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Persistent currents in Möbius strips
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The relation between the geometry of a two-dimensional sample and its equilibrium physical properties is
exemplified here for a system of noninteracting electrons on a Mo¨bius strip. Dispersion relation for a clean
sample is derived and its persistent current under moderate disorder is elucidated, using statistical analysis
pertinent to a single sample experiment. The flux periodicity is found to be distinct from that in a cylindrical
sample, and the essential role of disorder in the ability to experimentally identify a Mo¨bius strip is pointed out.
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I. INTRODUCTION

An important theme in quantum mechanics is to find
relation between a global geometry of a sample~e.g., bound-
ary conditions! and its physical properties. We address t
issue by comparing flux periodicity of persistent currents i
cylinder and in a Mo¨bius strip. The aim is to determin
whether the geometrical~in some sense topological! differ-
ence is tangible and experimentally observable. At zero t
perature, the persistent currentI (f) in a ring can be ex-
pressed as1

I ~f!52
]E~f!

]f
5 (

n51

`

I nsin~2pnf!, ~1!

wheref is the magnetic flux threading the ring in units
F05hc/e, E(f) is the ground-state energy, andI n are the
current harmonics.

The currentI (f) is an antisymmetric and periodic func
tion of f with period 1. Possible occurrence of smaller fl
periodicity in mesoscopic physics is one of the cornersto
of weak localization. For the cylinder geometry, conductan
measurements2 and magnetization of 107 copper rings3 indi-
cate the emergence of periodicity 1/2. It is shown to be in
mately related to the procedure ofaveragingover disorder
realizations and numbers of electrons in the rings.4–6,2 Very
recently, a microscopic NbSe3 Möbius strip has been
fabricated.7 Obviously, in this case, attention should be f
cused on asingle samplemeasurement8 for which there is no
self-averaging.

Let us first mention several intuitive points relevant to t
flux periodicity in the Möbius strip, based on semiclassic
arguments and geometry.9 First, recall that the periodicity is
related to interference between trajectories~such as
Aharonov-Bohm interference between different trajector
or weak-localization interference between time-rever
paths!. In the cylinder~Möbius! geometry, an electron mov
ing in the longitudinal directionalong the ring encircles the
system once~twice! before returning to its initial position
Therefore, we might expect different flux periodicities of t
persistent current between the two cases. Second, unli
cylinder which can be ‘‘pressed’’ into a one-dimension
ring, the Möbius strip cannot be pressed into a on
0163-1829/2003/67~12!/125319~5!/$20.00 67 1253
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dimensional structure. This brings in another important f
tor, namely, the motion of electrons in thetransversedirec-
tion. In a tight-binding model this motion is controlled by th
transverse hopping. If it is very weak, the twice-encircli
property of the Mo¨bius strip implies the dominance of eve
harmonicsI 2n . On the contrary, for a strong transverse ho
ping, the current in the Mo¨bius strip is expected to be effec
tively similar to that in the cylindrical strip.10 In the follow-
ing we are mainly interested in a regime where the transve
hopping is slightly less than longitudinal one. Third, the ro
of disorder should be carefully examined. Weak disorde
not expected to significantly alter interference between se
classical trajectories discussed above, while strong diso
should result in a reduced sensitivity to the pertinent geo
etry, due to localization effects. The most intriguing disord
effect might then be expected in a moderate strength of
order which will be used below. The upshot of the pres
study is that the periodicity pattern in a Mo¨bius strip is re-
markably distinct from that of a cylinder, and that disord
plays a crucial role in making the statistical effect detectab

II. MODEL

A Möbius strip is modeled by considering a nonintera
ing particle in a rectangle of lengthLx and widthLy , requir-
ing its wave functionc(x,y) to satisfy Dirichlet boundary
conditions ~BC! in the y direction, and Mo¨bius boundary
conditions11 in the x direction:

c~x,2Ly/2!5c~x,Ly/2!50 ~Dirichlet BC!, ~2!

c~x1Lx ,y!5c~x,2y! ~Möbius BC!. ~3!

