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Abstract. We make a distinction between the spectroscopic and the mesoscopic conductance
of a closed ring. We show that the latter is not simply related to the Landauer conductance of
the corresponding open system. A new ingredient in the theory is related to the non-universal
structure of the perturbation matrix which is generic for quantum chaotic systems. These
structures may created bottlenecks that suppress the diffusion in energy space, and hence the
rate of energy absorption. The resulting effect is not merely quantitative: For a ring-dot system
we find that a smaller Landauer conductance implies a smaller spectroscopic conductance, while
the mesoscopic conductance increases. Our considerations open the way towards a realistic
theory of dissipation in closed mesoscopic ballistic devices.

1. Introduction

When a physical system is subjected to an external perturbation it can absorb en-
ergy from the driving source (Fig. 1). The rate of this absorption depends crucially
on the internal dynamics. Here we are concerned with a mesoscopic electronic sys-
tem. Mesoscopic means that the electrons must be treated as quantum mechanical
particles whose wavelength is small compared to the classical dimensions. In such cir-
cumstances, which assume coherent motion of the electrons, it is important whether
or not the resulting electron dynamics would be integrable or chaotic or diffusive if ap-
proximated classically, and the shape of the device becomes relevant. The fingerprints
of such non-universal (semiclassical) effects have been found in numerous experiments
with open mesoscopic systems. It is our objective to extend this idea into the realm
of closed mesoscopic systems, in the context of (semi-linear) response theory. ‡.

Main observation: In this paper we expose a new ingredient in the theory
of energy absorption by closed mesoscopic driven systems. The main idea is that
there are circumstance in which the rate of absorption depends on the possibility to
make long sequences of transitions. The possibility to make a connected sequence of
transitions between energy levels is greatly affected by structures in the energy land-
scape of the device. These structures are the fingerprint of the “shape” of the device,
and more generally they are implied by semiclassical considerations. In the quantum

‡ The response of chaotic systems to weak driving is “linear” in the classical treatment. We look
for a quantum mechanical related departure from linear response theory. This should be contrasted
with the traditional studies of “quantum chaos” models (such as the ‘quantum kicked rotator’) where
in the absence of driving the system is integrable(!) and consequently the response is manifestly
non-linear both classically and quantum mechanically.
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chaos literature such structures are termed non-universal so as to distinguish them
from the universal fluctuations which are described by random matrix theory. In the
context of energy absorption the most important non-universal effect is the presence
of “bottlenecks” in energy space where the couplings between levels are small. The
rate of energy absorption can be greatly reduced by the presence of such bottlenecks.
In order to take the effect of these structures into account we have to go beyond the
conventional framework of linear response theory (LRT).

Main application: Closed mesoscopic rings are of great interest [1, 2, 3, 4, 5,
6, 7, 8, 9]. For such devices the relation between the conductance and the internal
dynamics is understood much less [10] than for open systems. This is not surprising if
one realizes that the theoretical analysis of G relies on completely different concepts in
the open and in the closed case. For an open systems the Landauer formula expresses
the conductance GL in terms of the scattering matrix of the device. This is a very
convenient starting point for a subsequent analysis since it is not necessary to account
for the dissipation of energy explicitly. By contrast, for closed systems the mechanism
for dissipation is an issue. Conventionally one assumes a weak coupling to an external
bath which leads to a steady state but preserves approximately the main features of
the internal dynamics.

First measurements of the conductance of closed mesoscopic rings have been
reported more than a decade ago [9]. In a typical experiment a collection of mesoscopic
rings are driven by a time dependent magnetic flux Φ(t) which creates an electro-
motive-force (EMF) −Φ̇ in each ring. Assuming that Ohm’s law applies, the induced
current is I = −GΦ̇ and consequently the rate of energy absorption is given by Joule’s
law as

Ẇ ≡ Rate of energy absorption = G Φ̇2 (1)

where G is called the conductance §. One should be very careful with the terminology
here. We neither consider “two terminal measurement” of the conductance nor “four
terminal measurement”. One may say that closed ring is a “zero terminal” device (no
leads). So when we say “conductance” we relate to the coefficient G in Eq.(1). In
practice G is deduced form a measurement of the magnetic susceptibility χ(ω). If we
have a large collections of rings then G should be identified as the ω → 0 limit of
Im[χ(ω)]/ω divided by the number of rings. We are aware that some of the people in
the condense matter community avoid the use of the term “conductance” for a zero
terminal device. There are no leads attached, so a transport measurement in the sense
of the Landauer geometry is not applicable. However, we are not aware of a better
name for G of Eq.(1). We think that the terminology issue is mainly a matter of
taste. Namely, if the ring were 1 meter in diameter, rotating between the magnets
of a commercial generator, no one would be bothered by calling G “conductance”, so
why not to adopt the same terminology in the nano scale?

