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Quantum vs. stochastic non-equilibrium steady state of sparse systems

Daniel Hurowitz and Doron Cohen
Department of Physics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel

A resistor-network picture of transitions is appropriate for the study of energy absorption by
weakly chaotic or weakly interacting driven systems. Such ”sparse” systems reach a novel non-
equilibrium steady state (NESS) once coupled to a bath. In the stochastic case there is an analogy
to the physics of percolating glassy systems, and an extension of the fluctuation-dissipation phe-
nomenology is proposed. In the mesoscopic case the quantum NESS might differ enormously from
the stochastic NESS, with saturation temperature determined by the sparsity. A toy model where
the sparsity of the system is modeled using a log-normal random ensemble is analyzed.

The study of systems with non-equilibrium steady
state (NESS) has become of great interest in recent years
[1–7]. Attempts to introduce various generalizations of
linear response theory (LRT) are sometimes entitled “ex-
tension” or “violation” of the fluctuation-dissipation rela-
tion theorem (FDT) [8–14]. The paradigm for NESS is a
system that is coupled to two equilibrated reservoirs, ”A”
and ”B”, which are characterized by spectral functions
S̃A(ω) and S̃B(ω). Each reservoir satisfies the detailed
balance condition

S̃(ω)

S̃(−ω)
= exp

(

−
ω

T

)

(1)

but with different temperatures TA and TB. Hence the
NESS of the system is not canonical, and it cannot be
characterized by an equilibrium temperature. A particu-
lar case of special interest is obtained if one reservoir (call
it ”A”) is replaced by a stationary driving source, while
the relaxation is provided by a bath (call it ”B”) that
has some finite temperature TB. This is still the same
paradigm because formally the driving source ”A” can
be regarded as a bath that has an infinite temperature
TA = ∞ hence S̃A(−ω) = S̃A(ω).
Novel NESS.– In recent studies [15–18], we have sug-

gested that there is a class of systems for which the rate
of energy absorption is a semi-linear rather than a linear
functional with respect to S̃A(ω). This theory, termed
semi-linear response theory (SLRT), is based on a re-
sistor network picture of the transitions between energy
levels (Fig.1). Due to the percolation-like nature of the
dynamics, SLRT typically predicts a suppressed rate of
heating compared with LRT. In previous SLRT publica-
tions, the effect of the surrounding environment has been
neglected, and it has been conjectured that weak coupling
to a bath would lead to a non-canonical NESS. Conse-
quently, the expectation is to have, for strong driving, a
crossover from an LRT canonical-like NESS to a novel
non-canonical NESS, with the possibility of remarkable
quantum-mechanical fingerprints.
LRT phenomenology.– Under the assumptions of

very weak driving, and that all the driven transitions
have comparable rates ≈ w, one may reason that the sys-
tem is in a canonical-like state with some temperature T .

From the phenomenological rate equation it follows that
the driving induces diffusion D ∝ w in energy space [19–
23], leading to a rate of heating

Ẇ =
D

T
(2)

Similarly it is straightforward to show (see supplemen-
tary material), that the rate of cooling due to the inter-
action with the bath can be written as

Q̇ =
DB

TB
−

DB

T
(3)

where the first term is due to the imbalance of upward
and downward transition rates, while the second term
is due to the non-uniformity of the probability distribu-
tion in energy space. At steady state Ẇ = Q̇, so a phe-
nomenological determination of the steady state temper-
ature T is possible.
SLRT phenomenology.– Let us consider a quasi-

continuum of energy levels En that have level spac-
ing ∆0, and assume that the bath and the driving in-
duce near-neighbor transitions only. The bath induced
downward and upward transition rates are wβe

±∆0/(2TB),
with TB ≫ ∆0, where wβ is a constant related to the
strength of the coupling. On the other hand, the driving
induced transition rates wn are characterized by a loga-
rithmically wide (say log-normal) distribution, which is
typical in the case of, e.g., weakly chaotic systems. Con-
sequently, the bath induced diffusion has the coefficient
DB = wβ∆

2
0, while for the driving induced diffusion

D[LRT] = wn∆
2
0 (4)

D[SLRT] = [1/wn]
−1∆2

0 (5)

where the LRT result is based on the traditional Kubo
formalism, while the SLRT prediction reflects a network
that consists of resistors that are connected in series (see
Fig.1 for illustration). Accordingly it is expected that
the steady state temperature for strong driving would be
T [SLRT] = [wβ/wn]

