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density of states

Diego A. Wisniackt and Doron Cohen
IDepartamento de Bica, Comisia Nacional de Energi Atamica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina
’Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
(Received 23 November 2001; revised manuscript received 21 May 2002; published 17 October 2002

The idea of perturbation independent de@@iD) has appeared in the context of survival-probability studies,
and lately has emerged in the context of quantum irreversibility studies. In both cases the PID reflects the
Lyapunov instability of the underlying semiclassical dynamics, and it can be distinguished from the Wigner-
type decay that holds in the perturbative regime. The theory of the survival probability is manifestly related to
the parametric theory of the local density of state®OS). In contrast to that the physics of quantum
irreversibility requires subtle cross correlations, which are not captured by the LDOS alone, to be taken into
account.
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[. INTRODUCTION [10,12,13. A major realization is that semiclassical theory
and RMT lead tadifferentnonperturbative limits. Hence the
The study of quantum irreversibilityl] has become of resolution of the clash between the different theories in-
much interest recentlj2—8] due to its potential relevance to Vvolves the identification of differentegimesof behavior.
quantum computing and to the theory of dephadiagd.0]. This applies in general to the analysis of time-dependent
Following [1] we define in Sec. Il the main object of the dynamics[13], and in particular to the analysis of wave-
present paper, which is the “fidelity,” also known as the Packet dynamics, decay of the survival probability, structure
“Loschmidt echo,” that constitutes a measure for quantum@f the LDOS[12], and naturally also to quantum irreversibil-
irreversibility. ity studies. o
The analysis of fidelity necessitates a generalization of the $peC|f|caIIy, we d|§t|nQU|sh in thg present paper between
theory regarding survival probabilifi1]. In Sec. Ill we re- regimes of perturbative and nonuniversal behavior, and we

mind the reader that the latter reduces to the analysis of th%eflne and study“a b|II|aro,I, related model, whe_re we have full
) : . control over the “borders” between these regimes. The con-

local density of state. DOS) [12]. Is it possible to make a clusions are summarized in Sec. Xi|
similar reduction in the case of the fidelity? At first sight T
such reduction looks feasible because the general physical
picture looks very similafSecs. V and V).

In the present paper we claifSec. V), and prove by a Consider a system whose evolution is governed by the
numerical exampléSecs. VII and VII), that the study of chaotic Hamiltonian
fidelity cannot be reduced to analysis of LDOS functions.
Rather, it is essential to take into account subtle cross corre- H=H(Q,P;x), (1)
lations which are not captured by the LDOS alone.

The object of the present study is common to almost allwhere Q,P) is a set of canonical coordinates, ards a
the quantum chaos studies, namely, to figure out what is thearameter. Late(Sec. VII) we are going to consider, as an
role of semiclassical mechanics in quantum mechanics£xample, a billiard system, wher@(P) are the position and
Whenever we find suclisemiclassical “fingerprints,” we ~ the momentum of a particle, whilg is used in order to
call them “nonuniversal” effects. Most of the studies in the Parametrize the shape of the billiard. Specifically, for a sta-
quantum chaos literature during the last 20 years have beghum we definex as the length of the straight edge, and
devoted to figuring out the nonuniversal features of the enadjust the radius parameter such that the total area is kept
ergy spectrum. The main tool in singling out such features igonstant.
a comparison with the predictions of random matrix theory ~Consider somé{,=H(Q,P;X,), and definesx=X—Xo.
(RMT). Assume thatx is classically small, so that both, and H

In the present paper we use the same philosophy. Namelggenerate classically chaotic dynamics of similar nature.
we identify nonuniversal effects by making a comparisonPhysically, going fron, to # may signify a small change
with a corresponding random matrix model. On the otherof an external field. In the case of the billiard systed,
hand, we discus$Secs. X and Xl a unifying theoretical —parametrizes the displacement of the walls. Given a prepara-
picture that put the study of quantum irreversibility in the tion ¥, the fidelity is defined afl14]
larger context of phase-space-based semiclassical approach.

