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Quantum irreversibility, perturbation independent decay, and the parametric theory of the local
density of states
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The idea of perturbation independent decay~PID! has appeared in the context of survival-probability studies,
and lately has emerged in the context of quantum irreversibility studies. In both cases the PID reflects the
Lyapunov instability of the underlying semiclassical dynamics, and it can be distinguished from the Wigner-
type decay that holds in the perturbative regime. The theory of the survival probability is manifestly related to
the parametric theory of the local density of states~LDOS!. In contrast to that the physics of quantum
irreversibility requires subtle cross correlations, which are not captured by the LDOS alone, to be taken into
account.
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I. INTRODUCTION

The study of quantum irreversibility@1# has become of
much interest recently@2–8# due to its potential relevance t
quantum computing and to the theory of dephasing@9,10#.
Following @1# we define in Sec. II the main object of th
present paper, which is the ‘‘fidelity,’’ also known as th
‘‘Loschmidt echo,’’ that constitutes a measure for quantu
irreversibility.

The analysis of fidelity necessitates a generalization of
theory regarding survival probability@11#. In Sec. III we re-
mind the reader that the latter reduces to the analysis of
local density of states~LDOS! @12#. Is it possible to make a
similar reduction in the case of the fidelity? At first sig
such reduction looks feasible because the general phy
picture looks very similar~Secs. V and VI!.

In the present paper we claim~Sec. VI!, and prove by a
numerical example~Secs. VII and VIII!, that the study of
fidelity cannot be reduced to analysis of LDOS function
Rather, it is essential to take into account subtle cross co
lations which are not captured by the LDOS alone.

The object of the present study is common to almost
the quantum chaos studies, namely, to figure out what is
role of semiclassical mechanics in quantum mechan
Whenever we find such~semiclassical! ‘‘fingerprints,’’ we
call them ‘‘nonuniversal’’ effects. Most of the studies in th
quantum chaos literature during the last 20 years have b
devoted to figuring out the nonuniversal features of the
ergy spectrum. The main tool in singling out such feature
a comparison with the predictions of random matrix theo
~RMT!.

In the present paper we use the same philosophy. Nam
we identify nonuniversal effects by making a comparis
with a corresponding random matrix model. On the oth
hand, we discuss~Secs. X and XI! a unifying theoretical
picture that put the study of quantum irreversibility in th
larger context of phase-space-based semiclassical appro

An important ingredient in the understanding of nonu
versal features follows from studies of the clash betwe
perturbation theory, semiclassical theory, and RM
1063-651X/2002/66~4!/046209~7!/$20.00 66 0462
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@10,12,13#. A major realization is that semiclassical theo
and RMT lead todifferentnonperturbative limits. Hence th
resolution of the clash between the different theories
volves the identification of differentregimesof behavior.
This applies in general to the analysis of time-depend
dynamics@13#, and in particular to the analysis of wave
packet dynamics, decay of the survival probability, struct
of the LDOS@12#, and naturally also to quantum irreversibi
ity studies.

Specifically, we distinguish in the present paper betwe
regimes of perturbative and nonuniversal behavior, and
define and study a billiard related model, where we have
control over the ‘‘borders’’ between these regimes. The c
clusions are summarized in Sec. XII.

II. THE FIDELITY

Consider a system whose evolution is governed by
chaotic Hamiltonian

H5H~Q,P;x!, ~1!

where (Q,P) is a set of canonical coordinates, andx is a
parameter. Later~Sec. VII! we are going to consider, as a
example, a billiard system, where (Q,P) are the position and
the momentum of a particle, whilex is used in order to
parametrize the shape of the billiard. Specifically, for a s
dium we definex as the length of the straight edge, an
adjust the radius parameter such that the total area is
constant.