−1TB, i.e. much lower compared with

the Kubo-implied naive expectation T ≈ [wn/wβ ]TB.
Modeling.– It should be clear that SLRT applies

whenever the transport is modeled using a resistor net-

http://arxiv.org/abs/1007.0766v1


2

work. Thus it might have applications, e.g., in statisti-
cal mechanics and biophysics. But the original motiva-
tion for SLRT came from mesoscopics, where the quan-
tum nature of reality cannot be ignored. In this context
the Hamiltonian contains a driving term f(t)W , and the
transition rates wnm ∝ |Wnm|2 between levels are de-
termined by the Fermi-Golden-Rule (FGR). For weakly
chaotic or weakly interacting systems Wnm is typically
sparse and textured, and hence SLRT seems to be of rel-
evance. In order to avoid repetition, we define the quan-
tum model, and regard the classical model as a special
case. Assuming that f(t) has the correlation function
〈f(t)f(t′)〉 = ε2δ(t− t′), the master equation is

dρ

dt
= −i[H0, ρ]−

ε2

2
[W, [W,ρ]] +W

βρ (6)

In the energy basis, H0 is a diagonal matrix with energy
levels En. The state of the system is represented by the
probability matrix, which can be rewritten as a column
vector ρ 7→ (pn; ρνµ), composed of the diagonal probabil-
ities and the off-diagonal coherences. Consequently, the
master equation takes the form ρ̇ = Wρ where

W =

(

W Λ†

Λ W⊥

)

(7)

The definition of Λ is implied by the second term in
Eq.(6). The diagonal blocks have contributions also from
the bath term W

β . In particular

Wmn = wmn + wβ
mn e

(En−Em)/(2TB) (8)

Wnn = −Γn (9)

W⊥
νµ,νµ = i∆νµ − γνµ − γβ (10)

Λn,νµ = ε2WnνWµn, for ν, µ 6= n (11)

where wnm = ε2|Wnm|2 and wβ
nm are symmetric matri-

ces, and Wmn is the transition rate from n to m(6= n),
and Γn is the associated decay rate as implied by con-
servation of probability. We use the notations ∆nm =
En−Em, and γνµ = (ε2/2)[(W 2)νν+(W 2)µµ]. For sim-
plicity, we assume that the bath induced dephasing γβ is
the same for all the coherences. For the near-neighbor
transitions model, we simplify the subscripts and write,
e.g., wn instead of wn,n−1.
Numerics.– In the simulations, we have N=25 levels,

with equal level spacing ∆0=1. The bath temperature is
TB=10. The bath induced transition rates are taken as
wβ = 104. The driving induced transition rates are log
normally distributed. Namely, w = exp(x), where x has
a Gaussian distribution with average µ and dispersion
σ that are determined such that the driving intensity is
〈w〉 = ε2, and the sparsity [18] is s = exp(−σ2). The
value s ∼ 1 means that all the elements are comparable
and well represented by their average. Sparsity means
s ≪ 1, for which the median differs by orders of magni-
tude from the algebraic average.

NESS determination.– The steady state solution
satisfies the equation Wρ = 0, from which the NESS oc-
cupation probabilities pn are determined, as as in Fig.2.
From this one can extract the NESS heating rate as in
Fig.3. In the absence of driving, the steady state is canon-
ical with a well-defined temperature TB. In the presence
of driving, the state is generally not canonical. Conse-
quently, we can formally define a different microscopic
temperature Tnm for each pair of coupled levels via

pn
pm

= exp

(

−
En − Em

Tnm

)

(12)

For a model with near-neighbor transitions, we use the
simpler indexing Tn. We define the NESS temperature
(Fig.4) as the harmonic average over Tn, which means
that 1/T is the average over 1/Tn.
Stochastic NESS.– In the stochastic case, i.e. Eq.(7)

with Λ = 0, the master equation become a simple rate
equation, from which it follows that the temperature
of the nth transition is Tn = [(wn+wβ)/wβ ]TB, and the
NESS temperature is

T =

[

(

1

Tn

)

]−1

=

[

(

wβ

wβ + wn

)

]−1

TB (13)

With this definition one can easily prove that Eq.(3) still
holds, while the expression for the energy absorption is

Ẇ =

[

(

wn

wβ + wn

)

]

DB

TB
(14)

Defining the steady state diffusion coefficient D from the
relation Ẇ = D/T we get

D =

[

(

wn

wβ + wn

)

][

(

1

wβ + wn

)

]−1

∆2
0 (15)