Il. THE FIDELITY

An important ingredient in the understanding of nonuni- M (t; 6x)=[m(t; 5x)|?, (2
versal features follows from studies of the clash between
perturbation theory, semiclassical theory, and RMT m(t; 5X) =(Wo|exp( +iHt)exp —iHot)| Wo). (3)
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If ¥, is an eigenstatéE,) of Hy, thenM(t; 8x) is equal to 1
the survival probabilityP(t; 6x), which is defined as
=
P(t; 0%) = |c(t; )|, @ £ o1
=
c(t; 6X) =(Eqlexp —iHt)|Eq). (5)
In the general case the preparatibp doesnothave to be an 0.01
eigenstate ofH,. To be specific one assumes thig is a 0
Gaussian wave packet. It is now possible to define a different
type of survival probability as follows: FIG. 1. (@) The decay ofM(t;8x) in the MBH case.(b) The
) same for the randomized MBKRMBH). We use dimensionless
P(t;wpk) = [c(t;wpk)|?, (6) units of time that correspond to a stadium billiard with straight edge
] Xo=1, a particle with massn=1/2, the wave numbek~50, and
c(t;wpk)=(Wq|exp —iHt)| o). (7)  #=1. The values of the perturbation strength &irem the top

) curve to bottorm x=0.0125i withi=1,...,11.
We assume thadx is small enough so that we do not have to

distinguish betweeft{ andH, in the latter definition. classical” type. We shall define what we mean by semiclas-
One may regardV, as an eigenstate of some preparationsical later on. The same notion is going to be used regarding

Hamiltonian H,,. Specifically, if ¥, is a Gaussian wave c(t;6x) if the perturbation §x) is large enough.

packet, then it is the ground state of a Hamiltonian of the

type (P—Py)2+ (Q—Qo)? that differs enormously frorf. IV. DEFINITIONS OF I AND y
;[)Tijasnv;-e have in the general case the following three Hamil- In this paper we measure the “width” of the LDOS of Eq.

(8) in energy unit§14], and denote it by'(5x). A practical
numerical definition ofl"’(6x) is as the width of the central
region that contains 70% of the probability. This corresponds
to the notion of “core width” in[12]. If &x is not too large
a(see the definition of the “Wigner regime” in the next sec-
tion), one observes that

(i) The preparation Hamiltonia®,,.

(ii) The unperturbed evolution Hamiltonidtd,.

(iii) The perturbed evolution HamiltonigH.

Above we have distinguished between two cases: the rel
tively simple case wheré{,,,=H, and the more general
case, where we assume that the differefg,— Hol is in

fact much larger compared with the perturbatjdi— | . [ (8x) o ox2/(1+9), (10)
The strength of the perturbation is controlled by the param-

eter 6x. The valueg~ 0 applies for strong chad42,16], and it is the

same as in Wigner’s random matrix thedigMT) [15]. In

IIl. THE LDOS FUNCTIONS general(e.g., see the Appendiwe can have €g<<1. In

fact, the valueg~1 applies to our numerical model, which
Consider first the special case whétg,,=H,. In such  will be defined in Sec. VII.
case the fidelity amplitude(t; 6x) is just the Fourier trans- The decay rate of either the fidelity or of the survival
form of the local density of statg&DOS), probability (depending on the contexis denoted byy(6x).
The semiclassical value of the decay rate, which is deter-
N 290 _ mined via a “wave-packet dynamics” phase-space picture
p(w,ax)—En: KnG)[Bo) oo =[En(x)=BoD)- (8 [11], is denoted byy.y. The Lyapunov exponent is denoted
b .
For technical reasons, we would like to assume that there isy %Clorder to determiney(Sx) numerically one should plot
an implicit average over the reference stifg). This will  M(t;6x) againstt, for a range ofdx values. In Sec. VII we
enable a meaningful comparison with the more general casgre going to define some model Hamiltonians for which we
which is discussed below. have done simulations. These are called the linearized bil-
In the general case, whefé,,# H,, one should recog- liard Hamiltonian(LBH), the randomized version of LBH
nize the need in defining an additional LDOS function, (RLBH), the modified billiard HamiltoniatMBH), and the
randomized version of MBHRMBH).
. _ 2o, (E _ Figure 1@ displays the results of the MBH simulations.
p(w’ka)_zn: Kn[¥o)l*o(w=(Ey~Eo)). © We see that the MBH decay is well approximated by expo-
nential function Fig. 1(a)]. The dependence of the decay rate
In this contextE, is consistently redefined as the mean en-y,,s, on 8x is presented in Fig. 2. The RMBH decig.
ergy of the wave packet. Recall again tifatis assumed to  1(b)] is badly approximated by exponential function, but in
be small enough, so that we do not have to distinguish besrder to make a comparison we still fit it to exponential. This

