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Quantum decay into a non-flat continuum
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We study the decay of a prepared state into non-flat continuum. We find that the survival
probability P (t) might exhibit either stretched-exponential or power-law decay, depending on non-
universal features of the model. Still there is a universal characteristic time t0 that does not depend
on the functional form. It is only for a flat continuum that we get a robust exponential decay that is
insensitive to the nature of the intra-continuum couplings. The analysis highlights the co-existence
of perturbative and non-perturbative features in the local density of states, and the non-linear
dependence of 1/t0 on the strength of the coupling.

The time relaxation of a quantum-mechanical prepared
state into a continuum due to some residual interaction
is of great interest in many fields of physics. Applications
can be found in areas as diverse as nuclear [1], atomic and
molecular physics [2] to quantum information [3], solid-
state physics [4, 5] and quantum chaos [6]. The most
fundamental measure characterizing the time relaxation
process is the so-called survival probability P (t), defined
as the probability not to decay before time t.

The study of P (t) goes back to the work of Weisskopf
and Wigner [7] regarding the decay of a bound state into
a flat continuum. They have found that P (t) follows
an exponential decay P (t) = exp(−t/t0), with rate 1/t0
given by the Fermi Golden Rule. In a bosonic second
quantized language this is the decay rate of the site oc-
cupation n̂, and can be formulated as a quantum dissipa-

tion problem with a so called Ohmic bath. Then 1/t0 can
be reinterpreted as the friction coefficient that character-
izes the damped motion of the generalized coordinate n̂.
Optionally P (t) could be related to dephasing, and in
this case t0 is reinterpreted as the coherence time, as in
Landau’s Fermi liquid theory.

Following Wigner, many of the later studies have
adopted Random Matrix Theory (RMT) modeling [8, 9]
for the investigation of P (t), highlighting the importance
of the statistical properties of the spectrum [10]. Notably
in the context of a many-particle system, one should un-
derstand the role of the whole hierarchy of states and
associated couplings, ranging from the single-particle lev-
els to the exponentially dense spectrum of complicated
many-particle excitations [11], e.g., leading to a stretched
exponential decay P (t) ∼ exp(−

√
t). Non-uniform cou-

plings also emerge upon quantization of chaotic systems
where non-universal (semiclassical) features dictate the
band-structure of the perturbation, leading to a highly
non-linear energy spreading [12]. Despite all the mount-
ing interest in such circumstances, a theoretical investiga-
tion of the time relaxation for prototypical RMT models
is still missing, and also the general (not model specific)
perspective is lacking.

Scope.– In this Letter, we explore a general class
of RMT models where the initial state decays into a
non-flat continuum. In the language of quantum dissi-

pation studies, this means that we are dealing with a
non-Ohmic model. We show that the survival proba-
bility P (t) = g(t/t0) is characterized by a generalized
Wigner decay time t0 that depends in a non-linear way
on the strength of the coupling. We also establish that
the scaling function g has distinct universal and non-
universal features. It is only for the flat continuum of
the traditional Wigner model, that we get a robust ex-
ponential decay that is insensitive to the nature of the
intra-continuum couplings. In addition to P (t) we in-
vestigate other characteristics of the evolving wavepacket
like the variance ∆Esprd(t) and the 50% probability width
∆Ecore(t) of the energy distribution, that describe univer-
sal and non-universal features of its decaying component.

Modeling.– We analyze two models whose dynamics
is generated by a RMT Hamiltonian H = H0 + V , with
H0 = diag{Ek} and k ∈ Z. The first one is the Friedrichs
model (FM) [13], where the distinguished energy level E0

is coupled to the rest of the levels Ek 6=0 by a rank two
matrix. The second one is the generalized Wigner model
(WM) [14], where the perturbation V does not discrimi-
nate between the levels, and is given by a banded random
matrix. In both cases the system is prepared initially in
the eigenstate corresponding to E0, and the coupling to
the other levels is characterized by the spectral function

C̃(ω) = −Im
〈
E0

∣∣∣V
(
E0+ω−H̃0+i0

)−1

V
∣∣∣E0

〉

=
∑

n6=0

|Vn,0|22πδ(ω − (En−E0)) (1)

