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Mesoscopic ring model

d

dt
p = Wp

wn+1,n ≡ w−→n
wn,n+1 ≡ w←−n

w−→n = wβ
−→n + νgn

In [2,3] we have considered systems that are ”sparse” or ”glassy”,

meaning that many time scales are involved.

Standard thermodynamics does not apply to such systems.



Minimal model of a ”glassy” mesoscopic system

System + Bath + Driving

w−→n = wβ−→n + νgn

gn = couplings

Histogram of couplings
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←− few decades −→
“sparsity” = log wide distribution of couplings

wνn = νgn corresponds to TA =∞
wβ−→n
wβ←−n

= exp

[
−En−En−1

TB

]
corresponds to TB = finite



The stochastic potential and the SMF

Rate equation:

d

dt
p = Wp [=0 for NESS]

In = w−→n pn − w←−n pn+1 [≡I(ν) for NESS]

Stochastic field:

E(xn) ≡ ln

[
w−→n
w←−n

]
≈ −

[
1

1 + gnν

]
En−En−1

TB

Stochastic potential:

V (x) = −
∫ x

E(x′)dx′ ≈
∑
n

[
1

1 + gnν

]
En−En−1

TB

Stochastic Motive Force:

S	 ≡ ln

[∏
n w−→n∏
n w←−n

]
=

∮
E(x) dx [0 if no driving]

Telescopic correlations:

E(xn) ∼ ∆n ≡ (En−En+1)

Yet... we have sparsely distributed couplings
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Sinai’s Random-Walk [1982]:

Random, Uncorrelated & non symmetric

transition rates

; Buildup of activation barrier B ∼
√
N

; Exponentially low current I ∼ e−
√
N



SMF and current vs Driving intensity
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S	 - Stochastic Motive Force

B - Effective Activation Barrier

Valid for small SMF [see later]

The number of sign change ≈
√

Var(log(gn)) reflects the glassiness.



Summary of main results [2,3]

1. The current in the Sinai regime may be estimate by a single barrier approximation,

I(ν) ∼ 1
N
wε e−B 2 sinh

(
S	
2

)
[small SMF assumed]

2. Number of current sign change is determined by the log-width of the coupling distribution,

Expected number of sign change ≈
√

Var(log(couplings))

3. Exact expression for (non-canonical) NESS occupation probability

reflects crossover from Sinai spreading to resistor network picture.

pn ∝
(

1
w(xn)

)
ε

e−(U(n)−Uε(n))

4. Distribution of currents reflects Barrier statistics

Prob {barrier < B} ∼ exp
[
− 1

2

(πσB
2B

)2]



Brownian motion

The Einstein-Smoluchowski Relation (ESR):

D = µkBT, kB = 1

Relation between mobility (µ) and diffusion (D) reflecting microscopics (kB) in universal way.

This is a special case of a fluctuation-dissipation relation between first and second moments.

Drift: 〈x〉 = vt, v = µF

Diffusion: Var(x) = 2Dt

ESR:
v

D
=

F

T
≡ s = affinity (linear response)

s ≡ entropy-production-per-distance =
S	
N

[for the ring/lattice geometry]

FDT is valid close to equilibrium.

To what extent does the ESR hold?

Can it be derived from the NFT?

Non-equilibrium version?



Sinai spreading

Stochastic field: En ≡ ln

[−→wn
←−wn

]
, σ =

√
Var(En)

Stochastic Motive Force: S	 =
∑

n∈ring
ln

[ −→wn
←−wn

]

If
−→wn
←−wn

= exp

[
−
En − En−1

T

]
; S	 = 0

Affinity : s =
S	
N

For small s [1]:

Sub-diffusive spreading x ∼ [log(t)]2,

Exponentially small drift v ∼ e−
√
N .

For arbitrary s [2,3]:

Complicated expressions for v and D.

For a periodic lattice, no disorder:
v

D
=

2

a
tanh

(as
2

)
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[1] Sinai (1982)

[2] Derrida (1983)

[3] Aslangul, Pottier, Saint-James (1989)

ESR is violated for large s



The generalized ESR - reasoning and outline

1 = the lattice constant (distance between sites)

N = the lattice periodicity (length of the ring)

σ = the width of the stochastic-field distribution

ESR (s→ 0) v

D
= s

Poisson (s→∞) v

D
=

2

a∞

a∞(σ) : 1↗ N

General s dependence v

D
=

2

as
tanh

ass

2
as : N ↘ a∞

Figure out how as depends on s. Then deduce D.