In typical circumstances, which we define more precisely later on, the energy
absorption process is dominated by Fermi-Golden-Rule (FGR) transitions, and the
strong dynamical localization effect [5] is irrelevant. We shall always assume this

FGR regime and neglect other dissipation mechanisms such as Landau-Zener transi-
tions [11] or Debye relaxation [2]. The FGR picture with some extra assumptions (that
we would like to challenge) is the basis for LRT. It leads to the Kubo formula, which

§ The terminology of this paper, and in particular our notion of “conductance” are the same as in
the theoretical review [8] and in the experimental work [9].
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is a major tool in many fields of theoretical physics and Chemistry. Diagrammatic
techniques of calculating conductance are based on this formula.

Past works: In the case of diffusive rings the Kubo formula leads to the Drude
formula for G. A major challenge for past studies was to calculate and to measure
weak localization corrections to the Drude result, taking into account the level statis-
tics and the type of occupation. For a review see [8]. It should be clear that these
corrections do not change the leading order Kubo-Drude result.

Present work: In the case of ballistic rings we would like to argue that even if
the FGR picture of energy absorption applies, still there are circumstance where the
Kubo formula, and hence also the Drude result, fail even as a rough approximation.
It should be clear that our theory is not in contradiction with LRT. Rather it goes
beyond LRT, and reduce to LRT in the appropriate limit. The failure of the Kubo
formula is related to non-universal features of the energy landscape which are implied
by having a mean free path larger than the size of the system. To some extent our
theory is inspired by ideas from percolation theory: but the percolation is in energy

space rather than in real space.

Scope: In this paper we analyze an example of a single mode device, while in a
follow-up work [12] we analyze an example of a multi-mode ring. The single mode ex-
ample of this paper (unlike the multi mode example of [12]) possibly seems somewhat
artificial. Its advantage is its simplicity. Our interest in this paper is to clarify the
main idea of the conductance calculation with one simple prototype example, rather
than exploring the full range of possibilities. By now another non-trivial extension of
the theory has been worked out in Ref. [13], where the absorption of small metallic
grains is calculated. The latter reference has suggested to describe the outcome of the
theory as “semilinear response”.

Outline of this paper: This paper consists of two parts. In the first part
(sections 2-9) we present the general theoretical consideration. In particular:

• We define the notion of “conductance” in the context of closed systems. This
leads to our distinction between mesoscopic and spectroscopic conductance.

• We state our main results regarding the conductance of a single mode ballistic
device, and discuss their experimental significance.

• We review the FGR picture, and explain the emergence of diffusion in energy
space, and the associated dissipation effect.

• We clarify the main ingredient in our theory, which is the calculation of the coarse
grained diffusion

• We derive a formula for the mesoscopic conductance assuming a modulated energy
landscape.

In the second part we focus on a specific example: a single mode ring-dot model.
We express the spectroscopic and the mesoscopic conductance as a function of the
averaged Landauer conductance of the corresponding open system. We explore the
dependence of the result on the level broadening Γ. Finally we summarize some key
observations and point out again the limitations on the validity of our results.
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2. Mesoscopic versus Spectroscopic conductance

For the understanding of this paper it is crucial to make a distinction between the
spectroscopic conductance Gspec and the mesoscopic conductance Gmeso. Both are
defined as the dissipation coefficient which appears in Eq.(1), but they relate to
different circumstances. The bottom line is that Gspec is the measured value of G for
small EMF, while Gmeso is the measured value of G for large EMF. In later sections
we shall explain that Gspec can be calculated using the traditional version of the Kubo
formula, while Gmeso requires a different recipe. Thus it should be clear that our theory
does not contradict LRT but rather covers a regime where LRT is no longer valid.

In order to explain the physical picture of energy absorption we refer to the
block diagram of Fig. 1. On the one hand the driving source induce transitions
between energy levels of the system, leading to an absorption of energy with some
rate Ẇ . On the other hand the system can release energy to some bath (phonons or
the surrounding), which leads to a “heat flow” with some rate Q̇. As the system heats
up a steady state is reached once Q̇ = Ẇ .

It is essential to realize that the levels of the system are effectively “broadened”
due to the non-adiabaticity of the driving [14] or due to the interaction with the noisy
environment [3]. Later we quantify this effect by introducing the level broadening
parameter Γ. One should not make a confusion between

Γ = level broadening parameter in the theory

γrlx = relaxation rate towards equilibrium

The above distinction is somewhat analogous to the notions of 1/T2 and 1/T1 in NMR
studies. The parameter Γ is essential in order to analyze the induced FGR transitions
between levels. Therefore it will appear explicitly in the theoretical derivations. We are
going to argue that the rate of energy absorption Ẇ is sensitive to Γ. The relaxation
parameter γrlx plays a different role: it is responsible for achieving a steady state.
Furthermore, as explained below it is an essential input in order to predict whether
the value of the conductance is G = Gspec or G = Gmeso.

Algebraic average: Let us assume that we have a large collection of similar
rings with possibly a broad thermal population of the energy levels. If the energy
landscape is not uniform, it is evident that some rings are likely to absorb energy,
while others are not, depending on whether the initial level is strongly coupled to its
neighboring levels or not. Accordingly the initial rate of energy absorption (per ring)
is obtained by a simple algebraic average. This algebraic average reflects the statistical
nature of the preparation and has nothing to do with the nature of the dynamics.

