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Abstract – The calculation of the heating rate of cold atoms in vibrating traps requires a theory
that goes beyond the Kubo linear response formulation. If a strong “quantum chaos” assumption
does not hold, the analysis of transitions shows similarities with a percolation problem in energy
space. We show how the texture and the sparsity of the perturbation matrix, as determined by
the geometry of the system, dictate the result. An improved sparse random matrix model is
introduced: it captures the essential ingredients of the problem and leads to a generalized variable
range hopping picture.
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The rate of energy absorption by particles that are
confined by vibrating walls was of interest in past studies
of nuclear friction [1–3], where it leads to the damping of
the wall motion. More recently, it has become of interest
in the context of cold atoms physics. In a series of experi-
ments [4–6] with “atom-optics billiards” some surprising
predictions [7] based on linear response theory (LRT) have
been verified.
In this study, we consider the case where the billiard

is fully chaotic1, but with nearly integrable shape (fig. 1).
We explain that in such circumstances LRT is not applica-
ble (unless the driving is extremely weak such that relax-
ation dominates). Rather, the analysis that is relevant
to the typical experimental conditions should go beyond
LRT and involve a “resistor network” picture of transi-
tions in energy space, somewhat similar to a percolation
problem. Consequently, we predict that the rate of energy
absorption would be suppressed by orders of magnitude
and provide some analytical estimates that are supported
by a numerical calculation.
We assume that an experimentalist has control over the

position (R) of a wall element that confines the motion
of cold atoms in an optical trap. We consider below the
effect of low-frequency, noisy (non-periodic) driving. This
means that R is not strictly constant in time, either
because of drifts [8] that cannot be eliminated in realistic
circumstances, or else deliberately as a way to probe the
dynamics of the atoms inside the trap [9]. We assume

1Our interest is in systems that are classically chaotic. This means
exponential sensitivity to change in initial conditions, without having
a mixed phase space.

the usual Markovian picture of FGR transitions between
energy levels, which is applicable in typical circumstances
(see, e.g., [10]). These transitions lead to diffusion in the
energy space. If the atomic cloud is characterized by a
temperature T , then the diffusion in energy would lead to
heating with the rate Ė =D/T (see footnote 2) and hence
to an increase in the temperature of the cloud.
Naively one expects to observe an LRT behavior. That

means to have D∝ [RMS(Ṙ)]2, and more specifically to
have a linear relation between the diffusion coefficient and
the power spectrum of the driving,

D≡G×RMS(Ṙ)2 =

∫

∞

0

C̃(ω)S̃(ω) dω, (1)

Here S̃(ω) is the power spectrum of Ṙ, and C̃(ω) is
related to the susceptibility of the system. From the
experimentalist’s point of view the second equality in
eq. (1) can be regarded as providing a practical definition

for C̃(ω), if the response is indeed linear.
We shall explain in this paper that the applicability

of LRT in our problem is very limited, namely LRT
would lead to wrong predictions in typical experimen-
tal circumstances. Rather we are going to use a more
refined theory, which we call semilinear response theory
(SLRT) [11,12], in order to determine D. The theory is
called SLRT because on the one hand the power spectrum
S̃(ω) �→ λS̃(ω) leads to D �→ λD, but on the other hand

2For a more general version of Ė =D/T that does not assume
a Boltzmann-like distribution with a well-defined temperature, see
sect. 4 of ref. [3].
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S̃(ω) �→ S̃1(ω)+ S̃2(ω) does not lead to D �→D1+D2.
This semilinearity can be tested in an experiment in order
to distinguish it from linear response. Accordingly, in
SLRT, the spectral function C̃(ω) of eq. (1) becomes ill
defined, while the coefficient G is still physically meaning-
ful, and can be measured in an actual experiment.
If we assume a small driving amplitude the Hamiltonian

matrix can be written as H= {En}+ f(t){Vnm}, where

Vnm =
〈

n
∣

∣

∣

dH

dR

∣

∣

∣
m
〉

(2)

is the perturbation matrix. More than 50 years ago,
Wigner had proposed to regard the perturbation matrix
of a complex system as a random matrix (RMT) whose
elements are taken from a Gaussian distribution. Later,
Bohigas had conjectured that the same philosophy applies
to quantized chaotic systems. For such matrices the
validity of LRT can be established on the basis of the
FGR picture, and the expression for G is the Kubo
formula GLRT = π̺E〈〈|Vnm|

