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The microscopic onset of irreversibility is finally be-
coming an experimental subject. Recent experiments
on microscopic open[1–3] and even isolated systems[4]
have measured statistical properties associated with en-
tropy production, and hysteresis-like phenomena have
been seen in cold atom systems with dissipation (i.e. ef-
fectively open systems coupled to macroscopic reservoirs)
[5, 6]. Here we show how experiments on isolated sys-
tems of ultracold atoms can show dramatic irreversibility
like cooking an egg. In our proposed experiments, a
slow forward-and-back parameter sweep will sometimes
fail to return the system close to its initial state. This
probabilistic hysteresis is due to the same non-adiabatic
spreading and ergodic mixing in phase space that ex-
plains macroscopic irreversibility, but realized without
dynamical chaos; moreover this fundamental mechanism
quantitatively determines the probability of return to
the initial state as a function of tunable parameters in
the proposed experiments. Matching the predicted curve
of return probability will be a conclusive experimental
demonstration of the microscopic onset of irreversibility.

Put a raw egg in a pot on the stove and turn the burner
knob; after a while, turn the knob back. The failure of
the egg to return to its initial raw state, even though
all the control parameters have returned to their initial
settings, is a paradigm for macroscopic irreversibility. We
may extend the egg-cooking paradigm to microscopic
irreversibility by translating it into mechanical terms.
Let a system begin in some preparable initial state and
evolve under a Hamiltonian with a time-dependent control
parameter which is slowly tuned away from its initial value
and then tuned back in exactly the time-reversed manner.
When the control parameter is returned to its initial value,
does the system then also return to its initial state? The
egg example shows that the answer can often be No—in a
large and complex dynamical system. How does this form
of irreversibility first begin to arise in small systems?

Cooking a microscopic egg. This question can be an-
swered in a sufficiently well isolated Bose-Einstein con-
densate (BEC) in which the interacting bosons can only
populate two single-particle states. We assume a Bose-
Hubbard form of Hamiltonian with attractive interaction
strength U and hopping rate Ω:

Ĥ

h̄
= −Ω

2
(â†1â2 + â†2â1) +

Uh̄

2
(n̂2

1 + n̂2
2) +

∆(t)

2
(n̂1 − n̂2)

(1)

where n̂j = â†j âj and ∆(t) is a tunably time-dependent
energy bias between the two states. Hamiltonians of this

FIG. 1. Each black dot shows the particle number n1 as
simulated raw data for one of 200 simulated experimental runs,
for each of several sweep extents ∆0. All runs have N particles,
Uh̄N = −3Ω, ∆i = −2Ω, and energy randomly chosen in the
range −1.68h̄ΩN < H(−T ) < −1.63h̄ΩN ; runs have different
one-way sweep durations T in order to maintain the same
sweep rate (|∆i| + |∆0|)/T = 2 · 10−4Ω2 for all runs. The
left-most column (shaded) shows a typical initial distribution
of n1(−T ); other columns show the final distribution n1(T ) for
various ∆0 from 0.4Ω to 1.8Ω. Each column is shown directly
above its corresponding ∆0 value, but the horizontal position
of dots within each column is a random displacement added to
let all dots be seen. The open circles show the fraction of runs
(right vertical axis) in which the final n1(T ) lies well outside
the initial range, out of a ten-times larger set of simulated runs
for each ∆0; the error bars are the expected sampling error
for 2000 runs. The solid curve is the theoretically predicted
return probability P (∆0, U,Ω, N) for this initial ensemble (see
Methods), in the limit T →∞. Our finite T simulations do not
match this adiabatic limit, and neither will any finite-duration
experiments, but they can approach the infinite-duration curve
closely enough that the onset of probabilistic irreversibility
around ∆0 ∼ 0.8Ω should be clearly observable, in experiments
as it is here.

form have already been realized in cold-atom experiments
[6–10]; if dissipation and external noise can be kept negli-
gible over times T � 1/Ω then this kind of system can
be used to probe isolated-system irreversibility.