The quantized wave numbers areky5(p/Ly)ny and

kx5(2p/Lx)(@
1
2 #ny

1nx), where ny51,2, . . . and

nx50,61,62, . . . . Thenotation @a#n representsa for n
5even and 0 forn5odd. In the cylinder geometry, Eq.~3!
should be replaced byc(x1Lx ,y)5c(x,y), and giveskx
5(2p/Lx)nx . Thus, only theny5even eigenstates are a
fected by the switch from the conventional cylinder~peri-
odic! boundary conditions to the Mo¨bius ones.
©2003 The American Physical Society19-1
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In the absence of disorder, the energies of the eigens
both in the Möbius and cylinder strips are given by the fo
mula

Enxny
5exS kx2

2pf

Lx
D1ey~ky!, ~4!

whereex andey provide the dispersion relation. Equation~4!
is rather general for clean systems. To be more specific, le
model the Mo¨bius strip by a tight-binding Hamiltonian. Th
Möbius strip is constructed from a rectangular lattice inclu
ing N32M sites. The rectangle is twisted by 180°, and
two sides are connected, such that longitudinal wire 1
attached to wire 2M , wire 2 is attached to wire 2M21, and
so on. The Mo¨bius strip so constructed includesM longitu-
dinal wires with 2N sites on each one. The Hamiltonian
then

HM öbius5 (
n51

2N

(
m51

M

@«nmcnm
† cnm2t1e22p if/Ncnm

† cn11m#

2t2(
n51

2N

(
m51

M21

cnm11
† cnm2

t2

2 (
n51

2N

cnM
† cn1NM1H.c.,

~5!

where cnm is the fermion operator at the site (n,m)
(n51,2, . . . ,2N, m51,2, . . . ,M ) andt1 andt2 are longitu-
dinal and transverse hopping amplitudes, respectively.
quantity«nm is the site energy. Connecting the two sides
the rectangle without twisting, we obtain a cylindrical str
that includes 2M longitudinal wires composed ofN sites.
The Hamiltonian of the cylinder is

Hcylinder5 (
n51

N

(
m51

2M

@«nmcnm
† cnm2t1e22p if/Ncnm

† cn11m#

2t2(
n51

N

(
m51

2M21

cnm11
† cnm1H.c. ~6!

Locally the two Hamiltonians~5! and~6! look the same. But
there are a couple of essential differences between them

~a! The Möbius Hamiltonian~5! includes an extra term
that describes long-range hopping between distant part
the M th wire.11

~b! While the magnetic phase accumulated along the l
gitudinal direction on each link is the same~that is,
2pf/N), the corresponding number of links is different (2N
for the Möbius strip andN for the cylinder!.

III. THE SPECTRUM

We first consider a system without disorder, name
«nm50. The dispersion relation for an electron in the M¨-
bius strip reads
12531
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Enxny
522t1cosF2p

N S F1

2G
ny

1nx2f D G
22t2cosS p

2M11
nyD , ~7!

wherenx51, . . . ,N andny51, . . . ,2M . Defining new indi-

cesk5@1#ny
12nx and q5@ 1

2 #k1ny/2, one obtains a more
suggestive form,

Ekq522t1cosFpN ~k22f!G22t2cosF p

2M11
~2q2@1#k!G ,

~8!

where k51, . . . ,2N and q51, . . . ,M . It is instructive to
compare it with the energy in the cylinder geometry,

Ekq522t1cosF2p

N
~k2f!G22t2cosS p

2M11
qD ,

wherek51, . . . ,N andq51, . . . ,2M . Despite the apparen
similarity between these two spectra, there are at least
important differences. First, the combination of flux and lo
gitudinal momentum is distinct, namely, it isk2f for the
cylinder andk22f for the Möbius strip. For a small ratio
t2 /t1 this might affect the periodicity of the current.10 Sec-
ond, the miniband structure is different.

We now turn to elucidate the current in disordered Mo¨bius
strips. The random numbers«nm are assumed to be un
formly distributed over the range2W/2<«nm<W/2, where
W represents the strength of disorder. The Hamiltonian
~5! @or Eq. ~6!# is treated numerically. As an example, th
evolution of single-particle energies with flux in a disorder
Möbius strip withN520 andM510 is shown in Fig. 1. The
parameters aret2 /t150.5 and W/t150.5. The pattern of
avoided crossing turns out to be remarkably different fro
that for a cylinder~see Fig. 1 of Ref. 5 therein!. It must then
be reflected in the behavior of persistent currents.

FIG. 1. Single-particle energy spectrum as a function of fl
threading the Mo¨bius ring. The 195th–200th energy levels a
shown. The parameters areN520, M510, t250.5, andW50.5.
Energies are measured in units oft1.
9-2



p
ce
ing

-

th
o

f-

is

n

s
r

se
m

ce
ha

nts
is-
hat
ging
cal

be
rtu-
er-
be

o

cu-
tis-

.