Slow down: When we measure G we are not interested in the transient behavior
but rather in the long time behavior. The possible scenarios are illustrated in Fig. 1.
One possibility is to have small γrlx. In such case the rate of absorption slows down:
in the “long run” the rate of energy absorption is limited by the bottlenecks. [The
reader can easily make here an analogy with the dynamics of traffic flow]. We would
like to mention that the above scenario is further discussed in the context of a later
work [13]. There the reader can find an actual numerical simulation that demonstrates
the transient from an initial large rate of absorption to a much slower long time rate
of absorption.

Mesoscopic circumstances: The above scenario features a crossover from a
large absorption rate to a slower absorption rate. The transient is characterized by a
time scale that we call tstbl. In a later section we shall determine this time scale and its
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dependence on the EMF: The larger Φ̇ the smaller tstbl. The condition for observing
the slow-down is obviously

tstbl(Φ̇) ≪ γ−1
rlx

(2)

The rate of absorption for t≫ tstbl depends on the possibility to make long sequences

of transitions. Hence the value of G is smaller compared with the initial anticipation.
This value is what we call Gmeso.

Spectroscopic circumstances: Thus the theory for Gmeso becomes relevant
whenever the relaxation process is not efficient enough to mask the intrinsic dynamics
of the device. Optionally one may say that the EMF should not be too small.
What happens if Φ̇ becomes small, such that Eq.(2) breaks down? In such case
the relaxation process re-initiated the initial distribution before the slow-down shows
up. Consequently the drop in the rate of absorption is avoided. The value of G in the
latter circumstances is what we call Gspec.

3. Description of the model system

For sake of analysis we would like to define the simplest model where our general
idea can be demonstrated. As explained in the introduction there is a large class of
systems, where the perturbation matrix (Inm) is structured. In particular this is the
case with ballistic devices. The simplest would be to consider a one channel device
driven by EMF, hence Inm are the matrix elements of the current operator. In order
to have some weak scattering mechanism we consider ring which is weakly connected
to a big dot region. A particle that moves inside the ring has some small probability
to enter into the dot region, where its velocity is randomized. We are going to argue
that the long-time energy absorption process is not determined by a simple algebraic
average over |Inm|2, but rather involves a non-trivial coarse graining procedure. We
would like to figure out what is the conductance of such ring-dot device as a function
of the ring-dot coupling.

To be specific we analyze the model which is illustrated in Fig. 2a, where the dot
is modeled as a big chaotic network. The ring states mix with the dense set of the dot
states, and resonances are formed. Large Inm matrix elements are found only between
states within resonances, thus leading to a structured band profile (see Fig. 3b). We
assume DC driving: this means that the driving frequency is much smaller compared
with the energy scales that characterize the structures of Inm. We will show that
the off-resonance regions form bottlenecks for the long-time energy absorption. As a
result we get Gmeso ≪ Gspec. It should be clear that if Inm had no structure we would
get Gmeso = Gspec.

In the presented analysis dynamical localization effect is ignored. This mechanism
also leads to suppression of energy absorption, but it involves much longer time scales.
Moreover, it is extremely sensitive to decoherence, and to any temporal irregularity
of the driving. Thus in typical realistic experimental circumstances the suppression
of diffusion due to ‘bottlenecks’ is much more likely than the suppression of diffusion
due to a dynamical localization effect.

4. Main results and their experimental significance

Before we dive into the derivations, we would like to give an overview of the main
results, and to discuss their experimental significance. We also exploit the opportunity
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to comment on the results of a follow-up work [12] where multi-mode chaotic rings
have been analyzed.

If the device were opened as in Fig. 2c we could have asked what is its the
Landauer conductance. It is convenient to characterize the device by the energy
averaged Landauer conductance. The averaging is over the relevant energy range
around E ∼ EF . The energy window of interest is assumed to be classically small but
quantum mechanically large (many levels):

gcl = gL(E) (3)

We use 0 < g < 1 rather than G in order to indicate that the conductance of the
is measured in units of e2/(2π~). The subscript of gcl further imply that the energy
averaged Landauer conductance yields the classical transmission of the device.

From a theoretical standpoint we can ask what is the “conductance” of the same
device if it is integrated in a closed circuit as in Fig. 2b. If we could (hypothetically)
ignore the quantum interference within the ring, then we would get (section 9) the
“Drude” result

GDrude =
e2

2π~

[

gcl

1 − gcl

]

(4)

which diverges in the gcl → 1 limit. Indeed we are going to argue that a similar result is
obtained for the spectroscopic conductance. We say “similar” rather than ”identical”
because quantum mechanics sets an upper bound to G.

If the environmentally induced relaxation is weak, we argue that the spectroscopic
result is wrong. Then we have to calculate the mesoscopic conductance using a recipe
that we are going to develop in sections 5-8. This leads to

Gmeso =
e2

2π~
(1 − gcl)

2gcl (5)

One observes that in the limit gcl → 1 (weak coupling of the ring with the dot) the
mesoscopic conductance goes to zero. This should be contrasted with the behavior of
the Drude result.