tweenH andH, in the latter definition. is done in order to have a quantitative measure for the decay
The Fourier transform op(w;wpk) is equal(up to a time. Thus we have alspgygu( 6X).
phase factorto the survival amplitude(t;wpk) of the wave In Fig. 2 we also plot the LDOS width'(dx) as a func-

packet. The physics af(t;wpk) is assumed to be of “semi- tion of x for the two models. As far aE(6x) is concerned
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150 The Wigner regime, where E¢L1) holds, is determinefil2]
4001 -, by the condition
100 4 This inequality can be rewritten a¥&<éxyy. The elimina-
g et o 0 : tion defines a nonuniversédystem specificparametric scale
N’ 2—2 Trmpn 5XNU .
— —e In the nonuniversal regime the width of the LDOS is
0 Yruumn semiclassically determingd2]. In typical cases the width of
507 Yo the LDOS is proportional to the strength of the perturbation,
hence
Ysci™© OX. (14
0 57 \4 But in some exceptional caseg, becomes perturbation in-
0 0.0 0. dependent. Specifically, for billiard systemsyJ{is roughly
oX equal to the mean time between collisions, so we can write
FIG. 2. The LDOS widthl" and the decay constantfrom the Yecl= Yel- (15)

MBH/RMBH simulations. The dotted line is the classical Lyapunov

exponent. The inset iE in the LBH/RLBH case. It is important to realize that the perturbation independent
decay(PID) of c(t;6x) in billiard systems is a reflection of

the two models are practically indistinguishable. The insethe 6x independence of LDOS functigiw; 6x) in the non-

contains plots ofl'(8x) for the other two modelLBH, universal regime. Sefl6] for a numerical study.

RLBH). In later sections we shall discuss the significance of

the observed numerical results. VI. THE DECAY OF M(t; éx)
A mature theory of fidelity is still lacking. However, it has
V. THE DECAY OF P(t; 6x) been realized if3,4] that the same physical picture as in

[12] arises: For very smalbx we have Gaussian decay
(which corresponds to the, averaged decay of the survival
amplitude. For intermediate values afx we have Wigner-
type decay withy=T"(6x)/h. For largesx we enter into the
semiclassical regime where one finds “Lyapunov decay”
[25] with y=~ ysc/~ var -

In complete analogy with the case of survival probability
studies we can defirf@ia Eq.(13)] an analogous parametric
scale[3] that will be denoted byxyyp. The semiclassical
value (ys) Oof y is not necessarily the same B(t; 6x) and
for M(t; 6x). Therefore in generabx,, and xyyp are not

The theory of the survival amplitude is on firm grounds
thanks to the fact that it is the Fourier transform of the
LDOS. According tq 12] there are three generigx regimes
of behavior:

(i) The standard perturbative regime.

(i) The Wigner(or Fermi golden ruleregime.

(iii) The nonuniversalsemiclassicalregime.

In the standard perturbative regiméx< 6x.) the LDOS
function Eq.(8) is predominantly a Kronecker delta. This
characterization constitutedafinitionof this regime. For an
estimate ofdx. in the case of billiards see the Appendix. The S .
survival amplitude is obtained via a Fourier transform of thenecessarlly identical. -

Kronecker delta dominated LDOS function. This leads to a . For a S|m_ple shaped billiard system ths of the sur-
nonaveragedn(t; 5x) that does not decay. On the other vival probability, they,. of the f|quI|ty, and the Lyapunov.
hand, theE, averagedn(t;dx) has a Gaussian decay. The exponentyg are all equa_l to the inverse of th_e mean colli-
latter follows from the observatiofil] that the first order SO0 time. The perturbz_;ltlon parameté is defm_ed as th_e
correctionEq(X) — Eq(xo) has typically a Gaussian distribu- dlsplacement of the billiard wall. In the Appendix we derive
tion. the following result:

For intermediate values aofx the decay ofP(t;dx) is SXnup~ XNy~ 27K, (16)

typically of exponential type with
where 2r/k is the de Broglie wavelength of a particle with

y=T(x)/%. (1) mass m, corresponding to the Kkinetic energyE,
= (#k)?/2m. These results hold for a hard walled billiard.
This is known as Wigner-typéor as Fermi go|den ru}aje_ In the following we want to demonstrate the distinction

cay. It is a reflection of the Lorentzian-like line shape of thebetweensxyyp andéxyy . Therefore we consider a modified
LDOS function. However, for largéx we get into a nonuni-  billiard Hamiltonian(MBH) for which
versal (semiclassical regime, where we can apply the