Consider someH05H(Q,P;x0), and definedx5x2x0.
Assume thatdx is classically small, so that bothH0 andH
generate classically chaotic dynamics of similar natu
Physically, going fromH0 to H may signify a small change
of an external field. In the case of the billiard system,dx
parametrizes the displacement of the walls. Given a prep
tion C0, the fidelity is defined as@14#

M ~ t;dx!5um~ t;dx!u2, ~2!

m~ t;dx![^C0uexp~1 iHt !exp~2 iH0t !uC0&. ~3!
©2002 The American Physical Society09-1
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DIEGO A. WISNIACKI AND DORON COHEN PHYSICAL REVIEW E66, 046209 ~2002!
If C0 is an eigenstateuE0& of H0, thenM (t;dx) is equal to
the survival probabilityP(t;dx), which is defined as

P~ t;dx!5uc~ t;dx!u2, ~4!

c~ t;dx![^E0uexp~2 iHt !uE0&. ~5!

In the general case the preparationC0 doesnot have to be an
eigenstate ofH0. To be specific one assumes thatC0 is a
Gaussian wave packet. It is now possible to define a diffe
type of survival probability as follows:

P~ t;wpk!5uc~ t;wpk!u2, ~6!

c~ t;wpk![^C0uexp~2 iHt !uC0&. ~7!

We assume thatdx is small enough so that we do not have
distinguish betweenH andH0 in the latter definition.

One may regardC0 as an eigenstate of some preparat
HamiltonianHwpk . Specifically, if C0 is a Gaussian wave
packet, then it is the ground state of a Hamiltonian of
type (P2P0)21(Q2Q0)2 that differs enormously fromH.
Thus we have in the general case the following three Ham
tonians:

~i! The preparation HamiltonianHwpk .
~ii ! The unperturbed evolution HamiltonianH0.
~iii ! The perturbed evolution HamiltonianH.
Above we have distinguished between two cases: the r

tively simple case whereHwpk5H0 and the more genera
case, where we assume that the differenceiHwpk2H0i is in
fact much larger compared with the perturbationiH2H0i .
The strength of the perturbation is controlled by the para
eterdx.

III. THE LDOS FUNCTIONS

Consider first the special case whereHwpk5H0. In such
case the fidelity amplitudem(t;dx) is just the Fourier trans
form of the local density of states~LDOS!,

r~v;dx!5(
n

z^n~x!uE0& z2d„v2@En~x!2E0#…. ~8!

For technical reasons, we would like to assume that ther
an implicit average over the reference stateuE0&. This will
enable a meaningful comparison with the more general c
which is discussed below.

In the general case, whereHwpkÞH0, one should recog-
nize the need in defining an additional LDOS function,

r~v;wpk!5(
n

z^nuC0& z2d„v2~En2E0!…. ~9!

In this contextE0 is consistently redefined as the mean e
ergy of the wave packet. Recall again thatdx is assumed to
be small enough, so that we do not have to distinguish
tweenH andH0 in the latter definition.

The Fourier transform ofr(v;wpk) is equal ~up to a
phase factor! to the survival amplitudec(t;wpk) of the wave
packet. The physics ofc(t;wpk) is assumed to be of ‘‘semi
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classical’’ type. We shall define what we mean by semicl
sical later on. The same notion is going to be used regard
c(t;dx) if the perturbation (dx) is large enough.

IV. DEFINITIONS OF G AND g

In this paper we measure the ‘‘width’’ of the LDOS of Eq
~8! in energy units@14#, and denote it byG(dx). A practical
numerical definition ofG(dx) is as the width of the centra
region that contains 70% of the probability. This correspon
to the notion of ‘‘core width’’ in @12#. If dx is not too large
~see the definition of the ‘‘Wigner regime’’ in the next se
tion!, one observes that

G~dx!}dx2/(11g). ~10!

The valueg;0 applies for strong chaos@12,16#, and it is the
same as in Wigner’s random matrix theory~RMT! @15#. In
general~e.g., see the Appendix! we can have 0,g,1. In
fact, the valueg;1 applies to our numerical model, whic
will be defined in Sec. VII.

