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Doron Cohen, Ben-Gurion University

Circuits with condensed bosons are the building blocks for quantum
Atomtronics. Such circuits will be used as QUBITs (for quantum
computation) or as SQUIDs (for sensing of acceleration or gravitation).
We study the feasibility and the design considerations for devices that
are described by the Bose-Hubbard Hamiltonian. It is essential to
realize that the theory involves “Quantum chaos” considerations.

• The Bose-Hubbard Hamiltonian.

• Relevance of chaos for Nonlinear Adiabatic Passage.

• Relevance of chaos for Hamiltonian Hysteresis.

• Relevance of chaos for Metastability and Ergodicity.
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The Bose Hubbard Hamiltonian
The system consists of N bosons in M sites. Optionally we add a gauge-field Φ.
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Dimer, Many body Landau-Zener dynamics

[semiclassical] Liu, Wu, Niu, et al (PRA 2000 – PRL 2003)

[quantum] Smith-Mannschott, M. Chuchem, M. Hiller, T. Kottos, DC (PRL 2009)

Trimer, Adiabatic passage through chaos

[semiclassical] Amit Dey, DC, Amichay Vardi, (PRL 2018)

[quantum] Amit Dey, DC, Amichay Vardi, (PRA 2019)

Hamiltonian Hysteresis

[dimer] Ralf Burkle, Amichay Vardi, DC, James Anglin, (arXiv 2019a)

[trimer] Ralf Burkle, Amichay Vardi, DC, James Anglin, (arXiv 2019b)



The standard picture of irreversibility

H[Q,P ;x(t)]

The Ott-Wilkinson-Kubo picture:

δE2 ∼ 2DE t (diffusion)

DE ∝ ẋ2

Ė ∝ ẋ2 (dissipation) x(t) = piston position

• Chaos - motion of particles (Q,P ) inside the box is chaotic

• Quasi static limit - the piston position (x) is varied very slowly

The standard dogma: Irreversibility requires chaos and non-adiabaticity.

But in fact: irreversibility can be observed also for a quasi-static driving of a non-chaotic system.



Irreversibility and Hamiltonian Hysteresis

The twist: separatrix crossing always breaks adiabaticity, even in the quasi static limit.

P

Q

Bosonic Junction

”How to probe the microscopic onset of irreversibility with ultracold atoms”

Ralf Burkle, Amichay Vardi, DC, James R. Anglin, arXiv (2019a).
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i Q = occupation difference

P = conjugate phase

x(t) = detuning



Hamiltonian Hysteresis and Chaos

The question arises what are the fingerprints of chaos in Hamiltonian Hysteresis.

Minimal model: The Bose-Hubbard trimer.
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Distinct mechanisms for Hamiltonian Hysteresis:

• Irreversible splitting - The high-dimensional version of separatrix crossing.

• Residual irreversibility - Interplay between adiabatic mechanisms (Landau vs Ott)

• Excess irreversibility - diffusion away from the energy surface (Ott-Wilkinson-Kubo picture)

W = Residual (ẋ→ 0) + Excess (finite ẋ)



The experiment: inspecting occupation statistics
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The ”irreversible splitting” scenario

Splitting of torus

The original torus of panels (1-2) is ejected.

The torus of panel (3) splits into the tori of (4-6) and (5-7).

The torus of (5-7) is the original torus.

The secondary torus: H[I1;xs] = H[I0;xs]

Landau-Einstein adiabaticity: E(t) = H[Ik;x(t)], k = 0, 1



The ”sweep through chaos” scenario

Tori that emerge from the chaotic sea: H[I;xc] = H[I0;xc]

Landau-Einstein adiabaticity: E(t) = H[I;x(t)]



Observations

• Mechanism for irreversibility in the quasi-static limit requires mixed phase-space

• Implied parametric dissipation with rate ∝ Ω instead of ∝ Ω2.

• Sweep through chaos reduces the efficiency of the sweep protocol.

• Slow is bad for efficiency... fast might be better.