. : X OXNUD< OXNU - 1
“wave-packet dynamics” picture of11]. Thus we find a NUD ™= Z7NY (17
semiclassical decay with The above inequality reflects the general case, in which the
vsel Of M(t;6x) is different (smalley from the g of

Y= Yscl- (120 P(t;6x).
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The fact thatP(t; 6x) is a special case dfl(t;ox), and
the fact that similar ideaqsemiclassical decay versus

Wigner-type decayhave emerged in the latter case, naturally

suggests that the same physics is concerned. If it were real
the “same physics,” it would imply that the main features of
M (t; 6x) are determined by a simple-minded theory that in-
volves the LDOS functiorp(w;8X) in some combination
with the LDOS functionp(w;wpk). It is the purpose of the
following sections to demonstrate that a simple-minde
theory is not enough. The semiclassical PID in the case
M (t; 5X) necessitates a nontrivial extension of the LDOS
parametric theory.

VII. DEFINITION OF THE MODEL

Our model Hamiltonian is the linearized billiard Hamil-
tonian(LBH) of a stadium systerfi7]. It can be written as
H=E+ SxB. (18

Here E is the ordered diagonal matriXE,(xg)}. The

PHYSICAL REVIEW E66, 046209 (2002

VIIl. THE NUMERICAL STUDY

The first step of the numerics is to calculate the width
F(Sx) of the LDOS functionp(w; 6x). We know from pre-
vious studied 12,16 that for a hard-walled billiard system
I'(6x) shows semiclassical saturation &> éxyy, where
Sxnu roughly is equal to the de Broglie wavelengdthq.
(16)]. This implies PID for the survival probability. With the

OILBH we still see(inset of Fig. 2 the reminisces of this
0§aturation. Note thdt~50 and henc@éxyy~0.1. In contrast

to that, with the RLBH there is no indication for saturation.
This implies that nontrivial correlations of off-diagonal ele-
ments play an essential role in the parametric evolution of
the LDOS.(See[19] regarding terminology.

By modifyingthe billiard Hamiltonian we are able to con-
struct an artificial model HamiltoniaMBH) where the two
parametric scales are well separateky(,p<<dxny). Thus
within a large intermediatédx range[20] we do not have
PID for P(t;6x), but we still find PID forM(t;6x). See
Fig. 2.

In order to prove that the observed PID is not a trivial
reflection ofp(w;wpk) we have defined the associated “ran-

eigenenergies of the quarter stadium billiard, with straightdomized” Hamiltonian(RMBH). The LDOS functions(8)
edgexo=1, have been determined numerically. The pertur-and(9) are practicallynot affected by the sign-randomization

bation due tasx deformation is represented by the matgix

procedure: the sign-randomization procedure has almost no

Also this matrix has been determined numerically as exeffect onI'(6x). In spite of this fact we find that the previ-

plained in[7].

In the following numerical study we have considered not
the LBH, but rather a modified billiard HamiltonidiviBH),
which is obtained from the LBH by the replacement

Bym—G(n—m) X By, (19
where G(n—m) is a Gaussian cutoff function. This corre-
sponds physically to having soft wallfor an explanation of
this point see Appendix J 4fL7]). It is important to realize
that the “exact” physical interpretation of either the LBHs
an approximation for the billiard Hamiltonignor the MBH
(as a soft wall version of the LBKlis of no importance for

the following. The LBH and the MBH are both mathemati-
cally “legitimate” Hamiltonians.

ously observed PID ol (t;5x) goes away: we se@-ig. 2)
that for the MBH there is no longer PID in the relevait
range[20]. This indicates that the PID was of semiclassical
“off-diagonal” origin.

We see that both qualitatively and quantitatively the sign-
randomization procedure has a big effect ®h(t;5x).
Therefore, we must conclude that the correlations of the off-
diagonal terms is still important for the physicsMf{(t; 6x).
This holds in spite of the fact that theame off-diagonal
correlations are not important for the LDOS structure. This
implies that the theory oM (t;6x) necessitates a nontrivial
extension of the parametric LDOS theory.

