to the
exponential decay for shorter zc. The universal nature of
our RMTmodeling implies that our predictions are relevant
for a variety of physical systems, such as multimode
cavities with rough surfaces, multilevel systems with
complex topology (see Fig. 1), etc. These settings can
naturally emerge in areas as diverse as mesoscopic optics,
microwaves and acoustics, to matter waves, quantum
electronics, and quantum biology.
RMT modeling.—The RMT approach typically uncovers

the most universal properties of wave transport in complex
systems, and it can therefore serve as a good starting point
for the understanding of designing schemes that protect the
wave nature of propagation against noise or disorder. In the
present context the validity of the RMTapproach, including
spatial and polarization degrees of freedom, is based on a
paraxial approximation: see the review in Ref. [15] and
some engineering-oriented publications [17,18]. The vali-
dity of the RMT modeling has been further established
experimentally [19,20]. The perturbations along the propa-
gation distance (z) of the fiber induces coupling between
the N propagating modes, and therefore it is formally
like the evolution in time (t) of a quantum system in N
dimensional Hilbert space. Based on this formal analogy
we can define the z dependent Hamiltonian H that
describes the field propagation along the MMF. This
Hamiltonian is represented by an N × N matrix. In the
absence of disorder the unperturbed Hamiltonian H ¼ H0

is diagonal in the mode representation, with elements
Hnm ¼ βnδn;m. For simplicity we assume that the mode
propagation constants are equally spaced, namely, βn ¼
nΔ, where n ¼ 1;…; N. In practice the mode spacing can
be nonuniform, but this will not affect the general con-
clusions that are presented below. For example, in the
Supplemental Material [21] we show that a (moderate)
randomization of the propagation constants has no signifi-
cant effect. For simplicity of presentation we also ignore
the polarization degree of freedom: we also show that its
presence does not alter the general picture, apart from an
abrupt 50% drop in the survival probability during the first
evolution step.

The disorder.—A key observation in the analysis below
is that any realistic disorder is characterized by a finite
correlation distance. The z-dependent Hamiltonian can be
written as H ¼ H0 þ VðzÞ, where VðzÞ is formally analo-
gous to the time dependent potential with some correlation
function hVðz0ÞVðz00Þi ¼ C½ðz0 − z00Þ=zc�. We assume that
the correlation function does not have heavy tails, and
therefore, in practice, the fiber can be regarded as a chain
of independent segments. Each segment has length zc.
The paraxial Hamiltonian of the kth segment HðkÞ ¼ H0 þ
εBðkÞ describes the field propagation under the influence of
a constant perturbation BðkÞ ¼ ðBðkÞÞ†. The perturbation
matrix is responsible for the mode mixing. The different
BðkÞ can be regarded as a set of statistically independent
random matrices of a Gaussian unitary ensemble (GUE).
For such matrix hjBj2i ¼ 2; hence the off diagonal terms of
the Hamiltonian have dispersion 2ε2 and zero average.
Note that this factor of 2 is reflected in the definition of
Eq. (1). The field propagation in each section k is described
by the unitary matrix

UðkÞ ¼ e−iðH0þεBðkÞÞzc : ð3Þ

The one step dynamics is characterized by a stochastic
kernel

Pðnjn0Þ ¼ jhnjUðkÞjn0ij2 ð4Þ

≡ð1 − λÞδn;n0 þ λWðn − n0Þ: ð5Þ

Here we averaged the one-step dynamics over realizations
of the random matrix BðkÞ. The parameter λ is defined as
the probability that is drained from the initial mode after
one step. The functionWðn − n0Þ describes the distribution
of the probability over the other modes. The modal field
amplitudes ΨnðzÞ at distance z along the MMF are deter-
mined by operating on the initial stateΨnð0Þ ¼ δn;n0 with an
ordered sequence ofUðkÞ matrices (k ¼ 1; 2;…). This multi-
step dynamics generates a distributionPzðnjn0Þ ¼ jΨnðzÞj2.
Below we discuss how Pzðnjn0Þ is related to Pðnjn0Þ, and
what are the implications regrading the survival probability

PðzÞ≡ Pzðn0jn0Þ: ð6Þ

Short correlation length.—For short segment (zc < zΔ)
the probability that is transferred to each of the N modes is
2ε2z2c; hence the total probability that is drained from the
initial mode is

λ ¼ N × 2ε2z2c ¼
z2c

zΓzΔ
: ð7Þ

As long as the first term in Eq. (5) dominates, successive
convolutions lead to exponential decay: After the first step

