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Abstract. Driven quantum systems, described by Hamiltonian H(Q, P, x(t)) where
x(t) is a time dependent parameter, are of interest in mesoscopic physics (quantum
dots), as well as in nuclear, atomic and molecular physics. Such systems tend to absorb
energy. This irreversible effect is known as dissipation. More generally, x may be a
dynamical variable, where the total Hamiltonian is H0(x, p)+H(Q, P ;x). In such case
the interaction of (x, p) with the environmental degrees of freedom (Q, P ) leads to de-
phasing as well as to dissipation. It should be emphasized that even few (Q, P ) degrees
of freedom can serve as a miniature heat bath, provided they have chaotic dynamics.
We shall introduce a general framework for the analysis of dissipation and dephasing,
and we shall clarify the tight connection to recent studies of quantum irreversibility
(also referred to as “Loschmidt echo” or as the “fidelity” of quantum computation).
Specific model systems that will be presented are: particle in a box driven by moving
a wall, and particle in a box/ring driven by electro-motive-force. These two examples
are related to studies of nuclear friction and mesoscopic conductance. Specific issues
to be discussed are the limitations of kinetic theory, the capabilities of linear response
theory, and the manifestation of non-perturbative quantum-mechanical effects. In par-
ticular we shall explain that random matrix theory and the semiclassical theory lead
to different non-perturbative limits.

1 Introduction

In the following lectures we are interested in systems that are described by a
Hamiltonian H(Q,P ;x(t)), where (Q,P ) is a set of (few) canonical coordinates,
and x(t) is a time dependent parameter. We further assume that in the time
independent case (x(t) = const) the classical motion is chaotic.

The Quantum mechanical (QM) study of classically chaotic systems is known
in the literature as “quantum chaos”. The theory of time independent Hamilto-
nians, in particular their spectral properties, is well documented [1,3,2]. But the
QM theory of driven chaotic systems is still a missing chapter.

To avoid misunderstanding we refer here to systems that are chaotic also
in the absence of driving. By “driving” we mean that we assume Hamiltonian
H(Q,P ;x(t)) where x(t) is time dependent, rather than constant. Unlike the case
of time independent systems, in case of driven systems the energy distribution
evolves with time. What one needs is a theory for this evolution. We shall see
that various notions, such as “dissipation”, “irreversibility” and “fidelity” just
emphasize particular aspects of this evolution.

The available theory for driven systems in the quantum mechanical literature
is based mainly upon first order perturbation theory, supplemented by higher
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order (sometimes non-perturbative) corrections. Depending on the “rate” of the
driving, one commonly distinguishes between the “adiabatic” and the “Fermi
golden rule” regimes [4,5]. The latter is known also as the “linear response the-
ory” (LRT) or as the “Kubo-Greenwood” regime.

There are circumstances where first order perturbation theory cannot serve
as a starting point for the analysis of a driven system. However the well known
examples refer to systems that are not chaotic in the absence of driving. This
includes in particular one-degree-of-freedom systems such as the quantum kicked
rotator [6]. Our interest is in generic chaotic systems, therefore we have to con-
sider systems that have at least two degrees of freedom.

The possibility to present a general QM theory for driven chaotic systems
[9,10,11,12] follows from the simple fact that “chaos” leads to universality. This
universality is captured, to some extent, by random matrix theory (RMT). On
the other hand we have semiclassical methods. We shall see that there is a clash
between RMT and semiclassics, and that they lead to different non-perturbative
limits [13,14].

2 Model Systems

The classic example for a driven system is the piston model (Fig. 1), where a
gas in confined inside a cylinder, and x is the position of the piston. Our interest
is in the case where we have “one particle gas”. [Note however that if we know
how to solve the problem for one particle, then automatically we can get the
solution for many non-interacting particles].

x(t)

Fig. 1. The prototype piston model. A gas particle is moving chaotically inside a
cylinder. The driving is achieved by moving a wall element (”piston”).

(Q,P)

1D Box V

2D Box

E
(Q,P)

Fig. 2. The 1D version of the piston model (upper panel). The gas particle is moving
inside an “infinite well”. Its motion is not chaotic. In order to have chaotic motion we
should consider at least a 2D box, for example a stadium shaped billiard system (lower
panel).
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(Q,P)

(Q,P)

Fig. 3. Other versions of the “piston model”. Two examples of “Sinai billiards” are
illustrated. Note that in case of the right panel the displacement of the wall element
manifestly does not involve a change of volume. This feature simplifies the analysis.

The 1D-box version of this model (Fig. 2a) is known in the literature as
the “infinite-well” problem with moving wall [15,16]. Some limited aspects of
this problem have been discussed in the literature in connection with the Fermi
acceleration problem [17].