Measurements of the conductance of closed mesoscopic rings have been performed
already 10 years ago [9]. In a practical experiment a large array of rings is fabricated.
The conductance measurement can be achieved via coupling to a highly sensitive
electromagnetic superconducting micro-resonator. In such setup the EMF is realized
by creating a current through a “wire” that spirals on top of the array, and the
conductance of the rings is determined via their influence on the electrical circuit.
Another possibility is to extract the conductance from the rate of Joule heating. The
later can be deduced from a temperature difference measurement assuming that the
thermal conductance is known.

Ballistic devices are state-of-the-art in mesoscopic experiments. Moreover we be-
lieve that molecular size devices with closed “ring geometry” are going to be of great
interest in the near future. It is likely that the dynamics is such devices would be of
ballistic nature. Namely, it is likely that the mean free path in such rings would be
larger compared with their perimeter.

Single-mode rings: The results in the present paper apply to single mode de-
vices with ring-dot geometry. Such a device can be realized in practice. Furthermore,
by incorporating a gate, one can control the ring-dot coupling. Hence such geometry
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looks optimal for an experimental test of the theory: The conductance can be mea-
sured as a function of the coupling, and at least the qualitative agreement with Eq.(5)
can be tested.

Multi-mode rings: In a follow-up work [12] we analyze the mesoscopic
conductance of multi-mode chaotic rings. For example one can picture such a device
as a wide ring with a small gate-controlled deformation. Thus it is possible to test
the theory by measuring G as a function of the gate voltage determined gT . It is
explained in [12] that also in the case of a multi mode ring the eigenfunctions are non-

ergodic for (1 − gT ) ≪ 1. Consequently absorption is suppressed due to not having
”connected sequences of transitions”. It should be noted however that in general there
is no simple structure of resonances, in contrast to the 1 mode case that we are going
to analyze. Therefore an accurate estimate of the mesoscopic conductance requires a
more elaborated resistor network analogy.

5. The Kubo-Einstein formula for the diffusion

The purpose of this section is to review a well known expression for the diffusion
coefficientD. If we were talking about diffusion in real space, then it is well known from
any statistical mechanics textbook that D is equal to the integral over the velocity-
velocity correlation function. This is known as the Einstein formula. Similarly, the
diffusion coefficient in energy space is related to the integral over the current-current
correlation function. This is regarded by some authors [11] as a particular version
of the Kubo formula, because with some extra assumptions it leads to the “popular”
version of the Kubo formula for the conductance G.

We define the one-particle current operator I in the conventional way as the
symmetrized version of ev̂δ(x̂ − x0), with v̂ = p̂/m, where m and e are the mass
and the charge of a spinless electron, and x = x0 is a section through which the
current is measured. In the later numerical analysis it was convenient to re-define
I :=

∫

dx0 a(x0)I where a(x0) is a wide weight function whose integral over the ring
obeys

∮

a(x)dx = 1. The current-current correlation function for an electron with
energy E is

CE(τ) = 〈I(τ)I(0)〉 (6)

It is customary to symmetrize this function, but this is not essential since we later
use it within a dτ integral that goes from −∞ to ∞. The power spectrum of the
fluctuations is defined as the Fourier transform of the correlation function CE(τ).
In the quantum case it is related to the matrix elements of the current operator as
follows [15]:

C̃E(ω) =





∑

n( 6=m)

|Inm|2 2πδΓ

(

ω − Em−En

~

)





Em∼E

(7)

where the smoothing parameter Γ is introduced because it is required in a later stage.
Having defined the current-current correlation function, we can write the Kubo-

Einstein formula for the EMF-induced diffusion in energy space:

DE =
1

2

∫ ∞

−∞

CE(τ)dτ × Φ̇2 (8)
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The units of DE are such that δE2 = 2DEt for a local spreading of a wavepacket. In
appendix A we summarize the derivation of this formula and also write the associated
diffusion equation that describes the evolution of an arbitrary distribution ρ(E). An
optional way to write the Kubo-Einstein formula is

DE =
1

2
C̃E(ω=0) × Φ̇2 (9)

We immediately see that in the quantum mechanical case the Kubo-Einstein formula
is ill-defined unless we specify the parameter Γ. Note that for Γ = 0 we get formally
DE = 0. The physics behind this formula becomes more transparent if we adopt the
Fermi-Golden rule picture as discussed in the next section.

6. The Fermi Golden Rule Picture

The Hamiltonian of the ring system in the adiabatic basis is

H 7→ Enδnm +Wnm (10)

where

Wnm = iΦ̇
~Inm

En−Em
(11)

is the perturbation matrix. If the EMF is non-zero then there are transitions between
levels. Both Linear Response Theory, and also our extended theory of mesoscopic
conductance assume that the rate of transition from an initial level (m) to some other
level (n) is determined by Fermi Golden Rule (FGR):

wnm =
2π

~
δΓ(En − Em) |Wnm|2 (12)

Note that upon summation over all transitions to all the levels n, the delta function
is replaced by the smoothed density of states ̺(E).