= 2πǫ2|ω|s−1e−|ω|/ωc (2)

where H̃0 is obtained from H0 by removing the 0th row
and column. An RMT averaging over realizations is im-
plicit in the WM case. By integrating Eq.(2) over ω we
see that the perturbation V is bounded for the FM pro-
vided s > 0. The s = 1 case is what we refer to as the
flat continuum, for which it is well known that both mod-
els leads to the same exponential decay for the survival
probability. For s > 2 the effect of the continuum can be
handled using 1st order perturbation theory. Our focus
below is in the 0 < s < 2 regime. We consider the non-
Ohmic case (s 6= 1) for which a non-linear version of the
Wigner decay problem is encountered.
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FIG. 1: LDoS for the FM and for the WM via direct diagonal-
ization of 1600× 1600 matrices with s = 1.5 and ǫ = 1.44. In
the FM case b=N/2. Upper panel: The log-log scale empha-
sizes the universality of the tails up to the cutoff ωc. Lower

panel: The log-linear scale emphasizes the difference in the
non-universal core component.

In the numerical simulations we integrate the
Schrödinger equation for the amplitudes cn(t) = 〈n|ψ(t)〉
starting with the initial condition cn = δn,0 at t=0. We
use units such that ~=1, the density of states is ̺=1, and
E0=0, and we assume a sharp bandwidth b = ̺ωc. The
integration is done using the self-expanding algorithm of
[16] to eliminate finite-size effects, adding 10b sites to
each edge of the energy lattice whenever the probability
of finding the ‘particle’ at the edge sites exceeds 10−12.
The spreading profile is described by the distribution
Pt(n) = |cn(t)|2, where the averaging is over realizations
of the Hamiltonian. The survival probability is P (t) =
Pt(0). The energy spreading is characterized by the stan-
dard deviation ∆Esprd(t) = [

∑
n(En−E0)

2Pt(n)]1/2, by
the median E50% = E0, and also by the E25% and E75%

percentiles. The width of the core component is defined
as ∆Ecore(t) = E75% − E25%.

Time Scales.– A dimensional analysis predicts the
existence of 3 relevant time scales: The Heisenberg time
tH which is related to the density of states ̺; the semi-
classical (correlation) time which is related to the band-
width ωc; and the generalized Wigner times t0 which is
related to the perturbation strength:

tH = 2π̺, tc = 2π/ωc (3)

t0 =

(
2πǫ2

Γ(3−s) sin(sπ/2)

)−1/(2−s)

≡ 1

γ0
(4)

where Γ is the Gamma function, and the numerical pref-
actor will be derived later. We shall refer to ̺−1 and to
ωc as the infrared and ultraviolate cutoffs of the theory.
Our main interest is in the continuum limit. Assuming
further that ωc is irrelevant, one expects a decay that is
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FIG. 2: The survival probability P (t) for the FM (top) and
for the WM (bottom). The time is scaled with respect to
t0. For all curves in the main panels ̺ = 1 and s = 1.5. The
WM simulations are presented in log-log scale in order to
contrast it with the FM results. Inset: further analysis dis-
playing Y = − ln[P (t)]/t vs X = t in a log-log plot for repre-
sentative runs with (s, ǫ) = black(0.30, 4.43), red(1.00, 3.24),
green(1.25, 1.14), blue(1.50, 1.09), yellow(1.75, 0.50), showing
that the decay in the WM case is described by a stretched
exponential. The red bold dashed line has zero slope, corre-
sponding to simple exponential decay for s=1.

determined by the generalized Wigner time t0.
The LDoS.– Before analyzing the dynamics, it is im-

portant to understand the behavior of the Local Density
of States (LDoS) [14], which is defined as follows:

ρ(ω) =
∑

n

|〈n|E0〉|2δ(ω − (En−E0)) (5)

where |n〉 are the eigenstates of the full Hamiltonian H.
An RMT averaging over realizations is implied in the
WM case. Once the LDoS is computed, we can use it to
calculate the survival probability:

P (t) ≡
∣∣∣〈0|e−iHt|0〉

∣∣∣
2

=
∣∣∣FT

[
2πρ(ω)