The decay rate of either the fidelity or of the surviv
probability ~depending on the context! is denoted byg(dx).
The semiclassical value of the decay rate, which is de
mined via a ‘‘wave-packet dynamics’’ phase-space pict
@11#, is denoted bygscl. The Lyapunov exponent is denote
by gcl .

In order to determineg(dx) numerically one should plo
M (t;dx) againstt, for a range ofdx values. In Sec. VII we
are going to define some model Hamiltonians for which
have done simulations. These are called the linearized
liard Hamiltonian ~LBH!, the randomized version of LBH
~RLBH!, the modified billiard Hamiltonian~MBH!, and the
randomized version of MBH~RMBH!.

Figure 1~a! displays the results of the MBH simulation
We see that the MBH decay is well approximated by exp
nential function@Fig. 1~a!#. The dependence of the decay ra
gMBH on dx is presented in Fig. 2. The RMBH decay@Fig.
1~b!# is badly approximated by exponential function, but
order to make a comparison we still fit it to exponential. Th
is done in order to have a quantitative measure for the de
time. Thus we have alsogRMBH(dx).

In Fig. 2 we also plot the LDOS widthG(dx) as a func-
tion of dx for the two models. As far asG(dx) is concerned

FIG. 1. ~a! The decay ofM (t;dx) in the MBH case.~b! The
same for the randomized MBH~RMBH!. We use dimensionless
units of time that correspond to a stadium billiard with straight ed
x051, a particle with massm51/2, the wave numberk;50, and
\51. The values of the perturbation strength are~from the top
curve to bottom! dx50.0125* i with i 51, . . .,11.
9-2
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QUANTUM IRREVERSIBILITY, PERTURBATION . . . PHYSICAL REVIEW E66, 046209 ~2002!
the two models are practically indistinguishable. The in
contains plots ofG(dx) for the other two models~LBH,
RLBH!. In later sections we shall discuss the significance
the observed numerical results.

V. THE DECAY OF P„t; dx…

The theory of the survival amplitude is on firm groun
thanks to the fact that it is the Fourier transform of t
LDOS. According to@12# there are three genericdx regimes
of behavior:

~i! The standard perturbative regime.
~ii ! The Wigner~or Fermi golden rule! regime.
~iii ! The nonuniversal~semiclassical! regime.
In the standard perturbative regime (dx!dxc) the LDOS

function Eq. ~8! is predominantly a Kronecker delta. Th
characterization constitutes adefinitionof this regime. For an
estimate ofdxc in the case of billiards see the Appendix. Th
survival amplitude is obtained via a Fourier transform of t
Kronecker delta dominated LDOS function. This leads to
nonaveragedm(t;dx) that does not decay. On the oth
hand, theE0 averagedm(t;dx) has a Gaussian decay. Th
latter follows from the observation@1# that the first order
correctionE0(x)2E0(x0) has typically a Gaussian distribu
tion.

For intermediate values ofdx the decay ofP(t;dx) is
typically of exponential type with

g5G~dx!/\. ~11!

This is known as Wigner-type~or as Fermi golden rule! de-
cay. It is a reflection of the Lorentzian-like line shape of t
LDOS function. However, for largedx we get into a nonuni-
versal ~semiclassical! regime, where we can apply th
‘‘wave-packet dynamics’’ picture of@11#. Thus we find a
semiclassical decay with

g5gscl. ~12!

FIG. 2. The LDOS widthG and the decay constantg from the
MBH/RMBH simulations. The dotted line is the classical Lyapun
exponent. The inset isG in the LBH/RLBH case.
04620
t

f

a

The Wigner regime, where Eq.~11! holds, is determined@12#
by the condition

G~dx!!\gscl. ~13!

This inequality can be rewritten asdx,dxNU . The elimina-
tion defines a nonuniversal~system specific! parametric scale
dxNU .

In the nonuniversal regime the width of the LDOS
semiclassically determined@12#. In typical cases the width o
the LDOS is proportional to the strength of the perturbatio
hence

gscl}dx. ~14!