In the adiabatic regime, the level broadening Γ is smaller compared with the mean
level spacing ∆. In such case the FGR mechanism can be neglected (wnm ∼ 0), and the
leading dissipation mechanism, depending on the effectiveness of the environmental
relaxation process, is either the Landau-Zener mechanism [11], or the Debye relaxation
mechanism [2]. In the present work we assume that Γ is much larger than ∆, but much
smaller compared with any other semiclassical energy scale. This implies that FGR
transitions are the dominant mechanism for diffusion in energy space.

Due to the FGR transitions there is a diffusion in energy space. The local diffusion
rate is:

DE =
1

2

∑

m

(En − Em)2 wnm = π~̺(E)|Inm|2 × Φ̇2 (13)

The first expression in Eq.(13) is just as in the standard analysis of a random walk
problems. Upon substitution of the FGR expression it leads to Eq.(9). The second
expression in Eq.(13) is just a loose way to re-write Eq.(9). The dependence on Γ is
implicit.
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7. Coarse grained diffusion

The probability distribution in energy space obeys a diffusion equation (see
appendix A). If we change form the variable E to the variable n the diffusion equation
takes a simpler form:

∂ρ(n)

∂t
=

∂

∂n

(

Dn
∂

∂n
ρ(n)

)

(14)

where Dn = ̺2DE . Our main motivation to re-write the diffusion equation in the n
variable is to suggest the analogy with the familiar problem of random walk on a lattice
where n is re-interpreted as a site index. In the standard textbook discussion Dn is
uniform all over space. But what happens if Dn has some microscopic modulation?

We would like to argue that in such case the coarse grained diffusion coefficient is
given by an harmonic average over the local Dn. Namely,

D = 〈〈Dn〉〉 ≡
[

lim
N→∞

1

N

N
∑

n

D−1
n

]−1

(15)

This is like calculating the resistivity of a random network of resistors in one dimension.
The summation can be re-interpreted as the addition of resistors in series. This analogy
is further developed in a subsequent work [13]. Below we derive this result using the
diffusion picture language. It is important to realize that the validity of the harmonic
average recipe Eq.(15) is limited. It is assumed that Dn has a smooth modulation as
a function of with n. Otherwise n cannot be treated as a continuous variable, and one
should use the more elaborated “random network” scheme of calculation.

In order to keep consistency of notations we turn back to use E as the diffusion
space variable, as in appendix A. For simplicity we assume that locally the smoothed
density of states is constant. Hence the diffusion equation is Eq.(14) with n replaced
by E. It can be regarded as a continuity equation

∂ρ(E)

∂t
= − ∂

∂E
JE (16)

where the probability current (probability transported per unit time) is given by Fick’s
law

JE = −DE
dρ(E)

dE
(17)

In order to determine the coarse grained diffusion we assume a steady state distribution
ρ(E) that supports a current JE = const. It follows that

ρ(E2) − ρ(E1) = −
∫ E2

E1

(JE/DE)dE (18)

This implies that the coarse-grained diffusion coefficient is given by

D−1 = − 1

JE

ρ(E2)−ρ(E1)

E2 − E1
=

1

E2−E1

∫ E2

E1

D−1
E dE

where E2 − E1 is the coarse graining scale. Hence we get the desired result: the
coarse grained diffusion coefficient D is obtained by harmonic average over the
modulated DE . A concise way to write this result for the coarse grained diffusion
is

D = 〈〈DE〉〉 =
[

1/DE

]−1

(19)
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where the indicated average in the r.h.s. is over the energy E. This observation is
going to be the corner stone in the analysis of the mesoscopic conductance. Needless
to say that the harmonic average recipe implies vanishing D if DE has bottlenecks.

8. The diffusion-dissipation relation

There is a simple relation between the diffusion and the rate of energy absorption. For
a derivation of this relation see appendix A. In the case of a low temperature Fermi
occupation it takes the form

Ẇ = ̺(EF )〈〈DE〉〉 (20)

where EF is the Fermi energy. By substitution of Eq.(9) and comparing with Eq.(1)
we deduce the following expression for the conductance:

G = ̺(EF ) × 1

2
〈〈C̃E(ω=0)〉〉 (21)

From the discussion in section 2 it is implied that in the case of the spectroscopic
conductance Gspec, the energy averaging 〈〈..〉〉 should be algebraic. In the case of
diffusive rings it is customary to replace the (algebraic) energy averaging by disorder
averaging. In contrast to that from the discussion in section 7 it is implied that
in the case of the mesoscopic conductance Gmeso, the energy averaging 〈〈..〉〉 should
be harmonic. To be more precise, the harmonic average applies if DE has smooth
modulation as a function of E. This is going to be the case with our simple example.
In more complicated circumstances (e.g. multimode chaotic rings) the coarse graining
should be done using a somewhat more elaborated resistor network analogy [13, 12].