]∣∣∣
2

(6)

where FT denotes the Fourier transform. For flat band-
profile (s = 1), the LDoS ρ(ω) = (1/γ0)f(ω/γ0) is
a Lorentzian f(x) = (1/π)/(1 + x2) [14], leading to a
Wigner exponential decay for P (t). For (s 6= 1) the en-
suing analysis shows that ρ(ω) has a core-tail structure
[12, 15, 16]. Namely, it consists of two distinct regions
x≫ 1 and x < 1 that reflect universal and non-universal
features of the problem respectively. The tails x≫ 1 can
be calculated using 1st order perturbation theory leading
to f(x) ∝ 1/x3−s. This component we regard as univer-
sal. The core (x < 1) reflects the non-perturbative mix-
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ing of the levels, and it is non-universal. In the WM case
we argue that for x≪ 1 it is semicircle-like, while for FM
we have a singular behaviour f(x) ∼ x1−s. These find-
ings are supported by the numerical calculations of Fig.1,
and are reflected in the behavior of P (t) as confirmed by
the numerical simulations of Fig.2.

Friedrichs model.– Using the Schur complement
technique, we can calculate analytically the LDoS for
the FM. The Green function is G00(ω) = {[ω−∆(ω)] +

i(Γ(ω)/2)}−1 with the standard notations Γ(ω) = C̃(ω),

∆(ω) = −Re
〈
E0

∣∣∣V
(
E0+ω−H̃0+i0

)−1

V
∣∣∣E0

〉

=

∫ +∞

−∞

C̃(ω′)

ω − ω′
dω′ (7)

= ǫ2π cot (sπ/2) |ω|s−1sgn(ω) (8)

In the last line we performed the limit ωc → ∞ (with
the limiting expression converging in distribution). The
LDoS of Eq.(5) is −(1/π)Im [G00(ω)] leading to

ρ(ω) =
1

π

Γ(ω)/2

(ω − ∆(ω))2 + (Γ(ω)/2)2
(9)

Wigner Model. – The analysis of the LDOS for the
WM can be carried out approximately using a combi-
nation of heuristic and formal methods. Our numerical
results reported in Fig. 1 confirm that the LDoS has 1st

order tails |Vn,0/(En − E0)|2 that co-exist with the core
(non-perturbative) component. We can determine the
border γ0 between the core and the tail simply from the

requirement p0 ∼ 1 where p0 =
∫ ∞

γ0

C̃(ω)
ω2 dω. For s > 2 we

would have for sufficiently small coupling p0 ≪ 1 even if
we took the limit γ0 → 0. This means that 1st order
perturbation theory is valid as a global approximation.
But for s < 2 the above equation implies breakdown of
1st order perturbation theory at γ0 ∼ ǫ2/(2−s). In the
tails H0 dominates over V , while in the core V dom-
inates. Therefore, as far as the core in concerned, it
makes sense to diagonalize V with an effective cutoff γ0.
Following [17], the result for the LDoS lineshape should
be semicircle-like, with width given by the expression

∆Esc =
[∫ γ0

0
C̃(ω)dω

]1/2

, where here we suggest to use

the effective bandwidth γ0 instead of the actual band-
width ωc. The outcome of the integral is ∆Esc ∼ γ0,
demonstrating that our procedure is self-consistent: the
core has the same width as implied by the breakdown of
1st order perturbation theory. We note that within this
perspective the s = 1 Lorentzian is regarded as composed
of a semicircle-like core and 1st order tails.

The survival probability.– In the WM case the
function ρ(ω) is smooth with power law tails ∼ 1/ω1+α

where α = 2−s. Thanks to the smoothness the FT does
not have power law tails but is exponential-like. The sim-
ilarity with the α-stable Levy distribution suggests that
P (t) would be similar to a stretched exponential,

P (t) ≈ exp[−(t/t0)
2−s] (10)
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FIG. 3: Lower Inset: Examples for the time evolution of
∆Ecore for s=1.5 and b=800 in the WM case. Main panel:

The extracted departure time versus the extracted inverse
saturation value. This scatter diagram demonstrates the va-
lidity of one parameter scaling. Upper Inset: The extracted
departure time versus the perturbation strength ǫ. The the-
oretical (dashed) lines are based on the t0 estimate of Eq.(4).
The deviations of the departure time from the theoretical ex-
pectation diminish in the limit ωc → ∞. The ◦ corresponds
to b = 400, the ⋆ to b = 800, and the ⋄ to b = 1600.

The expression for t0 in Eq.(4) is implied by the obser-
vation that 1/|ω|1+α tails are FT associated with a dis-
continuity −C|t|α, where C = [2Γ(1+α) sin(απ/2)]−1.