But in some exceptional casesgscl becomes perturbation in
dependent. Specifically, for billiard systems 1/gscl is roughly
equal to the mean time between collisions, so we can w

gscl'gcl. ~15!

It is important to realize that the perturbation independ
decay~PID! of c(t;dx) in billiard systems is a reflection o
thedx independence of LDOS functionr(v;dx) in the non-
universal regime. See@16# for a numerical study.

VI. THE DECAY OF M „t; dx…

A mature theory of fidelity is still lacking. However, it ha
been realized in@3,4# that the same physical picture as
@12# arises: For very smalldx we have Gaussian deca
~which corresponds to theE0 averaged decay of the surviva
amplitude!. For intermediate values ofdx we have Wigner-
type decay withg5G(dx)/\. For largedx we enter into the
semiclassical regime where one finds ‘‘Lyapunov deca
@25# with g'gscl'gcl .

In complete analogy with the case of survival probabil
studies we can define@via Eq.~13!# an analogous parametri
scale@3# that will be denoted bydxNUD . The semiclassica
value (gscl) of g is not necessarily the same forP(t;dx) and
for M (t;dx). Therefore in generaldxNU anddxNUD are not
necessarily identical.

For a simple shaped billiard system thegscl of the sur-
vival probability, thegscl of the fidelity, and the Lyapunov
exponentgcl are all equal to the inverse of the mean col
sion time. The perturbation parameterdx is defined as the
displacement of the billiard wall. In the Appendix we deriv
the following result:

dxNUD;dxNU;2p/k, ~16!

where 2p/k is the de Broglie wavelength of a particle wit
mass m, corresponding to the kinetic energyE0
5(\k)2/2m. These results hold for a hard walled billiard.

In the following we want to demonstrate the distinctio
betweendxNUD anddxNU . Therefore we consider a modifie
billiard Hamiltonian~MBH! for which

dxNUD!dxNU . ~17!

The above inequality reflects the general case, in which
gscl of M (t;dx) is different ~smaller! from the gscl of
P(t;dx).
9-3
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DIEGO A. WISNIACKI AND DORON COHEN PHYSICAL REVIEW E66, 046209 ~2002!
The fact thatP(t;dx) is a special case ofM (t;dx), and
the fact that similar ideas~semiclassical decay versu
Wigner-type decay! have emerged in the latter case, natura
suggests that the same physics is concerned. If it were re
the ‘‘same physics,’’ it would imply that the main features
M (t;dx) are determined by a simple-minded theory that
volves the LDOS functionr(v;dx) in some combination
with the LDOS functionr(v;wpk). It is the purpose of the
following sections to demonstrate that a simple-mind
theory is not enough. The semiclassical PID in the case
M (t;dx) necessitates a nontrivial extension of the LDO
parametric theory.

VII. DEFINITION OF THE MODEL

Our model Hamiltonian is the linearized billiard Hami
tonian ~LBH! of a stadium system@7#. It can be written as

H5E1dxB. ~18!

Here E is the ordered diagonal matrix$En(x0)%. The
eigenenergies of the quarter stadium billiard, with strai
edgex051, have been determined numerically. The pert
bation due todx deformation is represented by the matrixB.
Also this matrix has been determined numerically as
plained in@7#.

In the following numerical study we have considered n
the LBH, but rather a modified billiard Hamiltonian~MBH!,
which is obtained from the LBH by the replacement

Bnm°G~n2m!3Bnm , ~19!

where G(n2m) is a Gaussian cutoff function. This corre
sponds physically to having soft walls~for an explanation of
this point see Appendix J of@17#!. It is important to realize
that the ‘‘exact’’ physical interpretation of either the LBH~as
an approximation for the billiard Hamiltonian!, or the MBH
~as a soft wall version of the LBH!, is of no importance for
the following. The LBH and the MBH are both mathema
cally ‘‘legitimate’’ Hamiltonians.