IX. THE SIMPLE-MINDED THEORY

In the next section we explain the numerical strategy 1he purpose of the present section is to explain what type
which we use in order to prove our main point. This incor-Of “fidelity physics” can be obtained if we do not take non-

porates the random matrix theofMT) strategy which has
been applied if18] in order to demonstrate that the semi-
classical theory and RMT lead wifferent nonperturbative
limits. The randomized LBHRLBH) is obtained by sign
randomization of the off-diagonal elements of BBamatrix:
By~ =B,m (random sigh (20
The randomized MBH(RMBH) is similarly defined. The
purpose in making a comparison with a “randomized”
Hamiltonian is the ability to distinguish between universal
and nonuniversal effects. Making such a distinction is a cen
tral theme in the “quantum chaos” literature. Usually such

universal (semiclassical features of the dynamics into ac-
count. Such theory is expected to be valid in case of RMT
models. Let pgi(w;6x) be the Fourier transform of
m(t; 6x). It can be written as

pert(@;0%) =2 f(o')d(w—w), (20)

where the summation is over energy differences
=[E,(X) —En(Xg)], andf(w") is a product of the overlaps
(n(x)|m(xq)), and(m(xq)|¥o) and(W¥on(x)). It is clear
that f(w') satisfies the sum rulg ,f(w)=1. On the other
hand, if the number of principle componensarticipation

“comparisons” are made in the context of spectral statisticsratio) of the LDOS isN, then the sum ovdif ()| givesNY2

analysis, while here, followin§18] we are doing this com-
parison in the context of quantum dynamics analysis.

Thus we conclude thdt(w) should have randomlike phase

(or randomlike sigih character. Therefore, if we ignore the
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system specific features, we can regéfa) as the Fourier acterized by y., features, where, is related to the classi-
components of a noisy signal. These Fourier components satal dynamics. Asdx becomes larger, this window becomes

isfy wider, and eventually some of the semiclassical landscape is
exposed. Then we say that the LDOS contains a nonuniversal
(f(w))=0, (220 componenf22].
(If(@)|?)=p(w;wpk) X p(w; 6%), (23 XI. THE SEMICLASSICAL THEORY FOR M (1)

where p is, up to normalization, the autoconvolution of ~Whereas Lyapunov decay foc(t;ox) is typically a
p(w;wpk), and therefore is equal to the Fourier transform of Weak” feature (this is true for generic systems, whereas
P(t;wpk), and has roughly the same width @sv;wpk). billiard systems. constitute an exceptjpnt is not so for

It is worth noticing that for the Lorentzian line shape, M(t;6x). By definition the trajectory of the wave packet is
which in general is not necessarily the case, @8 implies reversed, and therefore the short-time decay due to a loss of
that m(t) is characterized by exponential correlations withWave-packet overlap is avoided. As a result the perturbation
decay constanE/2. This leads to the decay constdhtfor ~ independent Lyapunov decay becomes a predominant feature
M (t). The deviation ofy(5x) from I'(8x) in the MBH case (that does not depend on recurrencéhis Lyapunov PID
cannot be explained by E@23), since the latter does not has been discussed ial.
distinguish between the MBH model and the associated !t iS clear, however, that for smalix we can use pertur-
RMBH model. In order to explain the PID in the MBH case bation theory in order to predict the decay rateMft; 5x).

it is essential to take into account the nonunivetsaiclas- ~ The question that naturally arises, in complete analogy to the
sica) features of the dynamics. P(t; 6x) case, is how to determine the bordds p between

the perturbative regimévhere we have Wigner-type deday
and the semiclassical regintehere we have NUD

The natural identification ofxyp is as thesx for which

The semiclassical theory of the survival probability is de-I'(6x) becomes equal té ys,. How is ys. determined?
scribed within the framework of wave-packet dynamics inThere are two “mechanisms” that are responsible for the loss
Ref.[11]. The short time decay af(t;wpk) reflects the loss of wave-packet overlap. One is indeed related to the insta-
of the overlap between the initial and the evolving wavebility of the classical motion, while the other is related to the
packets. On the other hand, due to {mevitable proximity ~ overall energy width of the wave packet.
to periodic orbits, the survival amplituasét; wpk) has recur- The survival probabilityP(t;6x) can be regarded as a
rences. However, because of ttteansversginstability of ~ special case oM (t; 6x), where the overall energy width of
the classical motion these recurrences are not complete. Cotie wave packet is the predominant limiting factor in the
sequently the long-time decay may be characterized by thdecay. The separation between the energy surfacgésanid
Lyapunov exponeny, . Possibly, this “Lyapunov decay” is of H, is proportional todx. Consequently we typically have
the simplest example for PID. It is PID because the size ofys¢ > X.
the perturbation [(H—H,|) is not relevant here. In the prevailing studies o (t; 5x), one assumewide