A 2D-box variation of the “piston model” is presented in Fig. 2b. Here we
have stadium shaped billiard, and the the parameter x controls the deformation
of the boundary. Two other variations of the same model are presented in Fig. 3,
where the box has the shape of a generalized Sinai billiard.

In the examples so far the parameter x controls the shape of the “box”,
and V = ẋ has the interpretation of wall velocity. The interest in such systems
has emerged long time ago in studies of nuclear friction (one-body dissipation)
[18,19]. A renewed interest is anticipated in mesoscopic physics where the shape
of a quantum dots can be controlled by gate voltages. [Note that in the nuclear
physics context the shape is close to spherical, while a quantum dot is typically
strongly chaotic].

We can create driving by changing any parameter (or field). In Fig. 4 the
driving is achieved by changing the perpendicular magnetic field. Fig. 4a as-
sumes “quantum dot geometry” with homogeneous magnetic field, while Fig. 4b

Fig. 4. The same “Sinai billiards” as in the previous figure. Here the driving is achieved
by changing the perpendicular magnetic field. In case of the left panel, where the box
has a simple “quantum dot” geometry, the magnetic field is assumed to be homoge-
neous. In case of the right panel, where the box has a Aharonov-Bohm ring topology,
the magnetic flux is assumed to be concentrated in the hole.
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assumes Aharonov-Bohm ring geometry with magnetic flux that goes via the
hole. Let us define x as the total magnetic flux. In such case V = ẋ is the
electro-motive force (measured in Volts) which is induced in the ring according
to Faraday law.

If the variations of the parameter x are classically small, then we can linearize
the Hamiltonian as follows

H(Q,P ;x) = H0(Q,P ) + xW(Q,P ) , (1)

where without loss of generality we have assumed that x = 0 is the typical
value of x. For generic systems (which means having smooth Hamiltonian that
generates a classically chaotic motion), the representation of W, in the ordered
H0 determined basis, is known to be a banded matrix (for details see the next
section). A simple example can be found in [20] where

H(Q,P ;x) = 1
2 (P

2
1+P 2

2 +Q2
1+Q2

2) + (1 + x) · Q2
1Q

2
2 . (2)

This Hamiltonian describes a particle moving inside a two dimensional anhar-
monic well (2DW). The shape of the 2DW in controlled by the parameter x.
The perturbation is W(Q,P ) = Q2

1Q
2
2, and its matrix representation Bnm is

visualized in the inset of Fig. 5.
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Fig. 5. The band profile (2π�/∆) · |Bnm|2 versus ω = (En−Em)/� is compared with
C̃(ω). See text for further explanations. The calculation is done for the 2DW model of
Eq. (2). The inset is an image of a piece of the B matrix. Taken from Ref. [20].

The above discussion of generic Hamiltonian models, such as the 2DWmodel,
motivates the definition of a simple artificial model Hamiltonian, that has the
same characteristics: This is Wigner model [21,22]. In the following definition
of Wigner model we follow closely the notations of [13]. In the standard repre-
sentation H0 = E is a diagonal matrix whose elements are the ordered energies
{En}, with mean level spacing ∆, and W = B is a random banded matrix
with non-vanishing couplings within the band 0 < |n − m| ≤ b. These coupling
elements are zero on the average, and they are characterized by the variance
σ = (〈|Bnm|2〉)1/2. Hence the Hamiltonian is

H = E+ xB . (3)
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This artificial model can serve as a reference case for testing various theoretical
ideas. Moreover, it has been conjectured that such model captures some generic
features of chaotic systems. [Note that most of the RMT literature deals with
simplified versions of Wigner model, where the bandwidth equals to the matrix
size].

3 Quantum Chaos

The notion of chaos in classical mechanics implies that few degree of freedom
system, such as the Sinai billiard system, exhibit stochastic-like behavior. This
is in contrast to the out-of-date idea that stochasticity and irreversibility are the
outcomes of having (infinitely) many degrees of freedom. Chaos means that the
motion (e.g. Fig. 6) has exponential sensitivity to any perturbation or change
in initial conditions. Another way to characterize a chaotic motion is by its
continuous power spectrum (see Fig. 7). This should be contrasted with inte-
grable motion which is characterized by a discrete (rather than continuous) set
of frequencies.

Fig. 6. Chaotic trajectories inside a Sinai billiard. In both examples the motion is
completely chaotic. This mean exponential sensitivity to any small change in the initial
conditions. This sensitivity can be characterized by the “Lyapunov exponent”. In the
right illustration the motion is chaotic, but the chaos is weaker, which means smaller
Lyapunov exponent.

