VOLUME 67, NUMBER 15

PHYSICAL REVIEW LETTERS

7 OCTOBER 1991

Localization, Dynamical Correlations, and the Effect of Colored Noise on Coherence '

Doron Cohen

Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
(Received 30 April 1990; revised manuscript received 27 November 1990) )

Localization in the quantum-kicked-rotator problem leads to nontrivial dynamical correlations that
are absent in the classical limit. Consequently, both coherence and diffusion in the presence of colored
noise depend on its long-range autocorrelations._This implies that a Markovian treatment of the dynam-
ics for a system that is coupled to a low-temperature heat bath is not valid even if the system is classical-

ly chaotic.

PACS numbers: 05.45.+b, 05.40.+j, 71.55.Jv

The quantum-kicked-rotator (QKR) problem [1] con-
stitutes a prototype example for the suppression of classi-
cal chaos due to quantal localization [2]. It is closely re-

lated to the studies of Zener dynamics in multilevel sys- _

tems [3] and the ionization of hydrogen atoms by a mi-
crowave electric field [4]. It was found by Ott, Antonsen,
and Hanson [5] that uncorrelated white noise destroys
coherence and hence localization. However, if the noise
arises from a coupling to a heat bath then a more detailed
investigation is desired. It should take into account two
ingredients. One is noise autocorrelations which are ex-
pected at low temperature [6]. The other is friction
which may result in dissipation of energy. -
The combined effect of noise and dissipation has been
investigated by Dittrich and Graham [7]. Lately it has
been shown [8] that their model is non-Ohmic in the
Caldeira-Leggett sense [9]. Consequently two other dif-
ferent models have been introduced [8,10] where the

quantum kicked rotator has been assumed to be coupled
to an Ohmic bath either via its momentum variable [10]

or via its position coordinate [8]. In the case of the for-
mer coupling scheme [10] friction does not affect signifi-
cantly the long-time dynamics of the QKR and therefore
may be ignored [10]. Coupling via the position variable
[8] results in damping that is proportional to velocity and
hence to dissipation of energy. In the latter case, if the

coupling is weak, the coherence time is much shorter than

the relaxation time even in the limit of zero temperature
[8]. Consequently a phenomenological Fokker-Plank
treatment of the relaxation process is sufficient, and fric-
tion may be ignored for the purpose of determination of
the diffusion coefficient.

By inspection of the Feynman-Vernon [11] formalism
it has been shown [6,8,10,11] that if friction is ignored
then the heat bath has the same effect as that of a sto-
chastic force (“noise”). In the case of an Ohmic bath the
noise is white at high temperatures. At low temperatures,
due to the quantum nature of the bath, it possesses long-
range (negative) autocorrelations [6]. These noise auto-
correlations that arise at low temperatures affect signifi-
cantly the time evolution of integrable systems [6]. For
example, in the case of either an undriven particle [6,12]
or an undriven rotator [10] these negative autocorrela-
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_ lations that are absent in the classical limit.

tions result in suppression of linear diffusion (variance
grows linearly with time) and instead a logarithmic be-
havior (variance grows logarithmically with time) is
found. A Markovian treatment of the dynamics, which
underlies the frequently used master-equation approach
[13], ignores these noise autocorrelations [6]. If the sys-
tem is treated classically and is known to be chaotic then
this should not be important—due to the exponential in-
stability of the phase-space trajectories we expect no

memory for long-range autocorrelations. However, if the

dynamics is treated within the framework of quantum
mechanics, then one may expect a manifestation of long-
range dynamical correlations. ‘

In this Letter we argue the following: (a) Both diffu-
sion and coherence depend on the noise autocorrelations.
(b) This dependence is due to nontrivial dynamical corre-
(c) The
dynamical correlations are related to the crossover from
diffusion to localization. (d) Mott’s resonant-state pic-
ture of Anderson localization is applicable to the investi-
gation of these long-range correlations.