The semiclassical behavior of the survival probability hasGaussian wave packets. Therefore the separation between the
a reflection in the LDOS structure. A relatively slow energy surfaces does not play a major role in the semiclassi-
“Lyapunov decay” (due to recurrenceésimplies that the cal analysis. Rather it is the instability of the classical motion
LDOS is “scarred”[11]. Thus the semiclassical LDOS has a that is the predominant limiting factor in the decay. There-
“landscape” which is characterized by the energy scalefore one typically expects to have~ vy, which is inde-
fiye - Note that “scarring,” in the mesoscopic physics ter- pendent oféx.
minology, is called the weak localization effect.

The above semiclassical picture regardio(g;wpk) can
be extendedl12,16,2] to the case of(t; 5x), providedsx is

X. THE SEMICLASSICAL THEORY FOR P(t)

XIll. CONCLUSIONS

large enough. In the other limit, wheréx is small, we The above discussed criterion for the identification of the
should be able to use perturbation theory in order to predichonuniversal regime is in the spirit of spectral statistics stud-
the decay rate. Thus we have herelash of two possibili- ies [23]. In the latter context it is well known that RMT

ties: having Wigner-type decay with=1"(x)/#, or having  considerations dominate the sfiby, energy scale, while
nonuniversal decayNUD) that reflects the semiclassical nonuniversal corrections dominate the larger energy scales.
wave-packet dynamics. In the present paper we have identified the nonuniversal
The crossover from the perturbative to the semiclassicalegime for a billiard related modéMBH). The border be-
regime can be analyz¢d?2,21] by looking on the parametric tween the perturbative regime and the nonuniversal regime
evolution ofp(w; 6x). Depending ordx the LDOSp(w; 6x) in the context ofP(t; dx) is dxyy, while in the context of
has (in order of increasing perturbatiprstandard perturba- M(t;dx) is SXnup -
tive structure, core-tailLorentzian-like structure, or purely The parametric scaledxyy and Sxyyp are similarly de-
nonperturbative structure[22]. The width T'(6x) of fined, but there is an important distinction between them.
the“core” defines a “window” through which we can view The first parametric scale marks the exposure of the semi-
the semiclassical landscape. This landscape is typically chaclassical landscape: either that of Ef) or that of Eq.(9).
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The second parametric scale, as proved by our numericé the Fourier transform of a classical correlation function.
strategy, marks the exposure of cross correlations betwedtere g=0 corresponds to strong chaos assumptions, while

the corresponding wave amplitudes.
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APPENDIX: THE éXyy FOR BILLIARDS

The nonuniversal regime for billiard systems has bee
identified in[12,16. Here we would like to complete the
missing steps in the generalization of this result. We use th
same notations as 12,16

In the general caddl 6] the band profile of th& matrix is
determined by the semiclassical form{iz]

A

E,—E
<|Bnm|2>%ﬁc . =

h

, (A1)

where Ax1/k%"2 is the mean level spacing;, is the wave
number, andd=2 is the dimensionality of the billiard sys-
tem. The power spectrum of the motion

C(w)=constxk379/ 9 (A2)

0<g<1 is more appropriate for our type of system due to
the bouncing ball effect. The width of the LDOS is deter-
mined using a procedure which is explained 12], leading

to Eq. (9) there. Namely,

T(6X)=A X (8x/ 8xe) 2+ 9), (A3)

where dx ok (19T +9)dV2 5 the generalization of Eq.
(8) of [12].

From Eq.(A3) it is clear thatdx. should be interpreted as
the deformation which is needed in order to mix neighboring
levels. In the standard perturbative regimgx{ 6x;) first

"brder perturbation theory is valid as a global approximation.

Otherwise, if 5x>6X., we should distinguish between a
ﬁonperturbative “core” of width" and perturbative “tails”
that lay outside of it.

The expression fol’ can be rewritten as

T(8X)~7iye X (kox)#(1+9) (A4)

where y. =k is roughly the inverse of the ballistic time. In
our numerical analysig7] we find thatl’ ~0.36?X 8x, cor-
responding t@= 1. The nonuniversal scal#,,, as well as
SXnup, IS determined by the requiremem(ox) =%y, .
Hence we get Eq(16), which holdsirrespectiveof the g
value. The latter claim has been stated[12] without a
proof.
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