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Mesoscopic ring model

Wy

In [2,3] we have considered systems that are "sparse” or ”glassy”,
meaning that many time scales are involved.

Standard thermodynamics does not apply to such systems.




Minimal model of a ”glassy” mesoscopic system
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The stochastic potential and the SMF

Rate equation:

d

=P = Wp [=0 for NESS]

= W73Pn — WiPn+1l [E](V) for NESS]

Stochastic field:
E(xn) = In [w—ﬁ} ~ —[ } !
Wiy 14 gnvV Tp

Stochastic potential:
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Stochastic Motive Force:

S =1In {M} = j{g(a:) dr [0 if no driving]
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Telescopic correlations:
8(5En) ~ An = (En—En+1)

Yet... we have sparsely distributed couplings
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Sinai’s Random-Walk [1982]:
Random, Uncorrelated & non symmetric

transition rates

~» Buildup of activation barrier B ~ v N
—V'N

~» Exponentially low current I ~ e




SMF and current vs Driving intensity
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I(v) — we e~ P 2sinh (—O>
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Sy - Stochastic Motive Force
B - Effective Activation Barrier

Valid for small SMF [see later]
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The number of sign change ~ /Var(log(g,)) reflects the glassiness.




Summary of main results [2,3]

. The current in the Sinai regime may be estimate by a single barrier approximation,

I(v) ~ % we e~ B 2sinh (%5) [small SMF assumed|]

. Number of current sign change is determined by the log-width of the coupling distribution,

Expected number of sign change = 1/Var(log(couplings))

. Exact expression for (non-canonical) NESS occupation probability

reflects crossover from Sinai spreading to resistor network picture.

Pn ( 1 )ge—w(n)—Us(n))

w(xn)

. Distribution of currents reflects Barrier statistics

Prob {barrier < B} ~ exp [_% (%)2}




Brownian motion

The Einstein-Smoluchowski Relation (ESR):
D = ,ukBT, k‘B =1

Relation between mobility (u) and diffusion (D) reflecting microscopics (kg) in universal way.

This is a special case of a fluctuation-dissipation relation between first and second moments.

Drift:

Diffusion:

F
m = 8 = affinity (linear response)

s = entropy-production-per-distance = STO [for the ring/lattice geometry]

FDT is valid close to equilibrium.
To what extent does the ESR hold?
Can it be derived from the NFT?

Non-equilibrium version?




Sinai spreading

Wn

Stochastic field: &, = In {<_ o = 1/ Var(&Ep)

w
Stochastic Motive Force: Sy = Z In { U_” ]
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Ep — Ep_
If 1} ~ Sy =0
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For small s [1]:

Sub-diffusive spreading ©x ~ [log(t)]Q,
~VN_

Exponentially small drift v ~ e

For arbitrary s [2,3]: 1000 2000 3000

Complicated expressions for v and D.
[1] Sinai (1982)
[2] Derrida (1983)

For a periodic lattice, no disorder: . ]
[3] Aslangul, Pottier, Saint-James (1989)

2 as
= —tanh (—)
a 2 ESR is violated for large s




The generalized ESR - reasoning and outline

= the lattice constant (distance between sites)

1
N = the lattice periodicity (length of the ring)

o = the width of the stochastic-field distribution

ESR (s — 0)

Poisson (s — 00)

General s dependence

Figure out how a, depends on s. Then deduce D.




Numerical results for v/D

General N Effective lattice constant (N = 6)

O Numerics
— Sample specific
- = = Statistical

Generalized ESR for a given disorder o

(1) For small values of s we have v/D = s, in consistency with the ESR.

(2) For no disorder (o = 0) we have as = 1, reflecting the discreteness of the lattice.

(3) For finite disorder and moderate s we have as ~ N, reflecting the length of the unit cell.
(4) For finite disorder and large s we have as = a, reflecting the disorder o.

(5) As N becomes larger our results approach those of [2,3], which we call ”Sinai step”.




Nonequilibrium Fluctuation Theorem (NFT)
derivation of the ESR

Define x as the winding number times the length of the ring.

Plr(=1)]

Pt = e[S

p(—x;t)
p(z;t)

Gaussian approximation (Central Limit Theorem)

- 1
p(z;t) ~ p(z;t) = JiDi

exp | —

(z — vt)’

4Dt

Does the ESR really hold?




NFT and coarse graining
Asymmetric random walk traversing a distance x = X1 + ... + X/
P(X =+1) p = Wr
P(X = —1) g = Wr
P(X=0) = 1—-p—gq

Moment generating function Z (k)
In the continuous time limit p,q < 1, InZ(k)

Accordingly, one obtains:
o) . ——1k ik -

p(z;t) = / dk eka—i_(we tiwe (U—Fw))t satisfies NF'T
— OO

Correct application of the CLT:

4Dt

o0 2
p(z;t) = / Ik oik@— (B0~ E (@)t oady  _ 1 exp [_(w—vt)]

o 4w Dt

2
(W +w) — tanh % The affinity is renormalized!