As the analog for the initial raw egg, let the system be
prepared initially in a low-temperature canonical ensemble
with large negative ∆I , such that almost all particles are
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in mode 1. Our microscopic analog for heating and cooling
the egg will be to sweep ∆(t) slowly from an initial value
∆I at the initial time t = −T to some ∆0 at t = 0, and
then reverse the sweep so that ∆(t) is again ∆I at the
final time t = +T :

∆(t) = ∆I
|t|
T
−∆0

(
1− |t|

T

)
. (2)

Our proposal is then to perform a series of identical
experiments with this kind of forward-and-back sweep,
similar to the procedures already used in [6], only without
dissipative relaxation to local energy minima. In each
experiment the number n1 of atoms in mode 1 is measured
at the final time T and recorded, so that we obtain a
distribution of final values n1 for that sweep extent ∆0.
The whole series of experiments is then repeated for a set
of different values of ∆(0), with no other changes in the
procedure.

With attainably large numbers of particles N a semi-
classical threory of evolving a cloud of phase space points
under classical equations of motion should be accurate
for such a set of experiments, with quantum corrections
potentially observable at smaller N . We therefore use
this approximation to compute the simulated observa-
tions shown in Fig. 1. Apart from the left-most column of
points, each point in the Figure represents the final n1(T )
measured in one experimental run. Each separate column
of points represents the subset of experiments performed
with a different ∆0; the vertical position of each dot shows
n1(T ), while the horizontal spread of points within each
column is simply a random offset used to make the points
visible. The left-most column of points shows the distri-
bution n1(−T ) in the initial ensemble, which is the same
for all runs. To simplify our discussions below, the initial
thermal ensemble has been idealized as micro-canonical
with a finite energy width; real finite temperature will
spread the point distributions vertically.

Up to a certain threshold sweep extent ∆0, the final
distribution of n1 remains indistinguishable from the ini-
tial distribution in every experimental run. Above this
threshold ∆0, however, some runs will end with n1(T )
far below the initial range. As the sweep extent ∆0 is
raised further, the proportion of these anomalous runs
rises, until a plateau is reached. Thus for all values of
experimental parameters there is a clearly measurable
probability P (∆0, U,Ω, N) that the final state of the sys-
tem will be the same as the initial state after the slow
forward-and-back sweep. This return probability P is
one up to a threshold ∆0, then falls smoothly to a lower
plateau.

This phenomenon is the microscopic onset of irreversibil-
ity. If the initial distribution of n1(−T ) corresponds to
the raw state of an egg, then the anomalous final state
with n1(T ) well below the initial range represents the
cooked egg. The continuous onset of irreversibility oc-
curs not through the final state gradually becoming more
distinct from the initial state until a macroscopic differ-
ence like that between raw and cooked is attained, but

rather through an anomalous final state, which even in
the microscopic system is quite distinct from the initial
state, becoming continuously more probable. To support
this interpretation it suffices to look at the semiclassical
theory that describes the experiments.

Phase space picture. A mean field approximation of Ĥ
[11] in convenient canonical variables (q, p) (see Methods)
is

H =− Ω
√
p2

0 − p2 cos(q) + U
(
p2

0 − p2
)

sin2(q)

+ ∆(t)
√
p2

0 − p2 sin(q) .
(3)

With the protocol (2) for ∆(t), our dynamics under H has
Loschmidt time-reflection symmetry about the instant t =
0: for every solution q(t), p(t) to the equations of motion,
q(−t),−p(−t) is also a solution. Individual solutions are
in general not their own images under time-reflection,
however; even in the adiabatic limit where T → ∞ the
solutions may have significantly different initial and final
energies, because for Uh̄N/Ω < −1 and certain ranges of
∆, H can have an unstable fixed point and a separatrix
(see Methods) where the adiabatic approximation breaks
down locally.