One realizes that if all the wn are comparable, then
D ≈ D[LRT] ≈ D[SLRT]. But if the wn have a log-wide dis-
tribution, the agreement with LRT is achieved only if
the wn are all much smaller than wβ . For strong driv-

ing, both D and T are ∝ [1/wn]
−1, as expected from the

SLRT phenomenology, while their ratio approaches the
bath limited value Ẇ∞ = DB/TB.
Quantum NESS.– The stochastic FGR picture ap-

plies if the off-diagonal terms become negligible. By in-
spection, there are two small parameters involved: One
possibility is that the transition rates w are much slower
compared with the environmentally induced dephasing
γβ . The second possibility is to have w much smaller
compared with the level spacing ∆0. The latter is the
traditional assumption in atomic physics, and can be re-
garded as “microscopic circumstances”. But in “meso-
scopic circumstances” ∆0 might be small, and the valid-
ity of FGR is not guaranteed.
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Turning to the numerics (e.g., Fig.3), we observe that
in mesoscopic circumstances, if the environmentally in-
duced dephasing γβ is neglected, the quantum NESS de-
parts from the classical NESS as the driving intensity
is increased. The sparsity of the system is character-
ized by a parameter s ≪ 1 that reflects so to say [18] the
percentage of the large elements. While both LRT and
SLRT predict an unbounded increase of the temperature
as the driving becomes stronger, the quantum NESS ex-
hibits saturation (see Fig.4), which is characterized by a
finite temperature that we call T∞.

One would like to understand how T∞ emerges. For
this purpose we point out that one can adopt a Fokker-
Planck interpretation of the master equation, where n is
like the momentum. In the absence of sparsity, W is like
the position coordinate, and its eigenstates are extended
in n. But if s ≪ 1, then W is like (off-diagonal) disorder,
and its eigenstates r become localized in n, with energies
〈E〉r that are no longer identical. It is clear that if the
driving is very strong, the NESS becomes a mixture of the
eigenstates r. Some further argumentation implies that
the weights pr should be similar to exp(−〈E〉r/TB). For
s=1 (which is like no disorder), all the 〈E〉r are the same,
and therefore the pr and hence the pn distribution is
uniform, corresponding to T∞ = ∞. But for s≪1 (which
is like disorder), the 〈E〉r are different, implying non-
uniform pn distribution with T∞ < ∞. This picture is
confirmed by the numerical analysis.

Applications.– There are several proposed experi-
ments that concern “sparse” systems. The most promis-
ing direction is the study of the heating rate of cold atoms
in traps with vibrating walls [17], where the sparsity of
the perturbation matrix is controlled either by the de-
gree of chaoticity or by the strength of the inter-atomic
interactions. In the condensed matter context, proposed
experiments concern the rate of heating of small metal-
lic particles by low frequency irradiation [15] (where the
sparsity is due to the level spacing statistics), and the
mesoscopic conductance of ballistic rings [15] (where the
sparsity is due to the localization of the eigenstates in
mode space), analogous to variable-range-hopping (where
the sparsity is due to the Anderson localization) [18].

Discussion.– It is important to realize a common
theme in the SLRT line of study and in the stud-
ies of FDT violation in glassy systems [12]. In both
cases, we have to distinguish between “microscopic” and
“macroscopic” time scales, and between “microscopic”
and “macroscopic” temperatures. Eq.(2) and Eq.(3) es-
tablish a diffusion-dissipation relation involving a macro-
scopic temperature T that might be much lower com-
pared with the microscopic temperatures Tn. The dif-
fusion is driven by the fluctuations of the sources, but
it is not the Kubo formula which should be used in or-
der to determine D, but rather a resistor network SLRT
calculation.

A closely related chain of works regarding NESS,

concerns mixed phase-space of periodically driven sys-
tems [4–7], where the problem is reduced to the study of
a stochastic rate equation. Our work differs in three re-
spects: (1) The sparsity may arise even for quantized
chaotic non-mixed systems, implying a glassy type of
NESS; (2) We assume a stationary low frequency driving
source rather than strictly periodic driving; (3) The mas-
ter equation approach has allowed us to consider novel
mesoscopic circumstances in which the quantum NESS
differs enormously from the stochastic prediction.
The influence of quantum coherence on the NESS is