For sake of later analysis it is useful to define the “power spectrum” of the
motion specifically as follows. Let (Q(t), P (t)) be an ergodic trajectory that is
generated by the time independent Hamiltonian H(Q,P ;x). We can define a
fluctuating quantity F(t) = −dH/dx. In case that x is the displacements of a
wall element (e.g. Fig. 3b), the fluctuating F(t) has the meaning of “Newtonian
force”. In case that x is the magnetic flux (e.g. Fig. 4b), the fluctuating F(t)
has the meaning of “electric current”. In case of the 2DW model we get F(t) =
−W(Q(t), P (t)) = −Q1(t)2Q2(t)2. The correlation function of the fluctuating
F(t) will be denoted by C(τ) and the power spectrum of the fluctuations will be
denoted by C̃(ω). The latter is the Fourier transform of the former. The variance
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Fig. 7. The power spectrum of the motion for the two examples of the previous figure.
It is the power spectrum C̃(ω) of the fluctuating quantity F(t) = −dH/dx. The latter
can be described as train of impulses (spikes) due to collisions with the walls. For
strongly chaotic motion (left panel) the power spectrum of F(t) is like that of white
noise. In the right panel the bouncing frequency is quite pronounced, and there is
also a “diabatic” peak around ω = 0. In both cases, the motion is characterized by a
continuous power spectrum, which constitutes an indication for the chaotic nature of
the motion.

of the fluctuation is C(0), the intensity of the fluctuations is defined as C̃(0),
and the correlation time is denoted by τcl.

It is clear that upon quantization we no longer have chaos. Still, the question
arise what are the fingerprints of the classical chaos on both the spectral proper-
ties of the system, and also on the structure of the eigenstates. This problem was
the focus of intensive studies during the last decade [1,3,2], and it has important
applications in mesoscopic physics [23,24,25].

An important observation of “quantum chaos” studies is that Quantum Me-
chanics introduce two additional energy scales into the problem (rather than
only one). We can take the 2DW model as a generic example. After rescaling
of the classical parameters of the model, we are left with one dimensionless pa-
rameter (the dimensionless energy). This parameter controls the nature of the
classical dynamics. Upon quantization we have two additional (dimensionless)
parameters. One energy scale is obviously the mean level spacing ∆, which is
proportional to �

d. The other energy scale is ∆b = �/τcl, where τcl is the classical
correlation time that characterizes the (chaotic) dynamics. If � is small then the
two energy scales are very different (∆ � ∆b).

The significance of the energy scale ∆b is a central issue in “quantum chaos”.
It turns out that the statistical properties of the energy spectrum are universal
on the sub-� scale, and obey the predictions of RMT. On the other hand, on
large energy scale (compared with ∆b), non-universal (system specific) features
manifest themselves [26]. These features are the fingerprints of the underlying
classical dynamics. In the context of ballistic quantum dots, which are in fact
billiard systems, ∆b is also known as the “Thouless energy”.
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There is another way in which the energy scale ∆b manifests itself. Let
W(Q,P ) be some observable, and consider its matrix representation Bnm in
the basis which is determined by the (chaotic) Hamiltonian. An example is pre-
sented in Fig. 5. It can be argued [27] that Bnm is a banded matrix, and that
the bandwidth is b = ∆b/∆. This is based on a remarkably robust semiclassical
expression that relates the bandprofile to the classical power spectrum:〈

|Bnm|2
〉

≈ ∆

2π�
C̃

(
En−Em

�

)
. (4)

We can apply this semiclassical relation to the case where W is the “perturba-
tion” as defined in Eq. (1). This leads to the interpretation of ∆b as the largest
“distance” in energy space that can be realized in a first-order transition. We can
also use the semiclassical relation in reverse, in order to find/define the classical
correlation function that corresponds to a quantum-mechanical matrix Hamilto-
nian. In case of the standard Wigner model we get C(τ) = bσ2sin(τ/τcl)/(τ/τcl),
with the correlation time τcl = �/(b∆).

4 Parametric Evolution

A more recent development was to consider a parametric set of Hamiltonians,
namely H(Q,P ;x) where x is a parameter as in the examples of Section 2. For
each value of x we can diagonalize the Hamiltonian, leading to set of (ordered)
eigen-energies En(x), as in the schematic illustration of Fig. 8. The correspond-
ing eigenstates will be denoted by |n(x)〉. Their parametric evolution can be
characterized by the parametric kernel

P (n|m) = |〈n(x)|m(x0)〉|2 . (5)

We shall use the notation P (r) = P (n−m) = P (n|m), with implicit average over
the reference state m. We shall refer to P (r) as the “average spreading profile”.
This is in fact, up to scaling, the LDOS (local density of states, also known as
strength function).