The time evolution of the QKR is given by iterations
with the one-step propagator

0o=exp[—;’;—Kcosi}exlp[“%%ﬁz] , (1)

with [X,pl=ih and periodic boundary conditions on
[0,27] are imposed. Fishman, Grempel, and Prange [2]
have argued that the eigenstates {r) of the one-step prop-
agator Uy are localized in the p representation with local-
ization length A& which is given [14] for large K by
E== tKYh? (we shall assume from now on that 1< K).
The eigenvalues of Uq will be denoted by e ", where o,
are the quasienergies. The differences w, —w; of the
latter will be denoted by w, with the convention
—r<w, <m The localization of the eigenstates in the
present QKR problem is similar to Anderson localization
in solid-state physics. Lately, strong evidence has been
presented that Mott’s resonant-state picture [15] of An-
derson localization is applicable also to this localization
problem [16]. It follows that not all the eigenstates have
a simple localization structure; in particular, one expects
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to find pairs of almost-degenerate double-hump states.
Let |r) and |s) be a particular pair—the dipole matrix
element |(s|p|r)] is then exceptionally large, approxi-
mately + h&In(A/|w,|), where-A is of the order 1/&.
The spectral density of these pairs is &/ in the small fre-
quency interval |®| < A, and zero elsewhere [17].

We consider here a rotator that is coupled to an exter-
nal c-number noise source. The one-step propagator is
expl—(i/h)#iulUo. A linear coupling scheme is as-
sumed, namely, %, =f;X, where X is a dynamical vari-
able defined subsequently. The dynamical behavior
should be averaged over realizations of the sequences f;
such that {f; fi? =v(t —t'). Explicit expressions for v(z)
in the case of an Ohmic bath are presented in Refs.
[6,8,10]. In the limit of zero temperature the total area
under v(z) goes to zero but the noise does not vanish, in-
stead it has negative autocorrelations such that v(r)

~1/72for 1 < 7. Particular choices for the dynamical
vanable X are X=p (Ref. [10]) and X =sinx (Ref. [17]).

The average decay rate I" of a quasienergy eigenstate
plays a central role in the theory that is presented in this
Letter. In order to find I' one estimates the transition
rates between localized eigenstates using a leading-order
perturbative calculation, and averaging over noise reali-
zations. Then, one has to sum over the final states and
average over the initial states. Such a calculation is
presented in detail in Refs. [8,17]. The final result can be
cast into the form

r=2% 3 v, @

where v(z) is the noise-autocorrelation function, v=v(0)
is its variance, and Cx(z) is the Fourier transform of the
spectral function

Cx(w)— lim —Z Z:, Ks| X 28w —w,).  (3)
r S I‘

We use N to denote the dimension of Hilbert space. A
natural way to define the coherence time is .= "!. Fol-
lowing Ott, Antonsen, and Hanson [5] it is argued that
for weak noise the diffusion process in momentum space
is similar to a random walk on a grid with spacing A&
and hopping probability I'. The diffusion coefficient is
then

D= (h&)T. 4)

Further study to establish the validity of this formula
which is based on short-time perturbative considerations
is presented elsewhere [17], and an analytical determina-
tion of prefactor of order unity which is not fixed by the
present heuristic approach is presented there [17]. It fol-
lows from (2) and (4) that both coherence and diffusion
depend on the noise autocorrelations provided Cx(t) has
nontrivial structure. We therefore turn to study in detail
two particular couplings with the corresponding correla-
tion functions C,(7) and C;(z)=Cgpx(r). Both func-
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tions are related to the dynamical crossover from diffu-
sion to localization in the absence of noise. This relation
enables one to get insight of their global behavior and
furthermore to extract them numerically.

In order to quantify the dynamical crossover one may
define the dispersion function E(t)={([5(t) —p(0)1%).
The notation ({O»=(1/N)trace(0) stands for quantum
statistical average. It corresponds in the semiclassical
limit to uniform average over phase-space cells. In order
to obtain E(¢) numerically one averages the dispersion
()| (p—p)?w()) over the initial preparation |y(0))
=|p) with p=hn (n=0,%1,%2,...). The time
derivative of E(¢) will be denoted by D (), namely, D(z)
=E(t+1)—E(t). We found that the crossover has the
following functional form:

Doe ~""* for t <OG*),
D(1)= cDo(t*/t) 1P for O(*) <,

with Do= $ K2, t* =~2¢, B=0.75, and ¢=~0.5. More
details including analytical considerations are- presented
elsewhere [17]. It should be noted that the asymptotic
power-law behavior of the crossover has already been re-
ported by Berman and Izrailev [18,19]. They have tried
to relate B to spectral properties of the system using a
heuristic picture [18]. Further study [19] has revealed
that in order to recover (formally) their result one should
assume that local level statistics is a well-defined notion.
In view of the later work by Dittrich and Smilansky [16]
this ansatz does not hold. A different strategy will there-
fore be reported here. It predicts §=1 in agreement with
a later phenomenological argument due to Chirikov [20].

The correlation function C,(7) is related to the cross-
over via

E(t)=2[C,(0) —C,()]. ()]

In the case where C;(7)={(sin%(z)sin£(0))} one finds
the relation [171

(s)

1
D=K? X G(7). o)
T ™=t

The first few sine correlations, namely, C;(0) = §, Cs(1)
=0, C;(2), C;(3), and C;(4) have been computed by
Shepelyansky [14], and it was found that a good approxi-
mation is to use the classical expressions [21] with K
replaced by (2/A )sin(#/2)K. Classically the other corre--
lations are very small and the sum rule

o

K? Y, Ci(z)=Dg
T W= — o0
is satisfied. This sum is dominated by the first few terms.
Quantum mechanically the diffusion is (asymptotically)
zero, and therefore X 5= —C;(7) =0, Thus C;(z) has a
nonclassical negative tail that compensates exactly the
short-range contribution. On the basis of (6) and (7) and
upon using (5) it follows that dynamical correlations in
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FIG. 1. The diffusion coefficient D as a function of A. See

text for details. An average over 100 initial conditions and

noise realizations has been performed in order to determine D

on the basis of simulations. The curve represents an analytical
estimate with no fitting parameters.

the QKR model decay exponentially on the time scale t*
while on a larger time scale a slower power-law decay
manifests itself. The power-law behavior in the case of
C,(z)~1/¢* indicates that C,(w) is singular in the vicin-
ity of @ =0. This implies, by inspection of (3), exception-
ally large dipole matrix elements. Mott’s picture enables
one to calculate the contribution of the pairs of double-
hump states to the spectral function. Using the estimates
for their dipole matrix element and spectral density, one
obtains Cp(@)|res= 5 726°In?|A/w| for |w| <A and zero
for A<|w|. The Fourier transform can be calculated
analytically. It leads to the asymptotic behavior

Cy(z)~ % 12831 /7)In|Az| for E<|7]. ®)

This formula agrees with the power-law behavior in (5)
provided ¢= ¢ In(z/t*) and B=1. The deviation of the
numerical results from this prediction may be due to a
very long transient behavior. Another possibility is that it
is due to the simplified nature of Mott’s picture. Namely,
most of the eigenstates possess structures that are neither
simple exponentials nor distinguished double humps.

To test the predictions of Eq. (4) with (2) some numer-
ical experiments have been performed [17]. Figure 1 il-
lustrates the results of such a typical experiment. The
coupling to the noise source is #in =f; sinx and the noise
autocorrelation function is v(z —¢') =omax[l — | —¢")/
A},01. The diffusion coefficient D has been measured as
a function of A. Diffusion is found to be suppressed due
to the positive noise autocorrelations. The smooth curve
represents the expected results on the basis of a refined
version of Eq. (4) which does not involve an undeter-
mined prefactor. The decay rate has been obtained by
applying (2) where the correlation function C;(z) had
been determined via (7) and (5). There are no fitting pa-
rameters.

We also verified [17] that in the case of coupling via
the momentum [10] the opposite effect is indeed realized,
namely, diffusion is suppressed due to negative noise au-
tocorrelations. This is expected from (4) with (2) where
Cp(7) is determined via (6). However, unlike the case of
undriven rotator [10], even at zero temperature, in spite

-~ of the negative noise autocorrelations, diffusion does not

vanish. The latter statement follows simply from the ob-
servation that due to the decay of dynamical correlatlons
the decay rate (2) is always larger than zero.
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