In the case of Gspec calculation, Eq.(21) is just the conventional Kubo formula.
If the energy landscape is uniform then the distinction between Gspec and Gmeso is
not important. But if Inm is sparse or structured then Gmeso might be much smaller
compared with Gspec.

Sensitivity to level broadening: The parameter Γ is an implicit input for
the calculation. As discussed in section 6 we assume that there is effectively a quasi-
continuum (Γ ≫ ∆). The spectroscopic conductance Gspec is not very sensitive to
Γ. For example, in the case of diffusive rings the weak localization corrections are of
order (Γ/∆)−1. In contrast to that Gmeso is extremely sensitive to Γ. By increasing
Γ we can enhance the diffusion by several orders of magnitudes. As common in the
traditional LRT treatment [8] also here Γ is going to be a free parameter in the theory.

9. Semiclassical considerations

If the current-current correlation function is calculated classically, one observes a and
very slow monotonic dependence on E. Since the practical interest is in a classically
small energy window, this dependence can be ignored. For a one dimensional ring
whose classical transmission is gcl the correlation function CE(τ) decays exponentially.
The intensity of the fluctuations C̃E(ω=0) that appears in Eq.(21) equals the area
under this classical correlation function leading to [10]:

GDrude =
e2

2π~

(

gcl

1 − gcl

)

(22)

This is simply the Drude result being written in terms of gcl instead in terms of the
mean free path ℓ ≈ L0/(1 − gcl), where L0 is the length of the ring. We note that if
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we had neglected the multiple reflections within the ring (which is formally justified
in case of an open system) we would get gcl instead of gcl/(1− gcl) in agreement with
the Landauer formula.

The “classical” result is obtained also within the framework of a semiclassical
Green function calculation [16] that employs a diagonal approximation. Such
calculation assumes an algebraic average over the energy or if applicable, over
realizations of disorder. We recall that algebraic average is justified for the purpose of
calculating the spectroscopic conductance. Still the spectroscopic conductance cannot
diverge in the limit gcl → 1. We shall discuss the upper bound on Gspec in section 12.

As stated above in the classical analysis CE(τ) and hence DE are essentially
independent of E. But upon quantizationDE might have a modulation on a classically
small energy scale ∆0 ∝ ~ which is still much larger compared with the mean level
spacing ∆. The energy scale ∆0 reflects the appearance of a structured band profile
and it is the new ingredient in our analysis. The time to explore this energy scale is

tstbl =
∆2

0

〈〈DE〉〉 ∝ Φ̇−2 (23)

Assuming that DE has indeed a “microscopic” dependence on E, and assuming that
Eq.(2) is satisfied, we have argued that the long time energy absorption is determined
by the mesoscopic conductance, which involves an harmonic average. Consequently
the mesoscopic conductance is typically smaller than the spectroscopic conductance,
and does not correspond to the classical (Drude) result!

10. Preliminary analysis of the model system

We turn now to a detailed description of our model (Fig. 2a). The dot region is modeled
as a chaotic network which is weakly coupled to a ring. The network is attached with
two “legs” in order to destroy odd-even symmetries of the eigenstates. Each coupling
vertex is described by a 3×3 symmetric orthogonal matrix (the “splitter” of Ref.[17]):

S =





1
2 (1 −

√
1 − 2c2) 1

2 (1 +
√

1 − 2c2) c
1
2 (1 +

√
1 − 2c2) 1

2 (1 −
√

1 − 2c2) −c
c −c

√
1 − 2c2





where the coupling parameter is 0 < c < 1. Once the chaotic network is integrated
into the ring one can regard it as a “black box” which is characterized by a 2 × 2
scattering matrix. This 2 × 2 scattering matrix is characterized by the average
Landauer conductance gcl. Hence the coupling between the network and the ring
is quantified by the dimensionless parameter 1 − gcl ≈ c2 (see Fig. 4b), which we
assume to be much smaller than 1.

The length of the ring is L0 while the total length of all the bond is L. Resonances
are formed because of the coupling of the ring states to the network states. Hence we
have

∆ = ~vE
π

L
= mean level spacing (24)

∆0 = ~vE
π

L0
= distance between resonances (25)

Γ0 =
1

2π
(1 − gcl)∆0 = width of resonances (26)
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where vE = (2E/m)1/2. Having defined the dimensionless parameters of the model
system (L/L0 and gcl) as well as the relevant energy scales (∆,∆0,Γ0), we are fully
equipped to turn to the calculation of the conductance.