• Global phase-space topology is important for efficiency.

Relation to previous study of BEC dynamical meta-stability.

• Stability: whether a condensate survives for a given x - quench protocol.

• Efficiency: whether a condensate survives for a given ẋ - sweep protocol.

Dictionary:

• BEC = coherent state = Gaussian in phase space.

• Energetic stability = Gaussian is sitting in minimum/maximum of the energy landscape.

• Dynamical stability = Gaussian is sitting on an island formed of tori.



The many body Landau-Zener transition

Classical picture: Liu, Wu, Niu, et al (PRA 2000 - PRL 2003)

Quantum dynamical scenarios: adiabatic/diabatic/sudden

Smith-Mannschott, Chuchem, Hiller, Kottos, DC (PRL 2009).



Occupation Statistics
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Smith-Mannschott, Chuchem, Hiller, Kottos, DC (PRL 2009).



The nonlinear adiabatic passage scenario

Bosonic Junction

STIRAP through chaos

Hamiltonian:
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Adiabatic condition:
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Traditional paradigm:

Liu, Wu, Niu, et al (PRA 2000 – PRL 2003)

Graefe, Korsch, Witthaut (PRA 2006)

New paradigm:

Amit Dey, DC, AV (PRL 2018)
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The passage through chaos mechanism

The followed stationary-point is chocked by a stochastic-belt.



The Bogoliubov frequencies

The Bogoliubov procedure brings the Hamiltonian

in the vicinity of the SP to a diagonalized form.

H ≈ E[SP] +
X

q

ωqc
†
qcq

Equations of motion: ż = J∂H

For one dof –

Canonical coordinates: z = (a, ā)

Symplectic matrix: J is the second Pauli matrix.

In our case there are 3 dof –

Linarized equations: ż = [JA] z

Characteristic equation: det(λ− JA) = 0

Eigenvalues are: λq,± = ±iωq (note the sign issue)

One frequency is zero:

total occupation (N) is conserved.
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Quantum detours around chaos

Spectra (above): N = 8

Simulations (right): N = 30

Purity: γ = Tr
`
[ρ(sp)]2

´
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Quantum Chaos perspective on Metastability and Ergodicity

Stability of flow-states (I):

• Landau stability of flow-states (“Landau criterion”)

• Bogoliubov perspective of dynamical stability

• KAM perspective of dynamical stability

Stability of flow-states (II):

• Considering high dimensional chaos (M > 3).

• Web of non-linear resonances.

• Irrelevance of the the familiar Beliaev and Landau damping terms.

• Analysis of the quench scenario.

Coherent Rabi oscillations:

• The hallmark of coherence is Rabi oscillation between flow-states.

• Ohmic-bath perspective ; η = (π/
√
γ)

• Feasibility of Rabi oscillation for M < 6 devices.

• Feasibility of of chaos-assisted Rabi oscillation.

Thermalization:

• Spreading in phase space is similar to Percolation.

• Resistor-Network calculation of the diffusion coefficient.

• Observing regions with Semiclassical Localization.

• Observing regions with Dynamical Localization.



Bose Hubbard Ring

In the rotating reference frame we have a Coriolis force,

which is like magntic field B = 2mΩ. Hence is is like having flux
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Flow-state stability regime diagram

The I of the maximum current state is imaged as a function of (Φ, u)

• solid lines = energetic stability borders (Landau)

• dashed lines = dynamical stability borders (Bogoliubov)
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The traditional paradigm associates flow-states with stationary fixed-points in phase space.

Consequently the Landau criterion, and more generally the Bogoliubov linear-stability-analysis, are

used to determine the viability of superfluidity.

Arwas, Vardi, DC [Scientific Reports 2015]



Monodromy, Chaos, and Metastability of superflow

The swap transition

M = (n1−n2)/2, constant of motion.

n = (n1+n2)/2, conjugate phase ϕ.

Section energy E = E[SP]

Section coordinates (ϕ, n)

Regular separatrix E = Ex(M)

Arwas, DC [PRA 2019]