FIG. 1. Schematics of various multimode systems in the
presence of a noisy environment: (a) A MMF experiencing
twists, bendings, and other forms of perturbations along the
propagation direction z. (b) A multimode quantum dot (or a
multimode optomechanical cavity) with an incoherently moving
wall. (c) Random network of coupled mechanical oscillators
(slow envelope approximation) in the presence of a noisy
environment.
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the survival probability is (1 − λ), which we write as
expð−λ̃Þ, where for moderate disorder [see Eq. (1)] λ̃≈
λ ≪ 1. After t ¼ z=zc steps, if we neglect backflow, the
survival probability is expð−λtÞ. Hence,

PðzÞ ¼ exp

�
−

zc
zΔzΓ

z

�
; for zc < zΔ: ð8Þ

The above has been tested numerically using RMT model-
ing and was found to reproduce nicely the results of our
simulations for various N values, see Fig. 2(a). In the same
figure we also display the single step Pðnjn0Þ, and the
Pzðnjn0Þ distribution after 100 steps, see Figs. 2(b) and
2(c), respectively. In both instances the shape of the evolving
distribution is dominated by a delta peak around the initial
mode (n0 ¼ N=2). This delta peak is gradually drained,
until it attains the ergodic value PðzÞ ≈ 1=N. Accordingly
the exponential law holds as long as λt ≪ lnðNÞ.
Large correlation length.—For zc > zΓ it is well known

from the study of the coherent dynamics [22,23] that the
initial delta peak completely dissolves, and one obtains
Eq. (5) with λ ∼ 1 and Lorentzian line shape

Wðn − n0Þ ¼
Δ
π

Γ
½ðn − n0ÞΔ�2 þ Γ2

: ð9Þ

Recall that there is a formal analogy here with the time
evolution of a quantum system under the influence of
noise, where z is the time. Accordingly, Γ is the FGR rate of
transitions to other levels, zΓ of Eq. (2) is the Wigner decay

time, and Eq. (9) is the Wigner Lorentzian [24]. This line
shape is obtained after distance zΓ. After a larger distance
zc > zΓ the line shape does not change, but the phases of
the wave function are further randomized. It follows that
the coherent evolution over successive segments can be
approximated as a convolution of Wðn0 − n00Þ kernels. We
therefore get effectively stochastic evolution. But this
stochastic evolution does not obey the central limit theo-
rem. It is of the Levy-flight type because the Lorentzian
does not have a finite second moment. Successive con-
volutions of t ¼ z=zc Lorentzians give a wider Lorentzian
of width Γt. It follows from Eq. (9) that the survival
provability decays in a ballisticlike fashion:

PðzÞ ¼ 2
zΓzc
NzΔ

1

z
; for zc > zΓ: ð10Þ

The above picture is nicely confirmed by our numerical
analysis using RMT modeling. In Fig. 3(a) we report our
findings for the survival probability for various mode sizes
N, and perturbation strengths ε. In Fig. 3(b) we also report
the Lorentzian waveform at the end of the coherent
evolution z ¼ zc. The robustness of the Lorentzian shape
Eq. (9) against the dynamical disorder is further confirmed
in Fig. 3(c) where we plot Pzðnjn0Þ after 5 segments.
Intermediate correlation length.—Consider zΔ<zc<zΓ.

In this case, the initial spreading is dictated by a Fermi
golden rule (FGR) type picture. Namely, the probability
that is transferred to each of the modes within the

FIG. 2. (a) The decay of the survival probability for short
correlation lengths zc ¼ 0.005, and perturbation strength ε ¼ 0.5.
The units are chosen such that Δ ¼ 1. The various colored curves
indicate MMFs with different number of modes N ¼ 30, 100,
1000. The colored horizontal dashed lines indicate the ergodic
value PðzÞ ≈ 1=N. The black dashed lines indicate Eq. (8).
(b) The coherent spreading Pðnjn0Þ for z ¼ zc. (c) The spreading
profile Pzðnjn0Þ for z ¼ 100zc.

FIG. 3. (a) The decay of the survival probability for large
correlation length zc ¼ 0.32. The various colored curves indicate
MMFs with different parameters as indicated in the figure
legend. The horizontal dashed lines indicate the ergodic limit
PðzÞ ≈ 1=N. The blue dashed line indicates Eq. (10). (b) The
coherent spreading Pðnjn0Þ for z ¼ zc. (c) The spreading profile
Pzðnjn0Þ for z ¼ 5zc. In both (b) and (c) the parameters are
Δ ¼ 0.5, ε ¼ 1, and N ¼ 2000 while the red dashed line
indicates the Lorentzian of Eq. (9).
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unresolved bandwidth 2π=zc is ðεzcÞ2; hence the total
probability that is drained from the initial mode is