Let us characterize the perturbation by the quantity δx = x− x0. The inter-
esting question is how P (r) evolves as we increase the perturbation δx. For the
Wigner model the answer is known long ago [21,22,28,29]. P (r) has a standard
perturbative structure for very small δx. For larger δx it becomes a chopped
Lorentzian, and for even larger δx it becomes a semicircle. We shall denote the
border between the standard perturbative regime and the Wigner regime by δxc,
and the border between the Wigner regime and the non perturbative (semicircle)
regime will be denoted by δxprt.

The explicit expressions are:

δxc = ∆
σ ∝ �

(1+d)/2 , (6)

δxprt =
√
b∆

σ =
2π�

τcl

√
C(0)

, (7)
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Fig. 8. Upper panel: Schematic illustrations of the set of energies En(x) which are
obtained via diagonalization of a parameter dependent Hamiltonian. The thick solid
line indicates the n-range where 50% of the P (n|m) probability is concentrated (m is
fixed). The representative values x1, x2 and x3 correspond to the standard perturbative
regime, the core-tail (extended perturbative) regime, and the non-perturbative regime
respectively. The corresponding LDOS structures are illustrated (grey shading) in the
three plots of the lower panel. The semiclassical approximation (lines) is presented for
sake of comparison.

where d is the number of freedoms (d = 2 for billiards). In order to determine the
� dependence we have used the semiclassical relation Eq. (4), and the propor-
tionality ∆ ∝ �

d. Note that the latter relation, known as Weyl law, is significant
for the determination of δxc. In contrast to that δxprt ∝ � is in fact independent
of ∆.
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The generalization of Wigner scenario has been the subject of our recent
research [30,20,31]. In the general case the standard perturbative structure
evolves into a “core-tail structure”, while for large δx it becomes purely non-
perturbative. In the standard perturbative regime (δx � δxc) most of the prob-
ability P (r) is concentrated in one level (n = m). In the extended perturbative
regime most of the probability is concentrated within a “core” whose width is
typically Γ (δx) ∼ (δx/δxc)2. The “core” is the non-perturbative component
which arise due to non-perturbative mixing of nearby levels. The “tail” is the
outer perturbative component which is created by first order transitions.

The extended perturbative regime is defined by the requirement of having
separation of energy scales Γ (δx) � ∆b. This condition is trivially satisfied in
the “standard perturbative regime” where Γ ∼ ∆. The condition Γ (δx) � ∆b is
violated in the non-perturbative regime (δx � δxprt), which in fact leads to the
determination of δxprt as in Eq. (7). The theory for P (r) in the non-perturbative
regime is not complete yet. However, it can be argued [30] that if δx is large
enough, then P (r) becomes of semiclassical nature [32]. The case of billiards with
shape deformation requires special considerations and is of particular interest
[30,31].

It is important to realize that the border of the standard perturbative regime
(δxc) is related to the energy scale ∆, while the border of the extended pertur-
bative regime (δxprt), which leads to the identification of the non-perturbative
regime, is related to the bandwidth ∆b.

5 Temporal Evolution

After considering the parametric evolution, the next logical stage is to con-
sider the actual (temporal) evolution which is generated by the time dependent
Hamiltonian H(Q,P, x(t)). Then, in complete analogy, we can ask how the en-
ergy scales ∆ and ∆b are reflected in the actual evolution. We postpone the
discussion of the latter issue to Section 11.

The purpose of the present and next sections is to define what does it mean
“driving”, and how do we quantify the temporal evolution. Without loss of gen-
erality we assume x(0) = 0. We would like to consider the following driving
schemes:

• Linear driving
• One pulse driving cycle
• Periodic driving
• Driving reversal scenario
• Time reversal scenario

In the next section we define the various schemes, some of which are also illus-
trated in Fig. 9. The evolution is characterized by the obvious generalization of
Eq. (5), namely

Pt(n|m) = |〈n(x(t))|U |m(x(0))〉|2 . (8)
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Here U is the evolution operator, with implicit dependence on the time t. The
parametric kernel Eq. (5) can be regarded as corresponding to the “sudden”
limit where U ≈ 1. As in the parametric case we can define an average spreading
profile Pt(r), where r = n − m.

T0

A

A

V=2A/T

TΩ=2π/

T0

x(t)

A

0 T

Fig. 9. Various driving schemes: Rectangular pulse of duration T and amplitude A;
Triangular pulse which is further characterized by finite driving “velocity” V = |ẋ| =
2A/T ; Periodic driving with frequency Ω = 2π/T .