A key object in the analysis is the weight q(En) of each state in the ring region.
We write the wavefunction on the ring as ψn(x ∈ ring) = An sin(ϕn + knx) and define

q(En) =
L

2
|An|2 ≈ L

L0

∑

r

|〈r|n〉|2 (27)

where r are the ring states in the absence of coupling (c = 0). If we could assume
ergodicity of the wavefunctions then An = (2/L)1/2 and we would get q(E) = 1. But
if the coupling becomes weak (1 − gcl ≪ 1) then ergodicity does not hold (Fig. 4a)
and we have q = 1 only upon averaging over energy. Using perturbation theory we
get as the simplest approximation that q(E) is a sum of Lorentzian:

q(E) ≈ ∆0

π

∑

r

(Γ0/2)

(Γ0/2)2 + (E − εr)2
(28)

where the resonance energies εr have spacing ∆0. It is important to notice that the
above expression does not reflect that

maximum[q(En)] =
L

L0
=

∆0

∆
(29)

The maximum corresponds to the extreme case of having all the probability of the
wavefunction inside the ring such that An = (2/L0)

1/2. This situation is attained
if we decrease the coupling so as to have no mixing of ring states with dot states
(Γ0 ∼ ∆). In the following discussion we assume that the latter (trivial possibility) is
not the case. Hence we observe from Eq.(28) that q(E) ≈ (1 − gcl)

−1 on resonances
(where E ∼ εr), while q(E) ≈ (1 − gcl) off resonances (where |E − εr| ∼ ∆0 ≫ Γ0).
The algebraic energy average over q2(E) is dominated by the peaks within resonance
regions, whereas the harmonic average is dominated by the bottleneck off-resonance
(valley) regions. The relative size of the resonance regions is Γ0/∆0 ≈ (1 − gcl).
Therefore we get

q2 ≈ (1 − gcl)
−1 (30)

[1/q2]−1 ≈ (1 − gcl)
2 (31)

11. Calculation of the conductance for the model system

Given the eigenfunctions of the network the matrix elements of I are

Inm ≈ −i evF

2
AnAm sin([ϕn − ϕm] + [kn − km]x0) .

Without loss of generality we set x0 = 0 and find

2π~

∆
|Inm|2 = e2

vF

L
q(En) q(Em) × gϕ for |En − Em| ≪ ∆0 (32)

where 0 < gϕ < 1 is defined as the average value of 2| sin(ϕn −ϕm)|2 for nearby levels
If we change x0 the correction to gϕ is at most of order ((En − Em)/∆0)

2 and hence

can be neglected. Now we can get an explicit result for C̃E(ω) via Eq.(7) and hence
for the conductance:

G =
e2

2π~
〈〈q(E)qΓ(E + ~ω)〉〉 × gϕ (33)
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where qΓ(E) is a smoothed version of q(E) as implied by Eq.(7). Note that in the
numerical analysis one should be careful to use a smoothing kernel that excludes the
center element, as implied by the restriction m 6= n.

Using Eq.(33) with Eq.(30) we get for the spectroscopic conductance

Gspec =

[

e2

2π~

]

(1 − gcl)
−1 gϕ (34)

Comparing this to Eq. (22) we deduce gϕ = gcl. On the other hand using Eq.(33)
with Eq.(31) we get

Gmeso =

[

e2

2π~

]

(1 − gcl)
2 gϕ (35)

which leads to Eq.(5) for the mesoscopic conductance. We can re-phrase the
above procedure as follows: Given the well behaved (Γ insensitive) spectroscopic
conductance, the mesoscopic conductance is

Gmeso = [(1/q2)−1/q2] ×Gspec (36)

with Γ implicit in the definition of q. Thus in order to calculate Gmeso we need to
know both Gspec and qΓ(E). For flat band (q(E) = 1) and we get Gmeso = Gspec, but
in general Gmeso < Gspec.

12. Numerics

Numerical tests have been done for the model system of Fig. 2a. We have chosen a
network containing 25 bonds of length ∼ 1 such that L ≈ 25. Our energy window was
set around k ∼ 25000. We computed (kn, ϕn,An) and with these data we have done
the analysis described above. In particular we have obtained q(E) for various values
of the couplings (see Fig. 4a). Then we have calculated both the algebraic and the
harmonic averages of q2(E). From the results which are presented in Fig. 4b we were
able to deduce that the relation between these averages and gcl is as expected from
the theoretical considerations.

In Fig. 5 we show that the numerical result for Gspec and Gmeso is sensitive to
the smoothing parameter Γ. Note that the displayed range Γ exceeds the physically
relevant region. In the adiabatic regime (Γ ≤ ∆) the results are unstable numerically
and of no significance. Also very large values of Γ are not physically significant.

We observe in Fig. 5 that Gspec cannot exceed the quantum bound, and becomes
saturated in the limit gcl → 1. This saturation is attained for (1 − gcl)

−1 > L/L0 as
implied by the quantum border of Eq.(29):

Gspec

∣

∣

∣

maximum

=

[

e2

2π~

]

L

L0
(37)

We have a second set of data (not displayed) for a similar network with L/L0 larger
by a factor 3.5. We have verified that the saturation value of Gspec increases by the
same factor.
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13. Summary

The original motivation for this work was to study the simplest model of a closed device
where the FGR picture of transitions and the notion of conductance are meaningful.
In order to construct such a model quantum chaos considerations are essential. A
ring with a simple scatterer is not good enough: Energy diffusion cannot be justified
due to adiabaticity or strong localization effect [5]. Therefore we have replaced the
scatterer by a complicated network, which has allowed us to define circumstance such
that the FGR picture would apply. Our initial inclination was to assume that in such
circumstance we could use the Kubo formula in order to calculate the rate of energy
absorption. But then we have realized that the applicability of the FGR picture is not
enough in order to get Kubo. This turned out to be an example for a system where
the conductance depends crucially on the non-universal structure of the perturbation
matrix.