2〉〉a, where 〈〈x〉〉a = 〈x〉 is the
algebraic average over the near-diagonal matrix elements3,
and ̺E is the density of states (DOS). In contrast to that,
using the Pauli master equation [10] with FGR transition
rates between levels, the SLRT analysis leads to

GSLRT = π̺E〈〈|Vnm|
2〉〉, (3)

where the “average” 〈〈x〉〉 is defined as in refs. [11,12]
via a resistor-network calculation [13]. (For mathematical
details see “the SLRT calculation” paragraph below.)
Within the RMT framework an element x of |Vnm|

2 is
regarded as a random variable, and the histogram of all x
values is used in order to define an appropriate ensemble.
For the sake of later discussion we define, besides the
algebraic average 〈〈x〉〉a, also the harmonic average as
〈〈x〉〉h = [〈1/x〉]

−1 and the geometric average as 〈〈x〉〉g =
exp[〈lnx〉]. The result of the resistor network calculation
is labeled as 〈〈x〉〉 (without subscript).
Our interest is in the circumstances where the strong

“quantum chaos” assumption of Wigner fails. This would
be the case if the distribution of x is wide in the log
scale. If x has (say) a log-normal distribution, then
it means that the typical value of x is much smaller
compared with the algebraic average. This means that
the perturbation matrix Vnm is effectively sparse (a lot
of vanishingly small elements). We can characterize the
sparsity by the parameter q= 〈〈x〉〉g/〈〈x〉〉a. We are going
to explain that for typical experimental conditions we
might encounter sparse matrices for which q≪ 1. Then
the energy spreading process is similar to a percolation in
energy space, and the SLRT formula, eq. (3), replaces the
Kubo formula.

3The average is taken over all the elements within the energy
window of interest as determined by the preparation temperature.
The weight of |Vnm|2 in this average is determined by the spectral
function as S̃(En−Em).

deformed potential

point scatterer

point

scatterer

(a)

(b) (d)

(c)

Fig. 1: Model systems: the atoms are held by a potential that
may consist of static walls (solid lines), a vibrating wall (shaded
lines), and bumps (thick points). The numerics has been done
for (b) with a Gaussian bump. We work with two different
aspect ratios. For the aspect ratio AS = 20, we take Lx = 200
and Ly = 10. For the aspect ratio AS = 1, we take Lx = 40 and
Ly = 40. The position of the Gaussian bump was randomly
chosen within the region [0.4, 0.6]Lx× [0.4, 0.6]Ly. The width
of the Gaussian is σx = σy = σ. We have assumed noisy driving
with ωc = 7∆, where ∆= 1/̺E is the mean level spacing, and
the units were such that M= 1.

Outline. – In what follows we present our model
system, analyze it within the framework of SLRT, and
then introduce an RMT model with log-normal distrib-
uted elements, that captures the essential ingredients
of the problem. We show that a generalized resistor
network analysis for the transitions in energy space
leads to a generalized variable range hopping (VRH)
picture (the standard VRH picture has been introduced
by Mott in [14] and later refined by ref. [15] using the
resistor network perspective of ref. [13]). Our RMT-based
analytical estimates are verified against numerical calcu-
lation. Finally, we discuss the experimental aspect, and
in particular define the physical circumstances in which
SLRT rather than LRT applies. These two theories give
results that can differ by orders of magnitude.

Modeling. – Consider a strictly rectangular billiard
whose eigenstates are labeled by n= (nx, ny). The
perturbation due to the movement of the “vertical” wall
does not couple states that have different mode index ny.
Due to this selection rule the perturbation matrix is
sparse. If we deform slightly the potential (fig. 1(a)), or
introduce a bump (fig. 1(b)), then states with different
mode index are mixed. Consequently, the numerous zero
elements become finite but still very tiny in magnitude,
which means a very wide size distribution featuring a
small fraction of large elements. Similar considerations
apply for the circular cavity of fig. 1(c), where an off-
center scatterer couples radial and angular motion, and
which is more suitable for a real experiment (but less
convenient for numerical analysis).
Typically, the perturbation matrix is not only sparse

but also textured. This means (see fig. 2) that there
are stripes where the matrix elements are larger, and
bottlenecks where they are all small. The emergence
of texture (i.e., non-random arrangement of the sparse
large elements along the diagonals) is most obvious if we
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Fig. 2: The image of the perturbation matrix |Vnm|
2 due

to a wall displacement of a rectangular-like cavity that has
an aspect ratio AS = 20. The potential floor is deformed
due to the presence of a σ= 0 scatterer with u= 10−4 (see
text). The matrix is both sparse and textured. Lower inset:
untextured matrix —the elements along each diagonal are
randomly permuted. Upper inset: non-sparse matrix with the
same band profile —each element is generated independently
from a normal distribution.