In the next section we explain the numerical strate
which we use in order to prove our main point. This inco
porates the random matrix theory~RMT! strategy which has
been applied in@18# in order to demonstrate that the sem
classical theory and RMT lead todifferent nonperturbative
limits. The randomized LBH~RLBH! is obtained by sign
randomization of the off-diagonal elements of theB matrix:

Bnm°6Bnm ~random sign!. ~20!

The randomized MBH~RMBH! is similarly defined. The
purpose in making a comparison with a ‘‘randomize
Hamiltonian is the ability to distinguish between univers
and nonuniversal effects. Making such a distinction is a c
tral theme in the ‘‘quantum chaos’’ literature. Usually su
‘‘comparisons’’ are made in the context of spectral statist
analysis, while here, following@18# we are doing this com-
parison in the context of quantum dynamics analysis.
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VIII. THE NUMERICAL STUDY

The first step of the numerics is to calculate the wid
G(dx) of the LDOS functionr(v;dx). We know from pre-
vious studies@12,16# that for a hard-walled billiard system
G(dx) shows semiclassical saturation fordx.dxNU , where
dxNU roughly is equal to the de Broglie wavelength@Eq.
~16!#. This implies PID for the survival probability. With the
LBH we still see ~inset of Fig. 2! the reminisces of this
saturation. Note thatk;50 and hencedxNU;0.1. In contrast
to that, with the RLBH there is no indication for saturatio
This implies that nontrivial correlations of off-diagonal el
ments play an essential role in the parametric evolution
the LDOS.~See@19# regarding terminology.!

By modifyingthe billiard Hamiltonian we are able to con
struct an artificial model Hamiltonian~MBH! where the two
parametric scales are well separated (dxNUD!dxNU). Thus
within a large intermediatedx range@20# we do not have
PID for P(t;dx), but we still find PID for M (t;dx). See
Fig. 2.

In order to prove that the observed PID is not a triv
reflection ofr(v;wpk) we have defined the associated ‘‘ra
domized’’ Hamiltonian~RMBH!. The LDOS functions~8!
and~9! are practicallynot affected by the sign-randomizatio
procedure: the sign-randomization procedure has almos
effect onG(dx). In spite of this fact we find that the previ
ously observed PID ofM (t;dx) goes away: we see~Fig. 2!
that for the MBH there is no longer PID in the relevantdx
range@20#. This indicates that the PID was of semiclassic
‘‘off-diagonal’’ origin.

We see that both qualitatively and quantitatively the sig
randomization procedure has a big effect onM (t;dx).
Therefore, we must conclude that the correlations of the
diagonal terms is still important for the physics ofM (t;dx).
This holds in spite of the fact that thesameoff-diagonal
correlations are not important for the LDOS structure. T
implies that the theory ofM (t;dx) necessitates a nontrivia
extension of the parametric LDOS theory.

IX. THE SIMPLE-MINDED THEORY

The purpose of the present section is to explain what t
of ‘‘fidelity physics’’ can be obtained if we do not take non
universal ~semiclassical! features of the dynamics into ac
count. Such theory is expected to be valid in case of R
models. Let ref f(v;dx) be the Fourier transform o
m(t;dx). It can be written as

ref f~v;dx!5(
v8

f ~v8!d~v2v8!, ~21!

where the summation is over energy differencesv8
5@En(x)2Em(x0)#, and f (v8) is a product of the overlaps
^n(x)um(x0)&, and ^m(x0)uC0& and ^C0un(x)&. It is clear
that f (v8) satisfies the sum rule(v f (v)51. On the other
hand, if the number of principle components~participation
ratio! of the LDOS isN, then the sum overu f (v)u givesN1/2.
Thus we conclude thatf (v) should have randomlike phas
~or randomlike sign! character. Therefore, if we ignore th
9-4
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QUANTUM IRREVERSIBILITY, PERTURBATION . . . PHYSICAL REVIEW E66, 046209 ~2002!
system specific features, we can regardf (v) as the Fourier
components of a noisy signal. These Fourier components
isfy

^ f ~v!&50, ~22!