The effect of the separatrix is illustrated in Fig. 2,
which shows five instants in the evolution of a sample of
phase space points, only some of which return close to
their initial state after the slow forward-and-back sweep
of ∆. Fig. 2 also shows the evolution of the energeti-
cally allowed phase space shells within which the system
points adiabatically orbit. The initial ensemble lies en-
tirely within the upper separatrix lobe denoted Au. As
∆ rises, the separatrix shrinks into the ensemble, which
spills non-adiabatically into the lower lobe Al. As this
happens, the energy shell within which all points were
initially distributed merges with a higher-energy shell that
was initially unoccupied. Subsequent adiabatic orbiting
distributes the system points throughout the combined
shell; even without chaos, the many orbits performed
during the slow ∆ sweep effectively swirls the points uni-
formly throughout the whole energetically available region
[12, 13] (left inset). The fact that this effective ergodiza-
tion occurs with only a separatrix instead of full chaos
is surprising but simple (see our Methods), and it makes
possible these simple experiments.

In the backwards sweep the single adiabatic shell splits
back into disjoint inner and outer shells, in the exact
time-reverse of the forward sweep. The distributed points
do not all find their way back into the inner shell from
which they started, however. Instead, because the initial
points are effectively randomly distributed throughout
the larger shell, the fraction of a thin initial energy shell
which finally returns to that shell is given by the ratio of
the phase space area of the initial shell to the larger area
which the ensemble quasi-ergodically fills at t = 0. To
generalize beyond thin initial energy shells to a general
equilibrium phase space distribution function f(Ei) with
negligible support outside the initial separatrix, we can
simply integrate over initial energy Ei. In our Methods
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FIG. 2. Evolution of 500 initial points (black dots) in
(q, p) phase space under (3,2) with Uh̄N = −3Ω, ∆i =
0.6Ω, ∆0 = 1.2Ω and T = 3000Ω−1, shown at the times
(−T,−T/2, 0, T/2,+T ). The gray shaded region is the ener-
getic envelope of all the points at time 0, evolved backward
in time to −T/2 and −T as well as forward to +T/2 and +T .
Since the shaded region at time 0 has reflection symmetry in
p, its evolution has time reversal symmetry, and so it is the
same at times ±T/2 and ±T . The dashed line indicates the
separatrix; the areas of its ∆-dependent upper and lower lobes
are denoted Au,l(∆). The left inset panel is a zoom of a small
region inside the indicated box in the energy shell at t = 0, and
shows what a continuous ensemble that uniformly filled the
inner energy shell at t = −T would look like at t = 0. Within
the small zoomed region the stripes are indistinguishable from
instantaneous energy contours, but around the energy shell
the stripe energies slowly drift: in fact the many stripes are a
single continuous swirl that wraps around the shell many times.
The initial microcanonical ensemble is thus spread uniformly
through the larger, merged energy shell at t = 0, yet without
violating Liouville’s theorem. The finite set of black points
samples this effectively ergodizing ensemble; the fraction of
points that return to the inner shell can be computed in terms
of phase space areas via Kruskal’s theorem.

we use the Kruskal-Neishtadt-Henrard theorem [14–17]
to derive the return probability

P = 1−
∫

dEi
dAi

dEi
f(Ei)θ

(
Ei−Ē(∆0)

) A′l(Ei) +A′i(Ei)

A′l(Ei)
,

(4)
where Ai(Ei) is the area enclosed by the initial energy
contour H(q, p,−T ) = Ei. For each Ei, Al(Ei) is the
area that the lower lobe of the separatrix will have at
the time when the upper lobe has area Au(∆) = Ai(Ei);

note that this implies A′u(Ei) < 0. The minimum energy
Ē(∆0) is the lowest initial energy contour which will meet
the separatrix before the sweep reverses at t = 0. This
formula defines the curve in Fig. 1, for the finite-width
microcanonical ensemble specified in the caption.