consider the geometry of fig. 1(d), where we have a divided
cavity with a small weakly connected chamber where the
driving is applied. If the chamber were disconnected, then
only chamber states with energies Er would be coupled
by the driving. But due to the connecting corridor there is
mixing of bulk states with chamber states within energy
stripes around Er. The coupling between two cavity states
En and Em is very small outside of the Er stripes.
Consequently, the near-diagonal elements of Vnm have
wide variation, and hence a wide log(x) distribution.
Coming back to the geometries of fig. 1(a)–(c), it is

somewhat important in the analysis to distinguish between
smooth deformation that couples only nearby modes, and
diffractive deformation that mix all the modes simultane-
ously: Recalling that different modes have different DOS,
and that low-DOS modes are sparse within the high-DOS
modes, we expect a more prominent manifestation of the
texture in the case of a smooth deformation of a cavity
that has a large aspect ratio. We later confirm this expec-
tation in the numerical analysis.

The SLRT calculation. – As in the standard deriva-
tion of the Kubo formula, also within the framework of
SLRT [11,12], the leading mechanism for absorption is
assumed to be FGR transitions. The FGR transition rate
is proportional to the squared matrix elements |Vnm|

2, and
to the power spectrum at the frequency ω=En−Em. It
is convenient to define the normalized spectral function
F̃ (ω), such that

S̃(ω)≡RMS(Ṙ)2× F̃ (ω). (4)

Contrary to the naive expectation the theory does not lead
to the Kubo formula. This is because the rate of absorption
depends crucially on the possibility to make connected
sequences of transitions. It is implied that both the texture
and the sparsity of the |Vnm|

2 matrix play a major role
in the calculation of G. Consequently, SLRT leads to
eq. (3), where 〈〈. . .〉〉 is defined using a resistor network
calculation. Namely, the energy levels are regarded as the
nodes of a resistor network, and the FGR transition rates
as the bonds that connect different nodes. Following [12]
the inverse resistance of a bond is defined as

gnm ≡ 2̺
−3
E

|Vnm|
2

(En−Em)2
F̃ (Em−En) (5)

and 〈〈|Vnm|
2〉〉 is defined as the inverse resistivity of

the network. It is a simple exercise to verify that if all
the matrix elements are the same, say |Vnm|

2 = c, then
〈〈|Vnm|

2〉〉= c too. But if the matrix is sparse or textured
then typically

〈〈|Vnm|
2〉〉h≪〈〈|Vnm|

2〉〉≪ 〈〈|Vnm|
2〉〉a. (6)

In the case of sparse matrices this is a mathematically
strict inequality, and we can use a generalized VRH
scheme that we describe below in order to get an esti-
mate for 〈〈x〉〉. If the element-size distribution of log(x)
is not too stretched, then a reasonable approximation
is 〈〈x〉〉 ≈ 〈〈x〉〉g, simply because the geometric mean is
the typical (median) value for the size of the elements.
However, if |Vnm|

2 has either a very stretched element-size
distribution, or if it has texture, then our VRH analysis
below show that the geometric average becomes merely an
improved lower bound for the actual result.

Analysis. – We consider a particle of mass M in a
two-dimensional box of length Lx and width Ly, such
that 0<x<Lx and 0< y <Ly (see fig. 1(b)). With the
driving the length of the box becomes R=Lx+ f(t). The
Hamiltonian is

H=diag{En}+u{Unm}+ f(t){Vnm}, (7)

where n= (nx, ny) is a composite index that labels the
energy levels En of a particle in a rectangular box of size
Lx×Ly. The deformation is described by a normalized
Gaussian potential U(x, y) of width (σx, σy) positioned at
the central region of the box. Its matrix elements are Unm,
and it is multiplied in the Hamiltonian by a parameter
u which signifies the strength of the deformation. Note
that the limit σ→ 0 is well defined and corresponds to
an “s-scatterer”. The perturbation matrix due to the f(t)
displacement of the wall is