In the FM case we observe that the function ρ(ω) in (9)
features a crossover from ω1−s for |ω| ≪ γ0 to Γ(ω)/ω2

for |ω| ≫ γ0. Thus, compared with the WM case, the
FT has an additional contribution from the singularity at
ω=0, and consequently by the Tauberian theorem [18],
the survival amplitude has a non-exponential decay, that
for sufficiently long time is described by a power law:

P (t) =

∣∣∣∣
2 sin((s−1)π)

(2−s)π (t/t0)2−s

∣∣∣∣
2

(11)

The long time behavior is dominated by the non-smooth
feature of the core, and not by the tails. Compar-
ing the exponential and the power-law we can find
the expression for the crossover time t′0 that becomes
t′0 ∼ [log |s−1|]1/(2−s)t0 ≫ t0 close to the Ohmic limit
(s∼1). For s = 1 only the exponential decay survives.
We emphasize that the cutoff independent behavior ap-
pears only after a short transient, i.e. for t > tc. For
completeness we note that for the FM with s=2 we get

P (t) ≈ |1 + log(t/t0)|2, that holds for tc < t < tce
1/(2ǫ2),

while for s>2 there is an immediate but only partial de-
cay that saturates at the value P (t) = |1−p0|2 for t > tc.

Spreading.– The distinction between core and tail
components becomes physically transparent once we
analyze the time dependent energy spreading of the
wavepacket. Using the same time dependent analysis as
in the s = 1 case of Ref.[16], it is straightforward to show
that the rise of ∆Ecore(t) is at t ∼ t0, and its saturation
value is ∼ γ0. Thus ∆Ecore should exhibit one parameter
scaling with respect to t0. In Fig.3 we present the results
of the numerical analysis. Our data, indicate that the
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expected one-parameter scaling is obeyed. We have veri-
fied that the deviations from the expected ǫ dependence
(for large ǫ) are an artifact due to having finite (rather
then infinite) bandwidth.

The physics of ∆Esprd is quite different and not neces-
sarily universal, because the second moment is dominated
by the tails, and hence likely to depend on the cutoff ωc

and diverge in the limit ωc → ∞. Indeed in the WM case
we can use the Linear response result of [12, 16]

∆Esprd(t) =
[
2
(
C(0) − C(t)

)]1/2

(12)

where C(t) is the inverse FT of C̃(ω). This gives the sat-
urated value ωs

cǫ
2 as soon as t > tc. We now turn to the

FM case. The solution of the Schrödinger equation for
cn(t) is well known [2], and can be expressed using the

real amplitude c(t)≡c0(t). In particular P (t) = |c(t)|2
and also the energy spreading can be computed in a
closed form, with the end result

∆Esprd(t) =
[
(1+c2(t))C(0) − ċ(t)2 + 2c(t)c̈(t)

]1/2

(13)

For t < t0 we can use the estimates c(t) ≈ 1 and
ċ(t) ≈ 0 and c̈(t) ≈ −C(t) to conclude that ∆Esprd(t)
behaves as in Eq.(12). But for t > t0 we get
∆Esprd(t) ≈ [(1+P (t))C(0)]1/2, leading to a saturation

value smaller by factor
√

2, reflecting the non-stationary
decay of the fluctuations as a function of time. More
interestingly Eq.(13) contains a cutoff independent term
that reflects the universal time scale t0. The numerical
results in Fig.4 confirm the validity of the above expres-
sions. We note that in the FM case the effect of re-
currences is more pronounced, because they are better
synchronized: all the out-in-out traffic goes exclusively
through the initial state.

Summary.– In this work we have compared two mod-
els that have the same spectral properties, but still dif-
ferent underlying dynamics. One of them has integrable
dynamics (FM) while the other is RMT type (WM). This
is complementary to our past work [19] where we have
contrasted a physical model with its RMT counterpart.
In the non-Ohmic decay problem that we have consid-
ered in this Letter a universal generalized Wigner time
scale has emerged. It is not this time scale but rather
the functional form of the decay that reflects the non-
universality. Namely, the survival probability P (t) ex-
hibits a stretched-exponential decay in the WM case, but
a power-law decay in the FM case. Only the standard
case of flat (Ohmic) bandprofile is fully universal.
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