Numerical results for v/D

General N
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Numerics
Sample specific
Statistical

Generalized ESR for a given disorder σ
v

D
=

2

as
tanh

ass

2

(1) For small values of s we have v/D = s, in consistency with the ESR.

(2) For no disorder (σ = 0) we have as = 1, reflecting the discreteness of the lattice.

(3) For finite disorder and moderate s we have as ∼ N , reflecting the length of the unit cell.

(4) For finite disorder and large s we have as = a∞, reflecting the disorder σ.

(5) As N becomes larger our results approach those of [2,3], which we call ”Sinai step”.



Nonequilibrium Fluctuation Theorem (NFT)
derivation of the ESR

Define x as the winding number times the length of the ring.

P [r(−t)]
P [r(t)]

= exp [−S[r]] ;
p(−x; t)

p(x; t)
= e−sx

Gaussian approximation (Central Limit Theorem)

p(x; t) ≈ p(x; t) =
1√

4πDt
exp

[
−(x− vt)2

4Dt

]
;

v

D
= s

Does the ESR really hold?



NFT and coarse graining

Asymmetric random walk traversing a distance x = X1 + ...+XN

P (X = +1) = p ≡ −→wτ

P (X = −1) = q ≡ ←−wτ

P (X = 0) = 1− p− q

Moment generating function Z(k) = 〈e−ikx〉 =
[
pe−ik + qe+ik + (1− p− q)

]N
In the continuous time limit p, q � 1, lnZ(k) = N

[
pe−ik + qe+ik − (p+ q)

]
+ O(N τ2)

Accordingly, one obtains:

p(x; t) =

∫ ∞
−∞

dk e
ikx+

(−→we−ik+←−weik−(←−w+−→w )
)
t

satisfies NFT

Correct application of the CLT:

p(x; t) =

∫ ∞
−∞

dk eik(x−(−→w−←−w )t)− k
2

2
(−→w+←−w )t+ O(k3t) =

1
√

4πDt
exp

[
−

(x− vt)2

4Dt

]

v = −→w −←−w , D =
1

2
(−→w +←−w ) ;

v

D
= s =

2

a
tanh

as

2
The affinity is renormalized!

The naive reasoning, based on CLT, is wrong, If we smear p(x) we get

p(−x; t)

p(x; t)
= e−sx



Recipe for computing v and D on a periodic array

The dynamics is determined by a rate equation:
d

dt
p = Wp

W is not symmetric yet periodic, thus Bloch’s theorem applies.

Reduced equation for the eigenmodes W (ϕ)ψ = −λψ, where W (ϕ) is an N ×N matrix.

Bloch’s theorem: ψn+N = eiϕψn, where n is the site index mod(N).

Bloch quasi-momentum ϕ ≡ kN .

Diagonalizing W (ϕ) ; {|k, ν〉,−λν(k)}, where ν is the band index.

Time dependent solution of the rate equation:

pn(t) ≈
1

L

∑
k,ν

Ck,ν e−λν(k)t eikn where Ck,ν depend on initial conditions.

In the long time limit only λ0 survives

v = i
∂λ0(k)

∂k

∣∣∣∣
k=0

D =
1

2

∂2λ0(k)

∂k2

∣∣∣∣
k=0



The Poisson Limit (s→∞)

The limit s→∞ corresponds to a uni-directional

random walk traversing a distance x = X1 + ...+XN

P (Xn = 1) = wnτ

P (Xn = 0) = 1− wnτ

P (Xn = −1) = 0

Characteristic polynomial for eigenvalues of W (ϕ)

det(λ+ W (ϕ)) =

N∏
n=1

(λ−wn) + e−iϕ
N∏
n=1

wn = 0
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Numerics
Sample specific
Statistical

Effective lattice constant (N = 6)

Expanding to second order in λ and ϕ

λ = −i

( N∑
n=1

1

wn

)−1
ϕ +

1

2

( N∑
n=1

1

wn

)−3( N∑
n=1

1

w2
n

)ϕ2 + O(ϕ3)

From the recipe for v and D:

a∞ =

(
2D

v

)
s→∞

=

[〈
(1/−→w )2

〉〈
(1/−→w )

〉2
]

= [For log-box distribution] =
σ

2
coth

(σ
2

)



Reminder: Numerical results for v/D

General N
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Numerics
Sample specific
Statistical

Generalized ESR for a given disorder σ
v

D
=

2

as
tanh

ass

2

(1) For small values of s we have v/D = s, in consistency with the ESR.