^u f ~v!u2&5 r̃~v;wpk!3r~v;dx!, ~23!

where r̃ is, up to normalization, the autoconvolution
r(v;wpk), and therefore is equal to the Fourier transform
P(t;wpk), and has roughly the same width asr(v;wpk).

It is worth noticing that for the Lorentzian line shap
which in general is not necessarily the case, Eq.~23! implies
that m(t) is characterized by exponential correlations w
decay constantG/2. This leads to the decay constantG for
M (t). The deviation ofg(dx) from G(dx) in the MBH case
cannot be explained by Eq.~23!, since the latter does no
distinguish between the MBH model and the associa
RMBH model. In order to explain the PID in the MBH cas
it is essential to take into account the nonuniversal~semiclas-
sical! features of the dynamics.

X. THE SEMICLASSICAL THEORY FOR P„t…

The semiclassical theory of the survival probability is d
scribed within the framework of wave-packet dynamics
Ref. @11#. The short time decay ofc(t;wpk) reflects the loss
of the overlap between the initial and the evolving wa
packets. On the other hand, due to the~inevitable! proximity
to periodic orbits, the survival amplitudec(t;wpk) has recur-
rences. However, because of the~transverse! instability of
the classical motion these recurrences are not complete.
sequently the long-time decay may be characterized by
Lyapunov exponentgcl . Possibly, this ‘‘Lyapunov decay’’ is
the simplest example for PID. It is PID because the size
the perturbation (iH2Hwpki) is not relevant here.

The semiclassical behavior of the survival probability h
a reflection in the LDOS structure. A relatively slo
‘‘Lyapunov decay’’ ~due to recurrences! implies that the
LDOS is ‘‘scarred’’@11#. Thus the semiclassical LDOS has
‘‘landscape’’ which is characterized by the energy sc
\gcl . Note that ‘‘scarring,’’ in the mesoscopic physics te
minology, is called the weak localization effect.

The above semiclassical picture regardingc(t;wpk) can
be extended@12,16,21# to the case ofc(t;dx), provideddx is
large enough. In the other limit, wheredx is small, we
should be able to use perturbation theory in order to pre
the decay rate. Thus we have here aclashof two possibili-
ties: having Wigner-type decay withg5G(dx)/\, or having
nonuniversal decay~NUD! that reflects the semiclassic
wave-packet dynamics.

The crossover from the perturbative to the semiclass
regime can be analyzed@12,21# by looking on the parametric
evolution ofr(v;dx). Depending ondx the LDOSr(v;dx)
has ~in order of increasing perturbation! standard perturba
tive structure, core-tail~Lorentzian-like! structure, or purely
nonperturbative structure@22#. The width G(dx) of
the‘‘core’’ defines a ‘‘window’’ through which we can view
the semiclassical landscape. This landscape is typically c
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acterized by\gcl features, wheregcl is related to the classi
cal dynamics. Asdx becomes larger, this window become
wider, and eventually some of the semiclassical landscap
exposed. Then we say that the LDOS contains a nonunive
component@22#.

XI. THE SEMICLASSICAL THEORY FOR M „t…

Whereas Lyapunov decay forc(t;dx) is typically a
‘‘weak’’ feature ~this is true for generic systems, where
billiard systems constitute an exception!, it is not so for
m(t;dx). By definition the trajectory of the wave packet
reversed, and therefore the short-time decay due to a los
wave-packet overlap is avoided. As a result the perturba
independent Lyapunov decay becomes a predominant fea
~that does not depend on recurrences!. This Lyapunov PID
has been discussed in@2#.

It is clear, however, that for smalldx we can use pertur-
bation theory in order to predict the decay rate ofM (t;dx).
The question that naturally arises, in complete analogy to
P(t;dx) case, is how to determine the borderdxNUD between
the perturbative regime~where we have Wigner-type decay!
and the semiclassical regime~where we have NUD!.