There are various practical possibilities available for the characterization of
the distribution Pt(r). It turns out that the major features of this distribution
are captured by the following three measures:

P(t) = Pt(r = 0) , (9)
Γ (t) = 50% probability width , (10)

δE(t) = ∆ ×
(∑

r

r2Pt(r)

)1/2

. (11)

The first measure is the survival probability P(t). The second measure Γ (t) is
the energy width of the central r region that contains 50% of the probability. [For
simplicity of presentation we use here a loose definition of Γ as far as prefactors
of order unity are concerned.] Finally the energy spreading δE(t) is defined as
the square-root of the variance.



Dissipation and Decoherence 327

It is important to realize that the above three measures give different type of
information about the nature of the energy spreading profile. In particular the
indication for having a core-tail structure is:

Γ (t) � δE(t) � ∆b . (12)

The core-tail structure (e.g. chopped Lorentzian) is characterized by a “tail”
component that contains a vanishingly small probability but still dominates the
variance. [Note that ∆b = ∞, as in the case of un-chopped Lorentzian, would
imply δE(t) = ∞ irrespective of Γ .] In contrast to that a typical semiclassical
spreading profile (as well as Wigner’s Semicircle) is characterized by

δE(t) ∼ Γ (t) � ∆b . (13)

In the latter case, in order to avoid confusion, it is better not to use the no-
tation Γ (t). [The notation Γ has been adopted in the common diagrammatic
formulation of perturbation theory. This formulation is useful in the extended
perturbative regime in order to derive Wigner’s chopped Lorentzian. In the non-
perturbative regime this formulation becomes useless, and therefore the signifi-
cance of Γ is lost.]

6 Driving Schemes

Linear driving means x(t) = V t, where V is a constant. In such a scenario
obviously x(t) �= x(0). Still it is convenient to assume that the chaotic nature
of the dynamics is independent of x, and that changes in x are not associated
with changes in phase space volume (no conservative work is being done). This is
manifestly the case for the systems which are illustrated in Fig. 3b and Fig. 4b.
[Note that the standard Wigner model does not have x invariance property, and
therefore the analysis of linear driving for the Wigner model is an ill defined
problem. Attempts to overcome this difficulty lead to certain subtleties [11]].

For all the other driving schemes we assume, without loss of generality, that
x(0) = x(T ) = 0, where T is the period of the driving cycle. The simplest driving
scheme is a rectangular pulse x(0 < t < T ) = A, which is characterized by its
amplitude A. Does the study of rectangular pulses constitute a good bridge for
developing a general theory for driven systems? The answer is definitely not. An
essential ingredient in the theory of driven system is the rate V in which the
parameter x is being changed in time. Therefore, it is important to consider,
for example, a triangular pulse (Fig. 9b). Such pulse is characterized by both
amplitude A and driving rate V = 2A/T . More generally one may consider
(Fig. 9c) a train of such pulses (= periodic driving). In particular one may
consider the usual sinusoidal driving x(t) = A sin(Ωt) where Ω = 2π/T . In the
later case we can define the root-mean-square driving rate as V = ΩA/

√
2.

In all these cases we ask, in complete analogy with the parametric case,
what is the evolution of the energy distribution Pt(r). Now the evolution is
with respect to time, rather than with respect to δx. The different scenarios are
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distinguished by the choice of U . We shall use the notation U [xA] in order to
denote the evolution operator that corresponds to driving scheme x = xA(t).

The case of rectangular pulse is known in the literature as “wavepacket dy-
namics” [33]. The particle is prepared in an eigenstate of the H0 Hamiltonian,
while the evolution is generated by the perturbed Hamiltonian H = H(Q,P ;x =
A). We may consider more complicated schemes of pulses. For example rectan-
gular pulse +A followed by another rectangular pulse −A. The question here
is whether the second pulse can compensate the effect of the first pulse. We
call such scheme “driving reversal”. The evolution operator can be written
as U = U [x(rev)]U [x] where x = A represents the rectangular pulse, while
x(rev) = −A is the reversed pulse. The case of triangular pulse can be regarded
as another particular variation of driving reversal. In the latter case x represents
linear driving with velocity V , and x(rev) is the reversed driving process with
velocity −V .

The case of “driving reversal” should be distinguished from “time reversal”
scheme. The latter notion is explained in the next section.

7 Two Notions of Irreversibility

There are two distinct notions of irreversibility in statistical and quantum me-
chanics. One is based on the “piston model” paradigm (PMP), while the other
[34] is based on the “ice cube in cup of hot water” paradigm (ICP). The re-
cent interest [35,36,37,38,39,40] in “quantum irreversibility” is motivated by its
relevance to quantum computing.

In the PMP case we say that a process is reversible if it is possible to “undo”
it by driving reversal. Consider a gas inside a cylinder with a piston (Fig. 1).
Let us shift the piston inside. Due to the compression the gas is heated up. Can
we undo the “heating” simply by shifting the piston outside, back to its original
position? If the answer is yes, as in the case of strictly adiabatic process, then
we say that the process is reversible.