Vnm =−δny,my ×
π2

ML3x
nxmx. (8)

The power spectrum of ḟ is assumed to be constant
within the frequency range |ω|<ωc and zero otherwise.
This means that F̃ (ω) = 1 up to this cutoff frequency.
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We have also considered (not presented) an exponential
line shape F̃ (ω) = exp(−|ω/ωc|), leading to qualitatively
similar results. After diagonalization of {En}+u{Unm},
the Hamiltonian takes the form

H=diag{En}+ f(t){Vnm}, (9)

where n (not bold) is a running index that counts the
energies in ascending order. The DOS remains essentially
the same as for u= 0, namely

̺E =
1

2π
MLxLy. (10)

The perturbation matrix |Vnm|
2 is sparse and textured

(see fig. 2). First we discuss the sparsity, and the effect of
the texture will be addressed later on.
Considering first zero deformation (u= 0) it follows

from eq. (8) that the non-zero elements of the perturbation
matrix are |Vnm|

2 ≈ |Mv2E/Lx|
2|, where vE =

√

2E/M. The
algebraic average of the near-diagonal elements equals
this value (of the large-size elements) multiplied by their
percentage p0. To evaluate p0 let us consider an energy
window dE. The number of near-diagonal elements Vnm
within the stripe |Enx,ny −Emx,my |< dε is ̺

2
EdE dε. It is

a straightforward exercise to find out that the number of
non-zero elements (i.e., with ny =my) is the same number
multiplied by p0 = [2πMvELy]

−1. Consequently,

〈〈|Vnm|
2〉〉a ≈

[

1

2πMvELy

]
∣

∣

∣

∣

Mv2E
Lx

∣

∣

∣

∣

2

=
Mv3E
2πLyL2x

. (11)

Somewhat surprisingly, this result turns out to be the
same (disregarding an order unity numerical prefactor)
as for a strongly chaotic cavity (see eq. (I3) of ref. [3]), as
if there is no sparsity issue. This implies that irrespective
of the deformation u, the LRT Kubo result is identical to
the 2D version of the wall formula (see sect. 7 of ref. [3]):

GLRT =
4

3π

M2v3E
Lx
. (12)

Our interest below is not in GLRT but in GSLRT, which
can differ by many orders of magnitudes. For sufficiently
small u the large-size matrix elements are not affected,
and therefore the algebraic average stays the same. But in
the SLRT calculation we care about the small-size matrix
elements, that are zero if u= 0. Due to the first-order
mixing of the levels, the typical overlap |〈m|n〉| between
perturbed and unperturbed states is |uUnm/(En−Em)|.
The typical size of a small Vnm element is the multiplica-
tion of this overlap (evaluated for nearby levels) by the size
of a non-zero Vnm element. Consequently, the small-size
matrix elements are proportional to u2. The geometric
average simply equals their typical size, leading to

〈〈|Vnm|
2〉〉g ≈

(

M2v2E
2πLx

)2

e−2M
2v2
E
(σ2
x
+σ2

y
) u2. (13)

Motivated by the discussion below eq. (6) a crude estimate
for the SLRT result is GSLRT ≈ q×GLRT, where for small

10
-6
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-2
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0

 u

10
-12
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-10

10
-8

10
-6

10
-4
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10
0

q

AS=20, σ = 0

AS=20, σ / L
x
 = 0.01

AS=1, σ = 0

AS=1, σ / L
x
 = 0.05

Fig. 3: (Colour on-line) The sparsity parameter q is plotted vs.
the strength u of the deformation potential for cavities with
aspect ratios AS = 1 and AS = 20. We see that for large aspect
ratio q has some sensitivity to σ. As explained in the text
GSLRT/GLRT is correlated with q, but for large aspect ratio
it is even more sensitive to σ due to the emergence of textures,
whose presence is not reflected by the value of q.

deformation

q=
〈〈|Vnm|

2〉〉g
〈〈|Vnm|2〉〉a

∝ u2, (14)

see eqs. (11) and (13). It follows from the above (and see
fig. 3) that for small deformations q≪ 1, and consequently
we expect GSLRT≪GLRT. This should be contrasted
with the case of strongly deformed box for which all
the elements are of the same order of magnitude and
q becomes of order unity. Our next task is to further
improve the SLRT estimate using a proper resistor
network calculation4.