The natural identification ofdxNUD is as thedx for which
G(dx) becomes equal to\gscl . How is gscl determined?
There are two ‘‘mechanisms’’ that are responsible for the l
of wave-packet overlap. One is indeed related to the in
bility of the classical motion, while the other is related to t
overall energy width of the wave packet.

The survival probabilityP(t;dx) can be regarded as
special case ofM (t;dx), where the overall energy width o
the wave packet is the predominant limiting factor in t
decay. The separation between the energy surfaces ofH and
of H0 is proportional todx. Consequently we typically have
gscl}dx.

In the prevailing studies ofM (t;dx), one assumeswide
Gaussian wave packets. Therefore the separation betwee
energy surfaces does not play a major role in the semicla
cal analysis. Rather it is the instability of the classical moti
that is the predominant limiting factor in the decay. The
fore one typically expects to havegscl'gcl , which is inde-
pendent ofdx.

XII. CONCLUSIONS

The above discussed criterion for the identification of t
nonuniversal regime is in the spirit of spectral statistics st
ies @23#. In the latter context it is well known that RMT
considerations dominate the sub-\gcl energy scale, while
nonuniversal corrections dominate the larger energy sca

In the present paper we have identified the nonunive
regime for a billiard related model~MBH!. The border be-
tween the perturbative regime and the nonuniversal reg
in the context ofP(t;dx) is dxNU , while in the context of
M (t;dx) is dxNUD .

The parametric scalesdxNU and dxNUD are similarly de-
fined, but there is an important distinction between the
The first parametric scale marks the exposure of the se
classical landscape: either that of Eq.~8! or that of Eq.~9!.
9-5
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The second parametric scale, as proved by our nume
strategy, marks the exposure of cross correlations betw
the corresponding wave amplitudes.
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APPENDIX: THE dXNU FOR BILLIARDS

The nonuniversal regime for billiard systems has be
identified in @12,16#. Here we would like to complete th
missing steps in the generalization of this result. We use
same notations as in@12,16#.

In the general case@16# the band profile of theB matrix is
determined by the semiclassical formula@24#

^uBnmu2&'
D

2p\
C̃S En2Em

\ D , ~A1!

whereD}1/kd22 is the mean level spacing,k is the wave
number, andd52 is the dimensionality of the billiard sys
tem. The power spectrum of the motion

C̃~v!5const3k31g/vg ~A2!
rt,
,

d

R

ini
e

ed
w

s,
ed
cs

04620
al
en

-
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n

e

is the Fourier transform of a classical correlation functio
Here g50 corresponds to strong chaos assumptions, w
0,g,1 is more appropriate for our type of system due
the bouncing ball effect. The width of the LDOS is dete
mined using a procedure which is explained in@12#, leading
to Eq. ~9! there. Namely,

G~dx!5D3~dx/dxc!
2/(11g), ~A3!

where dxc}k2[(12g)1(11g)d]/2 is the generalization of Eq
~8! of @12#.

From Eq.~A3! it is clear thatdxc should be interpreted a
the deformation which is needed in order to mix neighbor
levels. In the standard perturbative regime (dx!dxc) first
order perturbation theory is valid as a global approximati
Otherwise, if dx.dxc , we should distinguish between
nonperturbative ‘‘core’’ of widthG and perturbative ‘‘tails’’
that lay outside of it.

The expression forG can be rewritten as

G~dx!'\gcl3~kdx!2/(11g) ~A4!

wheregcl}k is roughly the inverse of the ballistic time. I
our numerical analysis@7# we find thatG'0.36k23dx, cor-
responding tog51. The nonuniversal scaledxNU , as well as
dxNUD , is determined by the requirementG(dx)5\gcl .
Hence we get Eq.~16!, which holds irrespectiveof the g
value. The latter claim has been stated in@12# without a
proof.
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