In the ICP case we consider the melting process of an ice cube. Let us assume
that after some time we reverse the velocities of all the molecules. If the external
conditions are kept strictly the same, we expect the ice-cube to re-emerge out of
the water. In practice the external conditions (fields) are not exactly the same,
and as a result we have what looks like irreversibility.

The mathematical object that should be considered in order to study PMP
is just Pt(r) for a driving scheme that involves “driving reversal”. Namely, as
discussed in the previous section, the evolution operator is

U = U [x(rev)] U [x] . (14)

The mathematical object that should be considered in order to study ICP is
again Pt(r), but with driving scheme that involves “time reversal”. Namely, the
evolution operator is defined as

U = U [xB ]−1 U [xA] . (15)



Dissipation and Decoherence 329

In the latter case, if the external conditions are in full control (xB = xA), then
we have complete reversibility (U = 1).

It is also important to define precisely what is the measure for quantum
irreversibility. This is related to the various possibilities which are available for
the characterization of the distribution Pt(r). The prevailing possibility is to
take the survival probability P(t) as a measure [34]. Another possibility is to
take the energy spreading δE(t) as a measure. The latter definition goes well
with the PMP, and it has a well defined classical limit. Irreversibility in this
latter sense implies diffusion in energy space, which is the reason for having
energy absorption (dissipation) in driven mesoscopic systems (see Section 9).

8 Wavepacket Dynamics, Survival Probability
and Fidelity

Driving schemes with rectangular pulses are the simplest for both analytical and
numerical studies. It is easiest to consider the survival probability in case of a
single rectangular pulse. The survival amplitude is defined as

F (t) = 〈Ψ0|U [A]|Ψ0〉 (16)

=
∣∣∣∣
〈
Ψ0

∣∣∣ exp(− i

�
Ht

) ∣∣∣Ψ0
〉∣∣∣∣ .

The survival probability is P(t) = |F (t)|2, in consistency with the definition
of Eq. (9). F (t) is manifestly a Fourier transform of the LDOS, and therefore
we can immediately draw a conclusion [30] that the nature of the dynamics is
different depending on the parametric regime to which the amplitude A belongs.
If P (r) have a core-tail Lorentzian structure, then we get an exponential decay
P(t) = exp(−Γt). On the other hand if P (r) has a semiclassical structure, then
the decay of P(t) is non-universal (system specific).

A similar picture arise in recent studies of the survival probability for “time
reversal” driving scheme. Here one defines the fidelity amplitude as

F (t) = 〈Ψ0|U [A]−1U [0]|Ψ0〉 . (17)

The fidelity, also known as Loschmidt echo, is defined as P(t) = |F (t)|2. The
situation here is more complicated compared with Eq. (16) because we have two
LDOS functions [38]: one is the H0 weighted LDOS, and the other is the Ψ0
weighted LDOS. The two LDOS functions coincide only if Ψ0 is an eigenstate of
H0. In the latter case the F (t) of Eq. (17) reduces (up to phase factor) to Eq. (16).
It turns out that in case of Eq. (17) there is no simple Fourier Transform relation
between F (t) and the LDOS functions. However, the picture “in large” is the
same as in the case of Eq. (16) [38]. Namely, one has to distinguish between three
regimes of behavior: In the standard perturbative regime (A < δxc) one typically
encounters a Gaussian decay [34]; In the Wigner regime (also called FGR regime)
one typically finds Exponential decay [36]; And in the non-perturbative regime
one observes a semiclassical perturbation-independent “Lyapunov decay” [35].
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The study of the survival probability, as described above, is only one limited
aspect of the temporal evolution. The more general object that should be consid-
ered is Pt(r) as defined in Section 5. The major features of this time evolution are
captured by the three measures that we have defined in Eq. (9)-(11). In Fig. 10
we display numerical simulations of wavepacket dynamics for the 2DW model.
The energy spreading δE(t) is plotted as a function of time. The first panel
is the classical simulation, which in fact coincides with the “linear response”
calculation.
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Fig. 10. Energy spreading as a function of time for the 2DW model: (a) classical; (b)
quantum mechanical; (c) An effective Wigner model. The energy in these simulations
is E ∼ 3, and δx = 0.2123. The light dashed lines in (a) and (c), that have slopes
1 and 1/2 respectively, are drawn to guide the eye. In (c) different lines correspond
to different values of � as in (b), and additional curves (� = 0.009, 0.005) have been
added. Taken from Ref. [14].