(2) For no disorder (σ = 0) we have as = 1, reflecting the discreteness of the lattice.

(3) For finite disorder and moderate s we have as ∼ N , reflecting the length of the unit cell.

(4) For finite disorder and large s we have as = a∞, reflecting the disorder σ.

(5) As N becomes larger our results approach those of [2,3], which we call ”Sinai step”.



Spreading analysis and the ”Sinai step”〈(←−w
−→w

)µ〉
≡ e−(s−sµ)µ [ defines sµ ]

The values s1/2, s1 and s2 determine crossover points between transport regimes.

For s = 0, anomalous time dependent spreading [Sinai],

x ∼ [log(t)]2 ; v ∼ e−
√
N

For finite s < s1 [Bouchaud, Comtet, Georges, Le Doussal, 1987],

x ∼ tµ [ µ is the value for which sµ = s ]

Time required to drift x ∼ N is t ∼ N1/µ, hence

v ∼
x

t
∼

(
1

N

) 1
µ
−1

Crossover at s = s1/2 from sub-Ohmic to super-Ohmic behaviour .

For large s > s1 and N →∞ [Derrida],

vs =
1−

〈
(←−w/−→w )

〉〈
(1/−→w )

〉 =
[
1− e−(s−s1)

]
v∞



The affinity dependent length scale as

From ”Derrida” we have an expression for

v in the N →∞ limit.

From our reasoning we have in general
v

D
=

2

as
tanh

ass

2
with some as.

By ”reverse engineering” we deduce as ∼ N, s < s2

as ≈ a∞
1−〈(←−w/−→w )2〉 = a∞

1−e−2(s−s2) , s > s2
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as irrelevant as ∼ N as ≈
[
1− e−2(s−s2)

]−1
a∞

vs v = 2D s ∼
(

1
N

) 1
µ
−1

vs ≈
[
1− e−(s−s1)

]
v∞

D ∼ exp
(
−
√
N
)

∼
(

1
N

) 1
µ
−2 ∼ (N)

2− 1
µ ∼ N D = 1

2
asvs



Summary of the ESR topic [1]

To what extent does the ESR hold?

As long as s < 1/N .

Can it be derived from the NFT?

Yes, provided s is replaced by coarse grained s̄.
coarse graining not related to ”secondary loops” but to discreteness and/or disorder.

Non-equilibrium version?

v

D
=

2

as
tanh

ass

2

 v ∼
(

1
N

) 1
µ
−1

, s < s1

v ≈
[
1− e−(s−s1)

]
v∞ s > s1 as ∼ N, s < s2

as ≈ a∞
1−〈(←−w/−→w )2〉 = a∞

1−e−2(s−s2)
, s > s2



Thermodynamics of a “glassy” system [4]

wnm = wβnm + wνnm = wβnm + νgnm

Cold bath:
wβnm

wβmn
= exp

[
−
En−Em
TB

]
Hot source: gnm = gmn

wν by themselves - induces diffusion / ergodization

wβ by themselves - leads to equilibrium

Combined - leads to NESS

Linear response and traditional FD: ν × {g} � {wβ}

Glassy response and Sinai physics: [within a wide crossover regime]

Semi-linear response and Saturation: ν × {g} � {wβ}



Generalized FD relation for the rate of energy flow

wnm = wβnm + wνnm = wβnm + νgnm

Ẇ = rate of heating =
DA(ν)

Tsystem

Q̇ = rate of cooling =
DB

TB
−

DB

Tsystem

SB(ω) System
Driving
SA(ω)

W

Bath

Q

Hence at the NESS:

Tsystem =

(
1 +

DA(ν)

DB

)
TB

Q̇ = Ẇ =
1/TB

D−1
B +DA(ν)−1

Experimental way to extract response:

DA(ν) =
Q̇(ν)

Q̇(∞)− Q̇(ν)
DB

DA(ν) exhibits LRT to SLRT crossover

DA(ν) =

[(
wn

wβ + wn

)][(
1

wβ + wn

)]−1

DA[LRT] = gn ν [weak driving]

DA[SLRT] = [1/gn]−1ν [strong driving]

Expressions above assume n.n. transitions only.