.
rent

The
s’’
h
nt of
r
e

s

re

se

ure,
and
still
r
an

or

th
rg
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The first stage of the analysis is an inspection of the ty
cal values ofI n , aiming in determination of their dependen
on the ratiot2 /t1. As expected, in the absence of averag
we find typicalI 1 dominance in case of the cylinder geom
etry irrespective of thet2 /t1 ratio. For the Mo¨bius geometry
the emerging picture is quite different. Figure 2 shows
Fourier components of the persistent current for a clean M¨-
bius strip as a function of the ratiot2 /t1 at and below the
half filling (Ne5200). For small ratios~t2 /t1,0.1) we find,
as can be naively expected,I 2 dominance. The expected e
fect of averaging in the cylinder case is to emphasize theI 2
contribution, while in the Mo¨bius case the expected effect
to emphasize theI 4 contribution. For clean Mo¨bius strip the
I n with oddn, as a function of the number of electronsNe , is
antisymmetric around half filling. ThereforeI 1 and I 3 com-
pletely vanish@Fig. 2~a!# ~see further discussion in Sec. V!.
To avoid this particularity at the half filling, we display i
Fig. 2~b! also the case where the number of electrons (Ne
5190) is below half filling. For large ratios (t2 /t1.0.8) we
observe in Fig. 2~b! a cylinderlike regime where there i
typically I 1 dominance. This is because the strong transve
hopping changes the periodicity of the Mo¨bius strip to that of
the conventional cylinder. The somewhat unexpected ob
vation is that there is a distinct wide intermediate regi
(0.1,t2 /t1,0.8) whereI 1 , I 2 , I 3, and I 4 are all compa-
rable. This is the regime that is of experimental relevan
The expected effect of averaging in this regime is to emp
size both theI 2 and theI 4 contributions.

FIG. 2. Fourier components of the persistent current for
clean Möbius strip as a function of the transverse-hopping ene
~a! at the half filling and~b! below the half filling. The size of the
Möbius strip is given byN520 andM510.
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IV. STATISTICAL ANALYSIS

The problem arising in the analysis of persistent curre
in disordered Mo¨bius strips is how to characterize the stat
tics of the calculated data. It was already pointed out t
essential properties of observables result from the avera
procedure and the nature of the underlying statisti
ensemble.4–6 On the other hand, fabrication of a Mo¨bius
strip requires an outstanding effort,7 and hence, anticipated
measurements of the persistent current would probably
performed on a single sample. Thus, somewhat unfo
nately, the important results reported therein and the pow
ful calculation methods based on supersymmetry might
less useful forsingle-sampleexperiments since there is n
averaging.

What is then the most efficient way to present our cal
lated results? The answer is provided by elementary sta
tics. An experimental result consists of a set ofK measure-
ments I (f i), i 51,2, . . . ,K performed on a given sample
This sample is taken out of an ensemble of Mo¨bius strips
with different disorder realizations, electron numbersNe , as-
pect ratios, etc. The set$I (f i)u i 51, . . . ,K% can be regarded
as an instance of a random vector in aK dimensional space
Alternatively, this instance can be represented by the cur
harmonics (I 1 ,I 2 , . . . ) defined via Eq.~1!. For our purpose
it seems adequate to keep only the first four harmonics.
relevant statistical ensemble is then a set of ‘‘point
(I 1 ,I 2 ,I 3 ,I 4) in four-dimensional probability space, eac
point corresponds to a possible experimental measureme
the current on theentiref interval. Let us denote the numbe
of points within an infinitesimal four-dimensional volum
element by P(I 1 ,I 2 ,I 3 ,I 4)dI1dI2dI3dI4. The distribution
functionP is normalized toN, the total number of member
in the ensemble. The most probable~typical! experimental
result is then determined by the quadrupleI 1 ,I 2 ,I 3 ,I 4 at
which P is maximal. Another quantity, which seems mo
informative and easy to analyze, is the distribution

pn~ I n!5E
0

uI nu/2
P~ I 1 ,I 2 ,I 3 ,I 4! )

mÞn
duI mu. ~9!

This corresponds to the possibility of finding a sample who
current I (f) is approximately described byI (f)
'I nsin(2pnf). @For a sample counted bypn(I n), all the har-
monics other thanI n are at most half ofI n in magnitude#.
The number of members in the ensemble that exhibitI n

dominance is thereforeNn5*0
`pn(I n)duI nu. If Nn.Nm for

anymÞn, the typical periodicity ofI (f) is dominantly 1/n.
In actual calculations, we assume that the lattice struct

the aspect ratio, and the strength of disorder are fixed,
that the temperature is very low. Then, two quantities are
fluctuating, namely, the filling factor~or the electron numbe
Ne) and the specific realization of disorder. We generate
ensemble ofN5N aN b members corresponding toN a con-
secutive values ofNe , usually around half filling, andN b

realizations of disorder for each one of them. Actually, f
our systems of sizeN520, M510 with t151, t250.5, and
W50.5, we take 150<Ne<250, henceN a5101 andN b

e
y
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5250, so thatN525 250. The distributionspn(I n) for the
cylinder and Mo¨bius ensembles are shown in Fig. 3.