The input for the LRT calculation is C(τ), and the result is proportional to the
amplitude A. Namely,

δE(t) = A ×
√
2(C(0)− C(t)) . (18)

In the second panel we display the results of the quantum mechanical simula-
tions. For smaller � values the agreement with the classical LRT calculation is
better. Finally, in the third panel we repeat the quantum mechanical simulations
with a sign randomized Hamiltonian. This means that we take Eq. (3), and we
randomize the sign of the off-diagonal terms. The bandprofile, and hence C̃(ω)
are not affected by this procedure, which implies that the LRT calculation gives
exactly the same result. But now we see that as � becomes smaller the corre-
spondence with the classical result becomes worse. Specifically: In (a) and (b)
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we see a crossover from ballistic spreading (δE ∝ t) to saturation (δE ∼ const)
as implied by Eq. (18). Only one time scale (τcl ∼ 1) is involved. In (c), in con-
trast to that, we see that as � → 0 an intermediate stage of diffusion (δE ∝ √

t)
develops.

How can we explain the above results. Obviously we see that for small � we
cannot trust LRT. What in fact happens is that we have a crossover from the per-
turbative regime (A < δxprt(�)) to the non-perturbative regime (A > δxprt(�)).
In the latter case we get either semiclassical behavior, or RMT behavior. In other
words, random matrix theory and the semiclassical theory lead to different non-
perturbative limits. In the semiclassical case the crossover from LRT behavior
to non-perturbative behavior cannot be detected by looking on δE(t). Still the
crossover can be detected by looking on Γ (t). See [14] for details.

9 Diffusion in Energy Space and Dissipation

In the following sections we discuss the case of either linear or periodic driving.
In such case the long time behavior of the system is characterized by diffusion
in energy space. Associated with this diffusion is a systematic increase of the
average energy. This irreversible process of energy absorption is known as “dis-
sipation”.

There is a satisfactory classical theory for dissipation [41]. Some of the math-
ematical details are subtle, but the overall physical picture is quite simple. With-
out loss of generality the main idea can be explained by referring to the billiard
example of Fig. 1a. The particle executes chaotic motion, and we may say that
each collision has roughly equal probability to be with either the inward-going or
with the outward-going wall. As a result the particle either gain or loose kinetic
energy. Thus, the dynamics in energy space is like random walk, and it can be
described by a diffusion equation. Thus we see that due to the chaos we have
stochastic-like energy spreading.

This classical diffusion process is irreversible in the PMP sense. Let us assume
that we start with a microcanonical distribution that has definite energy. If, after
some time, we reverse the velocity of the walls, then obviously we do not get
back the initial microcanonical distribution.

The effect of dissipation is related to the irreversible stochastic-like diffusion
in energy space. If the diffusion rate were the same irrespective of the energy,
then obviously the average energy would be constant. But this is not the case.
The diffusion is stronger as we go up in energy, and as a result the diffusion
process is biased. Thus the average energy systematically grows with time, and
one can derive a general diffusion dissipation relation [44]:

d

dt
〈H〉 = −

∫ ∞

0
dE g(E) DE

∂

∂E

(
ρ(E)
g(E)

)
, (19)

where g(E) is the density of states, and ρ(E) is the probability distribution
(e.g. microcanonical, canonical or Fermi occupation). The diffusion picture is
generally valid in the classical case, and it is typically valid also in the quantum
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mechanical case. [The issue of dynamical localization due to strictly periodic
driving [6] is important for driven 1D system, but not so important in the case
of driven chaotic systems [11].]

There is a simple linear response (Kubo) expression, that relates the diffusion
coefficient to the power spectrum C̃(ω) of the fluctuations:

DE =
1
2
C̃(Ω)× V 2 . (20)

The diffusion law for short times is δE(t) =
√
2DEt. This expression is com-

pletely analogous to Eq. (18). In both cases the spreading is proportional to the
amplitude A. [Recall that for periodic driving we define V = ΩA/

√
2. In the

special case of linear driving the spreading is proportional to V .] Moreover, as
in the case of wavepacket dynamics, the LRT result is the same classically and
quantum-mechanically. But again, as in the case of the wavepacket dynamics,
the validity regime of LRT in the quantum mechanical case is much smaller (see
Section.11).

If we combine the above Kubo expression with the diffusion-dissipation rela-
tion we get

d

dt
〈H〉 = µ(Ω)× V 2 , (21)

where µ is related to the power spectrum of the fluctuations. Thus we get a
fluctuations-dissipation relation [44]. The standard “thermal” fluctuation-dissi-
pation relation µ(0) = C̃(0)/(2kBT ) is obtained from Eq. (19) in case of canon-
ical ρ(E).