1
U:w—U’D:—
2 a

The naive reasoning, based on CLT, is wrong, If we smear p(x) we get

p(—=z;t) _
p(z; 1)




Recipe for computing v and D on a periodic array

The dynamics is determined by a rate equation: ap =Wp

W is not symmetric yet periodic, thus Bloch’s theorem applies.

Reduced equation for the eigenmodes W ()1 = —Ay, where W () is an N X N matrix.
Bloch’s theorem: ,, 4+ y = €*¥,,, where n is the site index mod(N).

Bloch quasi-momentum ¢ = kN.

Diagonalizing W (y) ~ {|k,v), —A,(k)}, where v is the band index.

Time dependent solution of the rate equation:

1 )
pn(t) = 7 Z Cr.v e M ()t gikn where Ck,, depend on initial conditions.
k,v

In the long time limit only Ao survives

i(‘?)\o(k’)

v
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The Poisson Limit (s — oco)

The limit s — oo corresponds to a uni-directional

random walk traversing a distance x = X1 + ... + X/
P(Xn,=1) = wpT
P(X, =0) 1 —wn,T

P(X, =-1) 0

O Numerics
— Sample specific
- = Statistical

Characteristic polynomial for eigenvalues of W ()

15 20
det(A + W (¢ HA wn) +e~ [[wn =0
n=1 n=1

Effective lattice constant (N = 6)

Expanding to second order in A and ¢

1 N o N oo
5 (Z w—n> (Z w—2> 0’ + O(¢?)

From the recipe for v and D:

w)? o o
oo = (?)3_;00 = [22;@;2] = [For log-box distribution] = ECOth(E)




Reminder: Numerical results for v/D

General N Effective lattice constant (N = 6)

O Numerics
— Sample specific
- = = Statistical

Generalized ESR for a given disorder o

(1) For small values of s we have v/D = s, in consistency with the ESR.

(2) For no disorder (o = 0) we have as = 1, reflecting the discreteness of the lattice.

(3) For finite disorder and moderate s we have as ~ N, reflecting the length of the unit cell.
(4) For finite disorder and large s we have as = a, reflecting the disorder o.

(5) As N becomes larger our results approach those of [2,3], which we call ”Sinai step”.




Spreading analysis and the ”Sinai step”

<<$ e—(s—slu),u [ defines Su ]

The values sq/2, s1 and s2 determine crossover points between transport regimes.

For s = 0, anomalous time dependent spreading [Sinail,

z ~ [log(t)]? ~ v e~ VN

For finite s < s; [Bouchaud, Comtet, Georges, Le Doussal, 1987],

x tH [ 1 is the value for which s, = s |

Time required to drift x ~ N is t ~ NY/# hence

x 1 %_1
t N

Crossover at s = s1 /9 from sub-Ohmic to super-Ohmic behaviour .

For large s > s; and N — oo [Derridal,

1 — ((w/W))
((1/5))

[1 — e_(s_sl)] Voo




The affinity dependent length scale

From ”Derrida” we have an expression for

v in the N — oo limit.

From our reasoning we have in general

2 asS
— = tanh =2 with some Qs.
as 2

By ”reverse engineering” we deduce

CLSNN, S<82

~ a oo — a4 oo
G B T% /D)) T 1e 20— 752

s regime [0,1/N]

irrelevant

v=2Ds
~ exp (—\/N)




Summary of the ESR topic [1]

To what extent does the ESR hold?
As long as s < 1/N.

Can it be derived from the NFT?
Yes, provided s is replaced by coarse grained s.

coarse graining not related to ”secondary loops” but to discreteness and/or disorder.
Non-equilibrium version?

2 (sS
— tanh




Thermodynamics of a “glassy” system [4]

w?

Cold bath:

Hot source:

w” by themselves - induces diffusion / ergodization

w? by themselves - leads to equilibrium

Combined - leads to NESS

Linear response and traditional FD: v x {g} < {wP}
Glassy response and Sinai physics: [within a wide crossover regime|

Semi-linear response and Saturation: vx {g} > {w’}




Generalized FD relation for the rate of energy flow

5
Wnm

w? =

v

Da(v)

system

: D
Q rate of cooling B _

rate of heating =

Dp

Tsystem

Hence at the NESS:

D

A(V)) T
Dp

1/Tg
D'+ Da(v)—1

Tsystem — (1‘|'

Experimental way to extract response:

Q).

Da(rv) = = D
SRR Yo Yo%

N %
a
3

D 4 (v) exhibits LRT to SLRT crossover

) [G)])

[weak driving]

Da(v) =

D A [LRT] Jn UV

D 4[sLRT) [1/gn] v [strong driving)|

Expressions above assume n.n. transitions only.