V. MAIN OBSERVATIONS

The most striking result that can be deduced from Fig.
the essential reduction ofN1 for the Möbius ensemble com
pared with the cylinder one. For the present ratioN/2M
51, there is also a strong tendency towardsF0/4 periodic-
ity, sinceN4.NmÞ4 for the Möbius ensemble. This result i
intriguing, because here we have no averaging procedure
is crucial to get the 1/2 periodicity in cylindrical strips. How
ever, this 1/4 periodicity emerges only for the specific ra
N/2M51. We have calculated the distributionspn(I n) for
Möbius strips with several aspect ratios. The value ofNn
depends on the aspect ratio. No specificn gives prominent
Nn independently of the aspect ratio. On the other hand,
collapse ofI 1 dominance in the Mo¨bius ensemble is robus
and persists in systems with different ratiosN/2M as well.
We can safely say thatN1 , N2 , N3, and N4 become all
comparable in the Mo¨bius ensemble.

The natural question that comes to mind is whether
result is a consequence of the Mo¨bius geometry or, rather
is it due to the presence of disorder. In order to answ
this question, we have performed the calculation
P0(I 1 ,I 2 ,I 3 ,I 4) for a ‘‘clean’’ Möbius ensemble~without
disorder, onlyNe is being changed!. We found that the prob-
ability to find any I n dominance is extremely small. Th
immediate conclusion is that disorder is essential for

FIG. 3. The distributionspn(I n) (n51,2,3,4) defined by Eq.~9!
for the cylinder and Mo¨bius ensembles. The numbers of memb
with I n dominance areN1515,829, N25382, N354, and N4

5439 for the cylinder ensemble, andN151,562, N25336, N3

5384, andN451,992 for the Mo¨bius ensemble.
12531
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identification of Möbius strips viaI n.1 dominance. Does
this mean that interference or weak-localization effe
due to the presence of disorder are important? To cla
this point, we should understand howP0(I 1 ,I 2 ,I 3 ,I 4)
is modified by disorder. The distributionP0(I 1 ,I 2 ,I 3 ,I 4)
is, in fact, a function defined on a one-dimensional cu
@ I 1(Ne),I 2(Ne),I 3(Ne),I 4(Ne)# in (I 1 ,I 2 ,I 3 ,I 4) space. For
this reason, it is unlikely to find a sample where one of theI n
is dominant. The effect of disorder is to give some ‘‘thic
ness’’to this curve~see Fig. 4!. Taking into account that the
amplitudes ofI n(Ne) for Möbius strips are all comparable
the thickness gives a finite probability to find samples wh
one of theI n is dominant. On the contrary, in the case
cylindrical strips, the amplitude ofI 1(Ne) is overwhelmingly
larger than those ofI nÞ1(Ne), which makes it unlikely to
find I nÞ1(Ne) dominated samples even if we take the sta
tical effect of disorder into account. We should note here t
the functionI n with odd n for the clean Mo¨bius strip is an
even function around half filling (Ne5200) and an odd func-
tion for oddn, while the functionI n for arbitraryn is an even
function in the cylinder case.

Our findings regardingNn for the Möbius ensemble are
based on the fact that the amplitudes ofI n(Ne) are all com-
parable for Mo¨bius strips. As we have observed in Fig.
this is a robust statistical property in the intermediate regi
0.1,t2 /t1,0.8. The choicet2 /t150.5 above provides typi-
cal results forpn(I n) andNn in case thatt2 /t1 is within this
distinct regime.

VI. CONCLUSIONS

We have studied the persistent currents of noninterac
electrons in Mo¨bius strips. The spectral properties for a cle

s

FIG. 4. I 1 and I 2 as functions ofNe for the ordered~solid line!
and disordered~dots! systems. Parameters describing the syste
are the same as those for Fig. 3.
9-4
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PERSISTENT CURRENTS IN MO¨ BIUS STRIPS PHYSICAL REVIEW B67, 125319 ~2003!
system were found analytically, and the effect of disorder
the currents was analyzed numerically. We have found
disorder is quite essential for the identification of Mo¨bius
strips. The issue of disorder averaging is not relevant
single sample experiments, and hence, special care is
quired for statistical analysis of the current harmonics. T
fingerprint of the Mo¨bius geometry is an enhanced prob
bility to find samples in whichI n , with n.1, dominates.
This should be contrasted with the case of cylinder g
metry, where there is a clearI 1 dominance. The above asse
tion regarding the fingerprint of the Mo¨bius geometry is
d

tt

N

.J
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correct, provided the effect of disorder is properly tak
into account.
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