remarkable. Taking into account the localization of the
eigenstates in energy space, we found that for strong driv-
ing the temperature saturates to a finite value that re-
flects the sparsity of system. This should be contrasted
with the traditional stochastic prediction of unbounded
temperature.
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FIG. 1: Illustration of the model system. In the absence of
a bath (upper panel) the driving induces transitions between
levels En of a closed system, leading to diffusion in energy
space and, hence, heating up of the system. The diffusion
coefficient D can be calculated using a resistor network anal-
ogy. Connected sequences of transitions are essential in order
to have a non-vanishing result, as in the theory of percola-
tion. In the presence of a heat bath (lower panel) a NESS is
reached: blue arrows represent the bath induced transitions
(the bath favors downward transitions), while red arrows are
the driving induced transitions (equal up-down transitions).
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FIG. 2: The NESS occupation probabilities pn are plotted vs
En in the stochastic (blue) and quantum (red) cases. In the
latter (quantum) case we plot also the occupation probailities
pr of the W eigenstates versus 〈E〉r. The sparsity is s = e−5,
and ǫ = 1000. We observe that the effective temperature
predicted by the quantum master equation is lower compared
with the stochastic approximation.
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FIG. 3: The NESS heating rate Ẇ is calculated from the
stochastic (blue) and quantum (red) master equations. The
sparsity is s = e−15. The vertical lines are plotted at values
of ǫ for which the stochastic picture predicts a crossover.
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FIG. 4: The effective temperature T of the NESS is plot-
ted versus the driving intensity (upper panel). Blue lines are
for the stochastic NESS, while red lines are for the quantum
NESS. The green line represents the temperature TB of the
bath. In the quantum case the effective temperature is im-
aged for additional values of the sparsity (lower panel). The
color scale is limited for display purposes, and the axes are in
log scale, i.e. log(ǫ2) and log(s).
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SUPPLEMENTARY MATERIAL

Here we present the straightforward derivation that
leads to the LRT/SLRT phenomenology.

The energy of the system is E =
∑

n pnEn, and its rate

of change is Ė =
∑

n Enṗn. The equation for ṗn includes
a driving source term and a bath term. Accordingly we
write Ė = Ẇ − Q̇, where the two terms are interpreted
as the rate of heating due to the driving, and the rate
of cooling due to the bath. From the master equation it
follows that the expression for Q̇ is

Q̇ = −
∑

n,m

(En − Em)Wβ
nmpm (16)

This expression can be written as the sum of a term that
originates from the asymmetry of Wβ

nm, and a term that
originates from the non-uniformity of the pn. Defining
p̄nm = (pn + pm)/2 we have

pn − pm =

[

2 tanh

(

−
En − Em

2Tnm

)]

p̄nm (17)

Wβ
nm −Wβ

mn =

[

2 sinh

(

−
En − Em

2TB

)]

wβ
nm (18)

At high temperatures one can approximate the tanh()
and the sinh() by linear functions leading to

Q̇ =
1

2

∑

n,m

p̄nm
wβ

nm

TB
(En−Em)2 (19)

−
1

2

∑

n,m

p̄nm
wβ

nm

Tnm
(En−Em)2 (20)

The first expression is identified as DB/TB, where DB

is the bath induced diffusion coefficient. The second ex-
pression is used to define the effective temperature T ,
such that it takes the form −DB/T .
In the stochastic case the effect of the driving can be

treated using the same procedure. In analogy to Eq.(16)
one can write

Ẇ =
∑

n,m

(En − Em)wnmpm (21)

Taking into account that wnm is a symmetric matrix one
obtains, in analogy to Eq.(20),

Ẇ =
1

2

∑

n,m

p̄nm
wnm

Tnm
(En−Em)2 (22)

If the state is strictly canonical with all the Tnm equal
the same number T , then Ẇ = D/T where

D[LRT] =
1

2

∑

n

wnm(En−Em)2 (23)

where the overline indicates canonical averaging over the
initial state. This is the standard expression for the dif-
fusion coefficient, leading to Eq.(4) in the case of near-
neighbor transitions.
More generally T is the effective temperature, and the

equation Ẇ = D/T is used to define the effective co-
efficient D. In the stochastic case Eq.(22) applies, and
for near-neighbor transitions one obtains Eq.(5), which
is like adding connectors in series. More generally, if we
have a stochastic model, Eq.(22) implies that D can be
found via a resistor network calculation [15].

We also attach below an additional figure.
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FIG. 5: Complementary to Fig. 3. The NESS heating rate Ẇ
is calculated from the stochastic (upper) and quantum (lower)
master equations. The quantum saturation value becomes
lower as s becomes samller. The axes are in log scale.