λ ¼ Γzc: ð11Þ

The analysis proceeds as in the discussion of the short
correlation scale, just with this different expression for λ.
Namely, as long as the first term in Eq. (5) dominates,
successive convolutions lead to exponential decay
expð−λtÞ with t ¼ z=zc. Consequently, we obtain a result
that is independent of zc, namely,

PðzÞ ¼ exp

�
−

1

zΓ
z

�
; for zΔ < zc < zΓ: ð12Þ

Equation (12) compares nicely with the numerical sim-
ulations using RMT modeling, see Fig. 4(a). Notice that as
opposed to Eq. (8), now the decay rate does not involve
the number of modes of the system N and neither depends
on zc. At the same time the envelope of the evolving
waveform acquires Lorentzian-like tails spilled all over
the N modes, see Fig. 4(b). Nevertheless, the dominant
component of the waveform is centered at the initial mode
n0. For larger propagation distances z > zΓ, the FGR
decay law Eq. (12) ceases to apply. Instead, either the
waveform reaches an ergodic distribution [see the black

line in Fig. 4(a), corresponding to N ¼ 10] or (in the case
of large number of modes N) it continues spreading, albeit
with a different form. Specifically, the previous argument
associated with the robustness of the Lorentzian wave-
form against noise takes over, and we recover the physics
that led us to Eqs. (9), (10), see Figs. 4(a), 4(c).
Strong disorder, diffusive decay.—So far we have dis-

cussed weak disorder. We now turn to discuss briefly the
strong disorder regime (ε >

ffiffiffiffi
N

p
Δ). The scenario for short

zc is formally the same as that of the “short correlation”
analysis, leading to an exponential decay. But if zc exceeds
zN ¼ 1=ð ffiffiffiffi

N
p

εÞ the probability is drained from the initial
mode, and the distribution becomes ergodic with
PðzÞ ≈ 1=N. At this stage one wonders why the naively
expected diffusive decay does not appear. Are we missing
something in the analysis? The answer is that the analysis
so far has assumed B that looks like a full GUE matrix. But
in a more general circumstance B might have a finite
bandwidth b ≪ N. The analysis for the weak disorder
regime still holds but with N replaced by b. In contrast, in
the strong disorder regime, it is well known [22] that the
saturation profile is not a Lorentzian. Rather, if zc is long
enough, the saturation profile is exponentially localized
over ξ ¼ b2 modes. Such a saturation profile has a finite
second moment. Consequently, the same argumentation as
in the “long correlation regime” implies that the width of
the distribution evolves as ξ

ffiffi
t

p
, where t ¼ z=zc is the

number of steps. This leads to the conclusion that the
survival provability decays in a diffusivelike fashion:

PðzÞ ≈ 1

b2

ffiffiffiffi
zc
z

r
: ð13Þ

Because of lack of space, we defer a more detailed
discussion of other results and a thorough analysis of
the decay of the survival probability for the more realistic
case where b ≪ N to a later publication [25].
Summary.—We have illuminated the interplay between

the short time coherent evolution and the longtime sto-
chastic spreading in multimode systems. The correlation
scale zc of a disordered environment determines the cross-
over from an exponential decay to diffusivelike or ballistic-
like decay. The latter is due to a Levy-type spreading which
is implied by convolution of Lorentzian kernels. We would
like to highlight, once again, the novelty of the analysis
of the large correlation length regime, leading to Eq. (10).
It delivers the message that Levy-flight type dynamics is
generically expected once the finite correlation of the
disorder is taken into account. This should be contrasted
with the exponential decay in the FGR regime (for inter-
mediate correlation scale), which is demonstrated for the first
time in the present context, but it is not novel in the traditional
quantum context of time dependent dynamics. Our results
have been formulated using a universal RMT modeling.
A future direction that we currently pursue [25] is to design

FIG. 4. (a) The decay of the survival probability for inter-
mediate correlation length zc ¼ 1, and perturbation strength
ε ¼ 0.05. The units are chosen such that Δ ¼ 1. The various
colored curves indicate MMFs with different numbers of modes
N ¼ 10, 100, 1000. The colored horizontal dashed lines indicate
the ergodic limit PðzÞ ≈ 1=N. The brown dashed line indicates
the FGR exponential decay Eq. (12), while the blue dashed line
indicates the power-law decay Eq. (10). (b) The coherent
spreading Pðnjn0Þ for z ¼ zc. (c) The spreading profile
Pzðnjn0Þ for z ¼ 1000zc. In both (b) and (c) the parameters
are Δ ¼ 1, ε ¼ 0.05, and N ¼ 1000 while the red dashed line
indicates the Lorentzian of Eq. (9).
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other coupling schemes for which the one-step coherent
evolution leads to tailored anomalous decay of the survival
probability.
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