Our entire scenario is thus a surprisingly simple re-
alization within a two-dimensional phase space of the
same dynamical mechanism that makes Joule expansion
of a classical gas irreversible. An episode of spontaneous
non-adiabatic evolution, during which an initial ensemble
expands into a larger phase space volume, is followed by
effective ergodization which finely mixes the ensemble
throughout that larger volume, without breaking Liou-
ville’s theorem. In the microscopic case the non-adiabatic
episode is the separatrix crossing, where adiabaticity
breaks down due to intrinsic dynamical instability in the
system even though external parameter change remains
slow. The subsequent ergodic-like mixing within each
energy shell occurs without chaos as the ensemble swirls
around the larger shell many times [12, 13]. In the micro-
scopic system the larger space into which the ensemble is
mixed is larger only by a modest factor. Scaled up to the
higher-dimensional phase space of a macroscopic system,
however, the basic mechanism of expansion and ergodiza-
tion can easily account for macroscopic irreversibility by
bringing the return probability P to near zero.

Outlook. The microscopic onset of irreversibility can
be observed unambiguously with ultracold atoms as a
dramatic phenomenon with final ‘raw and ‘cooked states
that differ by particle numbers large enough to be distin-
guished without precise atom-counting. Detailed agree-
ment between measured and predicted P (∆0, U,Ω, N, T )
will also confirm that it is really the target phenomenon
of microscopic irreversibility that is being observed.

Once this is confirmed, the experimental foothold in
the frontier of microscopic irreversibility can be expanded
in many directions. Reducing atom number N will
strengthen quantum effects[18]. Letting more than two
modes be populated can introduce dynamical chaos[19].
And protocols more complex than the symmetric forward-
and-back sweep can seek to test when the microscopic ‘egg
not only fails to return to its raw state adiabatically but
becomes impossible to ‘uncook by any available means.
The simple case we have shown will be just the beginning.

Methods

Mean field approximation of (1): Instead of using âi
operators we can express the Hamiltonian operator (1)
using the Schwinger angular momentum representation

L̂x =
h̄

2

(
â†1â2 + â†2â1

)
L̂y =

h̄

2
(n̂1 − n̂2)

L̂z =
ih̄

2

(
â†1â2 − â†2â1

)
,

(5)
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giving

Ĥ = −ΩL̂x + U

(
L̂2
x + 2L̂2

y + L̂2
z −

N̂ h̄2

2

)
+ ∆L̂y, (6)

with N̂ = n̂1 + n̂2. The mean field approximation corre-
sponds to replacing the Hermitian L̂i by real variables Li

within each subspace of N̂ eigenvalue N . We can then
introduce canonical coordinates (q, p) via Lz = p and

Lx + iLy =
√
p2

0 − p2eiq, where p0 = Nh̄/2. In these co-
ordinates the mean field Hamiltonian is (3) after dropping
an inconsequential constant.

Unstable fixed point and separatrix: When an external
parameter in a Hamiltonian is slowly varied, the adiabatic
theorem ensures the conservation of the action (enclosed
phase space area) of each orbit. This means that orbits
are smoothly deformed, but the evolution with the time
dependence of the external parameter inverted would
lead to exactly the same deformation in reverse. The
occurrence of irreversibility in our system is due to a
localized failure of the adiabatic theorem. This happens
because our system can have an unstable fixed point,
in whose vicinity the orbital period diverges and the
condition for the validity of the adiabatic theorem can
never be met. The condition for a fixed point (qc, pc) is
q̇ = ∂H2/∂p = 0 and ṗ = −∂H2/∂q = 0, which leads in
our case to pc = 0 and

Ωp0 sin(qc) + 2Up2
0 sin(qc) cos(qc) + ∆p0 cos(qc) = 0. (7)