RMT modeling. – The |Vnm|
2 matrix looks like a

random matrix with some distribution for the size of the
elements (see fig. 4). It might also possess some non-
trivial texture that we ignore within the RMT framework.
The RMT perspective allows us to derive a quantitative
theory for G using a generalized VRH estimate. Let us
demonstrate the procedure in the case of a homogeneous
(neither banded nor textured) random matrix with log-
normal distributed elements. The mean and the variance
of ln(x) are trivially related to geometric and the algebraic
averages, namely 〈ln(x)〉= ln〈〈x〉〉g and Var(x) =−2 ln(q).
Given a hopping range |Em−En|� ω, we can look for
the typical matrix element xω for connected sequences
of transitions, which we find by solving the equation
̺EωF(xω)∼ 1, where F(x) is the probability to find a
matrix element larger than x. This gives

xω ≈ 〈〈x〉〉g exp
[

2
√

− ln qα
]

, (15)

where α= ln(̺Eωc). From this equation we deduce the
following: For q� 1, meaning that the distribution is not
too wide, xω ≈ 〈〈x〉〉g as anticipated. But as the matrix
gets more sparse (q≪ 1), the result deviates from the

4For a very small u, an optional route that bypass the resistor
network calculation is to analyze the slow (∝ u2) transitions between
noise-broadened energy levels.
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Fig. 4: (Colour on-line) Histograms of matrix elements for
different values of u for AS = 1 (upper) and AS = 20 (lower).
Here, we assume a σ= 0 scatterer. The vertical lines for
u= 10−2, 10−3, 10−4 indicate the 〈〈x〉〉 obtained from the
LRT algebraic average (three dotted lines that are barely
resolved), from the SLRT resistor network calculation (solid
lines), and from the untextured calculation (dashed lines). The
geometric mean approximately coincides with the peaks, and
underestimates the SLRT value for the larger AS where the
sparsity is much larger.

geometric average, the latter becoming merely a lower
bound.
The generalized VRH estimate is based on optimization

of the integral
∫

xω F̃ (ω) dω. For the rectangular F̃ (ω),
which has been assumed below eq. (8), this optimization
is trivial and gives ≈ xωc , leading to

GSLRT = q exp
[

2
√

− ln qα
]

×GLRT, (16)

where GLRT is given by eq. (12) and q is given by eq. (14).
We have also tested the standard VRH that assumes an
exponential F̃ (ω) (not presented).

Numerical results. – The analytical estimates in
eqs. (11) and (13) are supported by the histograms of
fig. 4. For each choice of the parameters (AS, σ, u), we
calculate the algebraic, geometric and the SLRT resistor
network averages of {|Vnm|

2} (see figs. 5 and 6). We also
compare the actual results for GSLRT with those that were
obtained from a log-normal RMT ensembles with the same
algebraic and geometric averages as that of the physical
matrix5. As further discussed in the next paragraph

5Since for the log-normal distribution the median equals the
geometric average, we used the median in the definition of q for
the sake of the numerical stability.
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Fig. 5: (Colour on-line) Left panel: the scaled G̃≡ 〈〈x〉〉 in the
LRT and in the SLRT case as a function of u for AS = 1 and
different smoothness of the deformation. The stars are for the
physical matrices, while the circles are for their untextured
versions (see text). The diamonds are for the LRT case. Right
panel: the SLRT result 〈〈x〉〉 vs. the geometric average 〈〈x〉〉g.
These are compared with RMT-based results, and with the
associated analytical estimate of eq. (16). We see that the
agreement is very good.
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Fig. 6: (Colour on-line) The same set of plots as in fig. 5 but
for AS = 20. In the right panel, we clearly see the departure of
the physical result from the untextured and RMT results, and
hence from the analytical estimate of eq. (16).

one concludes that the agreement of the physical results
with the associated VRH estimate eq. (16) is very good
whenever the perturbation matrix is not textured, which
is in fact the typical case for non-extreme aspect ratios.
In order to figure out whether the result is fully deter-

mined by the distribution of the elements or else texture
is important we repeat the calculation for untextured
versions of the same matrices. The untextured version of
a matrix is obtained by performing a random permutation
of its elements along the diagonals. This procedure affects
neither the bandprofile nor the {|Vnm|

2} distribution, but
merely removes the texture. In fig. 5 we see that the phys-
ical results cannot be distinguished from the untextured
results, and hence are in agreement with the RMT and
with the associated VRH estimate. On the other hand,
in fig. 6, which is for large aspect ratio, we see that the
physical results deviate significantly from the untextured
result. As the width of the Gaussian potential becomes
larger (smoother deformation), the texture becomes more
important. These observation are in complete agreement
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with the expectations that were discussed in the modeling
section.