In other systems with structured band profile a similar effect is expected, although
not necessarily as dramatic as in our simple model. In particular we note a subsequent
work [12] where we calculate the conductance of multi mode ballistic rings. Thus a

feature that looked like an anomaly of a single mode device, has turned out to be a

general theme in the theory of energy absorption. A further non-trivial extension of
the theory has allowed also to calculate the absorption of small metallic grains that
are irradiated by a low frequency noise source [13].

The model system that we have picked is of particular interest because it adds
a twist to the old discussion of the Landauer formula [20]. For an open system the
two terminal conductance of a one-channel system is less than unity. For a closed
(zero terminal) device we have to distinguish between spectroscopic and mesoscopic
conductance. The former equals gcl/(1 − gcl) and can be very large in the limit of
weak scattering, while the latter equals (1 − gcl)

2gcl and goes to zero in this limit
(disregarding higher-order corrections). More generally we can say that within the
validity limits of our assumptions, gcl is the upper limit for the mesoscopic conductance
of a single-mode system. There is a numerical indication [12], not yet conclusive, that
also in the case of a multimode ring the mesoscopic conductance is limited by the
number of open modes.

The calculation of the conductance of closed devices is sensitive to the level
broadening parameter Γ. Hence theoretical considerations that go well beyond the
common Kubo formalism are essential. Γ is determined by the non-adiabaticity of
the driving [14] and/or by the surrounding environment [3]. We have assumed in
the present paper that ∆ ≪ Γ ≪ ∆0. Our results do not apply to the adiabatic
regime where other (rival) dissipation mechanisms apply (Landau-Zener [5], Debye [2]).
On the other extreme, for very large driving rate (EMF) we may have a non-
perturbative response [18] that can invalidate the fluctuation-diffusion relation on
which the calculation of DE has been based.
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Appendix A. The Kubo-Einstein and the diffusion-dissipation relations

In this appendix we review the derivation of the Kubo-Einstein formula and the
diffusion-dissipation relation following [11, 19]. The diffusion in energy space is
deduced from the relation

dH
dt

=
∂H
∂t

= Φ̇ × ∂H
∂Φ

= −Φ̇ × I (A.1)

This exact relation holds both classically and quantum mechanically. In the latter case
we have to use Heisenberg picture. For simplicity of presentation we use a classical
language and write

E(t) − E(0) = −Φ̇

∫ t

0

I(t′)dt′ (A.2)

averaging over an initial microcanonical preparation we get

〈(E(t) − E(0))2〉 = Φ̇2

∫ t

0

∫ t

0

〈I(t′)I(t′′)〉E dt′dt′′ (A.3)

Thus

δE2(t) = 2DEt (A.4)

where DE is given by Eq.(8). On long times one can argue [21] that the probability
distribution ρ(E) of the energy should satisfies the following diffusion equation:

∂ρ

∂t
=

∂

∂E

(

̺(E)DE
∂

∂E

(

1

̺(E)
ρ

))

(A.5)

where ̺(E) is the density of states. The energy of the system is 〈H〉 =
∫

Eρ(E)dE.
It follows that the rate of energy absorption is

Ẇ =
d

dt
〈H〉 = −

∫ ∞

0

dE ̺(E) DE
∂

∂E

(

ρ(E)

̺(E)

)

(A.6)

For a Fermi occupation ρ(E) = ̺(E)f(E) where f(E) is the occupation function. At
zero temperature we get Eq.(20).
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M. Büttiker, Phys. Rev. B 32, 1846 (1985).
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Fig.1: The phenomenology of energy absorption. In the upper panel we present a block diagram.

We highlight the rate of energy absorption Ẇ which depends on the energy broadening parameter Γ.

We also highlight the rate Q̇ of “heat flow” to the bath, which depends on the energy relaxation rate

γrlx. In the lower panel we plot how Ẇ depends on time. If γrlx is small than there is a transient to

a slower absorption rate that depends on Γ.
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Fig.2: (a) The ring-dot network model. (b) Schematic representation. (c) The corresponding open

system.
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Fig.3: Writing the perturbation in the basis of the unperturbed Hamiltonian we get a structured

matrix: On the left we display a representative result for a quantized hard chaos system (taken form

Ref. [22]). On the right we display the result for the ring-dot network model of this paper.
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Fig.5: The spectroscopic and mesoscopic conductances as a function of Γ/∆ for the various values of

c. The former is resolved in the normal scale (left) while the latter is resolved in the log scale (right).

The vertical dotted line indicates the Γ value that has been assumed in Fig. 4b.
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