This equation can be solved analytically, but the solutions
are lengthy expressions. For any given values of Ω, U,N,∆
the equation is also easily solved numerically. It turns
out that there always exist at least two dynamically sta-
ble solutions (the energy maximum and minimum). For
Uh̄N/Ω < −1 and certain ranges of ∆ there exist two
more solutions, corresponding to an additional energy
minimum and an unstable fixed point[20–23]. The sep-
aratrix is then the figure-eight-shaped energy contour
passing through the unstable fixed point, as shown in
Fig. 2. We refer to the two regions that are bounded by
the separatrix figure-eight as the upper and lower lobes
(see Fig. 2); they meet at the unstable fixed point but
are otherwise disjoint. In all our ∆ sweeps, the upper
lobe may be said to exist from the beginning, with the
lower lobe appearing and growing while the upper lobe
shrinks. If the sweep extends far enough, the upper lobe
eventually disappears.

The location of the fixed point depends on the bias
∆, and so also does the separatrix energy Ec = H(qc, 0).
The areas of the upper and lower separatrix lobes,

Au = 2

∫ qmax

qc

dq p (H = Ec, q) (8)

and

Al = 2

∫ qc

qmin

dq p (H = Ec, q) , (9)

where qmin and qmax are the roots in q of H(q, 0) = Ec,
are thus also both functions of ∆.

Kruskal return probability: Kruskal’s theorem[14–17]
deduces the fraction of a thin adiabatic energy shell that
will exit a shrinking separatrix lobe into one of two grow-
ing regions, from the facts that adiabaticity only fails near
the separatrix, and that Liouville’s theorem remains valid
everywhere. During our forward sweeps the upper lobe
is shrinking, and so is the region outside both separatrix
lobes, so the theorem prescribes that the orbits being
squeezed out of the upper lobe all go into the lower lobe.

During the reverse sweep, conversely, the lower lobe
shrinks while both upper lobe and outer regions are grow-
ing, so some orbits migrate into both growing regions of
phase space. The phase space area which is squeezed out
of the shrinking lower lobe, in a time interval over which
∆→ ∆− δ, is |A′l(∆)|δ; meanwhile the upper lobe gains
area |A′u(∆)|δ. The share of migrating orbits gained by
the upper lobe in this interval is thus |A′u|/|A′l|.

By our Loschmidt symmetry around t = 0, the areas
Au,l of both lobes when our thin energy shell spills back
out of the lower lobe on the return sweep are the same
as they were when the shell spilled into the lower lobe on
the forward sweep. And since the area initially enclosed
by an adiabatic orbit is conserved until the shrinking
separatrix lobe shrinks down to meet it, the value of ∆ at
which an initial thin energy shell around initial energy Ei

will spill through the shrinking separatrix is the ∆c(Ei)
found by solving Au(∆c) = Ai(Ei) for ∆c. This solution
then defines both the lobe areas at separatrix crossing
Au,l(∆c(Ei)) as functions of initial energy Ei.

The ratio of rates of change of lobe areas in the Kruskal
formula can then trivially be expressed in terms of deriva-
tives with respect to Ei:

−
dAu

d∆c

dAl

d∆c

= −
dEi

d∆c

dAu

dEi

dEi

d∆c

dAl

dEi

, (10)

yielding the Kruskal return fraction for a thin initial
energy shell around Ei as

P (Ei) = −
dAu

dEi

dAl

dEi

(11)

for all Ei that will actually encounter the separatrix before
the sweep reverses at t = 0. Initial energies below the
Ē(∆0) which solves ∆c(Ē) = ∆0 will instead have return
probability P = 1, since they never cross the separatrix.
Integrating over thin energy shells with the phase space
measure dAi = dEi dAi/dEi and the ensemble density
f(Ei) then yields Eqn. (4).