Experiment. – As in [4–6], a collection of N ∼ 106

atoms, say 85Rb atoms (M= 1.4× 10−25 kg), are laser
cooled to low temperature of T ∼ 10μK, such that the
the typical thermal velocity is vE ∼ 0.05m/s. The atoms
are trapped in an optical billiard whose blue-detuned
light walls confine the atoms by repulsive optical dipole
potential. The motion of the atoms is limited to the
billiard plane by a strong perpendicular optical stand-
ing wave. The thickness of the billiard walls (∼ 10μm)
is much smaller than its linear size (L∼ 200μm). The
2D mean level spacing is ∆= ̺−1E ∼ 2.5× 10

−34 J, which is
2.4Hz. One or more of the billiard walls can be vibrated
with several kilohertz frequency by modulating the laser
intensity. The dimensionless spectral bandwidth of this
driving can be set as say ωc/∆∼ 1000, with an ampli-
tude ∼ 10μm, such that Ṙ∼ 0.015m/s. The temperature
of the trapped atoms can then be measured as a function
of time by the time-of-flight method. The LRT estimate
GLRT ∼ 1.3× 10

−51 J s/m2 would lead to heating rate Ė ∼
2× 10−27 J/s, which is ∼ 0.15mK/s. Considering (say) the
geometry of fig. 1(c), the deformation (u) is achieved
either by introducing an off-center optical “spot”, or by
deforming slightly the optical walls (such precise control
on the geometry has been demonstrated in previous exper-
iments). Having control over u we can have q∼ 10−5

that would imply factor 100 suppression, i.e., an estimated
heating rate of few μK/s. Such heating rate can be accu-
rately measured, yielding high sensitivity to the energy
diffusion process studied here.

SLRT vs. LRT. – Typically the environment intro-
duces in the dynamics an incoherent relaxation effect.
If the relaxation rate is strong compared with the rate
of the externally driven transitions, then the issue of
having “connected sequences of transitions” becomes
irrelevant, and the SLRT slowdown of the absorption is
not expected. In the latter case, LRT rather than SLRT
is applicable. It follows that for finite relaxation rate
there is a crossover from LRT to SLRT behavior as a
function of the intensity of the driving. In cold atom
experiments, the relaxation effect can be controlled, and
typically it is negligible. Hence, SLRT rather than LRT
behavior should be expected. This implies, as discussed
above, a much smaller absorption rate. Furthermore, as
discussed at the beginning of this paper, one can verify
experimentally the signature of SLRT: namely, the effect
of adding independent driving sources is expected to be
non-linear with respect to their spectral content.

Conclusions. – In this work, we have introduced a
theory for the calculation of the heating rate of cold atoms
in vibrating traps. This theory, which treats the diffusion
in energy space as a resistor network problem, is required
if the cavity is not strongly chaotic and if the relaxation
effect is small. The SLRT result, unlike the LRT (Kubo)
result, is extremely sensitive to the sparsity and the

textures that characterize the perturbation matrix of the
driving source. For typical geometries the ratio between
them is determined by the sparsity parameter q as in
eq. (16), and hence is roughly proportional to the deforma-
tion (u2) of the confining potential. If the cavity has a large
aspect ratio, and the deformation of the confining poten-
tial is smooth, then the emerging textures in the perturba-
tion matrix of the driving source become important, and
then the actual SLRT result becomes even smaller.
By controlling the density of the trapped atoms, or their

collisional cross-section (e.g., via the Feshbach resonance),
the atomic collision rate can be tuned by many orders
of magnitude. Their effect on the dynamics can thus be
made either negligible (as assumed above) or significant,
thereby serving as an alternative (but formally similar)
mechanism for weak breakdown of integrability. It follows
that heating rate experiments can be used not only to
probe the deformation (u) of the confining potential, but
also to probe the interactions between the atoms.
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