If ∆0 is large enough that a given shell crosses the
separatrix, Fig. 3 shows that the return probability P (Ei)
can range from near zero to near one. This implies a pre-
dictable and observable dependence of return probability
on the system’s initial temperature. Note that the nearly
straight sloping region of the P (∆0) curve in Fig. 1 may
become less straight for ensembles that are broader in
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FIG. 3. Kruskal return probability P for energy contours with
initially enclosed area Ai in the upper lobe for Uh̄N = −3Ω.
The return probability can be much lower than in Fig. 1 if Ai

is small enough.

energy. Our simulated data points fit the infinite-T curve
less closely for smaller ∆0 because the system spends
more time close to the unstable fixed point in these runs
than it does for larger ∆0. This weakens the adiabatic
approximation; neo-adiabatic corrections [24–28] to pro-
vide a more accurate finite-T prediction in this regime
may be pursued in future work.

Swirling vs. coarse graining: At t = 0, just as the
sweep is reversing, our ensemble effectively fills the merged
energy shell, in the sense that it is swirled throughout the
energy shell very finely, as shown in the left inset panel
of Fig. 2. A traditional interpretation is that coarse-
graining makes this finely swirled ensemble equivalent to
an ergodic distribution; irreversibility is then explained by
asserting that information in the initial ensemble which
has been carried into fine-grained features is effectively lost
forever. This explanation may be appealing because fine
structures can certainly be lost to human perception, but
our proposed experimental scenario provides an explicit
counter-example to the hypothesis that simple system
dynamics cannot reassemble simple shapes out of fine-
grained swirls. The reflection in p of our finely swirled
ensemble at t = 0 is exactly as finely swirled as the
unreflected ensemble, but our time reversal symmetry
implies that the simple separatrix crossing dynamics of
our system will reassemble that finely swirled reflected
ensemble back into the coarse microcanonical shell that
was our initial state. The irreversibility in our scenario is
therefore not due to the fact that finely swirled ensembles
in general can never dynamically reassemble into coarse
ones, because this is not a fact.

Irreversibility occurs instead simply because the finely
swirled ensemble f(q, p, t) that we have reached at t = 0
is not the same as the finely swirled ensemble f(q,−p, 0)
that would evolve back into our initial state. See Fig. 4.

0.2995 0.3 0.3005
-0.049

-0.0485

-0.048

-0.0475

-0.047

-0.0465

-0.046

FIG. 4. Part of the finely swirled ensemble corresponding
to Fig. 1 at ∆0/Ω = 1 and t = 0 around p/Nh̄ = 0.3 (blue)
and the inverted (p → −p) ensemble around p/Nh̄ = −0.3
(orange). The non-unity overlap (violet) is the reason for
return probability P < 1.

The return fraction for each thin energy shell around Ei

can be defined exactly as a classical version of the so-called
“Loschmidt echo”, as follows. Define the un-normalized
initial distribution function f̃(q, p,−T ;Ei) which is sim-
ply one within the initial thin shell and zero outside it.
Evolve this un-normalized distribution function under the
Hamiltonian from t = −T to t = 0. The exact return
fraction for this initial energy shell is then

P (Ei) ≡
∫

dqdp f̃(q, p, 0;Ei)f̃(q,−p, 0;Ei)∫
dqdp f̃(q, p, 0;Ei)

. (12)

The two finely swirled distributions f̃(q,±p, 0;Ei) are
related simply to each other by p-reflection, but this is a
global relationship which has nothing in particular to do
with the local swirling structure of either distribution. As
Fig. 4 shows, in any typical small region of phase space
the thin stripes of f̃(q,±p, 0;Ei) fail to overlap precisely,
so that P (Ei) < 1.

Our return formula (4) according to Kruskal’s theorem
is thus not really based on the naive assumption that
the swirled distribution f̃(q, p, 0;Ei) is exactly equivalent
to the ergodic distribution filling the t = 0 energy shell
uniformly at coarse-grained density P (Ei). Rather, it is
equivalent to assuming that the time-forward and time-
reversed distributions f̃(q,±p, 0;Ei), both of which are
finely swirled, are ergodic with respect to each other, in
the sense that their overlap with each other in (12) is the
same as the overlap of either with the ergodic distribution.
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