Standard textbook formulations [44] takes linear response theory together
with thermal statistical assumptions as a package deal. Our presentation provides
a more powerful picture. On the one hand we can discuss non-equilibrium situa-
tion using LRT combined with an appropriate version of the diffusion-dissipation
relation. On the other hand, we may consider situation where LRT does not ap-
ply. In such case we may get some (non-perturbative) result for the diffusion, and
later use the diffusion-dissipation relation in order to calculate the dissipation
rate.

10 Beyond Kinetic Theory

The coefficient µ in Eq. (21) is called the “dissipation coefficient”. In the case
where x is the displacement of a wall element, it is also known as “friction coeffi-
cient”, and in the case where x is a magnetic flux it can be called “conductance”.

Having dissipation rate proportional to V 2 is known as “ohmic” behavior.
In case of “friction” it is just equivalent to saying that there is a friction force
proportional to the velocity V , against which the wall is doing mechanical work.
This mechanical work is “dissipated” and the gas is “heated up” in a rate pro-
portional to V 2.
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In case of “conductance” we may say that there is a drift current proportional
to the voltage V . This is in fact “Ohm law”. The dissipated energy can either
be accumulated by the electrons (as kinetic energy), or it may be eventually
transferred to the lattice vibrations (phonons). In the latter case we say that the
ring is “heated up”. The rate of the heating goes like V 2 which is in fact “Joule
law”.

The traditional approach to calculate µ is to use a kinetic picture (Boltz-
mann) which is based on statistical assumptions. This leads in case of friction
to the “wall formula” [18,19]:

µ(Ω) =
N

Vbox

mvEAwalls (22)

where N is the number of gas particles (let us say N = 1), and vE =
√
2E/m.

We also use the notations Vbox for the volume of the box, and Awalls for the
effective area of the moving walls. In the latter we absorb some geometric fac-
tors [12]. Application of the traditional kinetic (Boltzmann) approach in case of
conductance leads to “Drude formula”:

µ(Ω) ∼ N

Adot

(
e2

m
τcol

)
1

1 + (τcolΩ)2
, (23)

where Adot is the area of the “quantum dot”, and τcol is the average time between
collisions with the walls.

Using Linear response theory (Kubo formula), as described in the previous
section, we can go beyond the over-simplified picture of kinetic theory. That
means to go beyond Boltzmann picture. Below we explain under what assump-
tions we get the “traditional” kinetic expressions, and what in fact can go wrong
with these assumptions.

The interest in friction calculation has started in studies of “one body dissi-
pation” in nuclear physics [18,19]. The “wall formula” assumes that the collisions
are totally uncorrelated. In such case the power spectrum C̃(ω) of F(t) is like
that of white noise (namely “flat”). By inspection of Fig. 7 we can see that
this assumption is apparently reasonable in the limit of very strong chaos. But
it is definitely a bad approximation in case of weak chaos. The dynamics of
chaotic system is typically characterized by some dominant frequencies. There-
fore we have relatively strong response whenever the driving frequency matches
a “natural” frequency of the system. This can be regarded as a classical (broad)
resonance. By inspection of Fig. 7 we see that a particular feature is having such
resonance around ω = 0. This type of resonance, due to bouncing behavior, can
be regarded as a “classical diabatic effect” [46].

Even if the chaos is very strong, the “white noise” assumption is not necessar-
ily correct: In [47,45] we explain that for special class of deformations (including
translations, rotations and dilations) the low frequency response is suppressed,
irrespective of the chaoticity. This is illustrated numerically in Fig. 11.

In case of Drude formula the fluctuating F(t) has the meaning of “electric
current”, and therefore the power spectrum C̃(ω) is the Fourier transform of
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Fig. 11. The dependence of the friction coefficient on the driving frequency, using LRT.
“GN” stands for generic deformation of a stadium shaped billiard, while “DI” stands
for special deformation (dilation). [In the latter case the friction coefficient vanishes in
the low frequency limit.] In both cases the agreement between the classical (solid line)
and the quantum-mechanical (dashed line) calculation is remarkable. Taken from Ref.
[47].

the current-current (or one may say velocity-velocity) correlation function. As-
suming that the velocity-velocity correlation function decays exponentially in
time, one obtains the Drude result. A careful analysis of this assumption, and
its relation to the “white noise approximation” of the “wall formula”, can be
found in Section 6 of [45]. Fig. 12 displays a numerical example. We clearly see
non-universal deviations from the Drude expression, which reflect the specific
geometry of the “quantum dot”.

11 Non-perturbative Response

In the classical case, assuming idealized system, the crossover to stochastic en-
ergy spreading involves only one time scale, which is τcl. Gaussian-like spreading
profile is obtained only for time t much larger than τcl. For short times we can
use linear analysis in order to calculate the spreading profile. However, this anal-
ysis has a breaktime [12] that we call tfrc(V ), where V is the rate in which x is
being changed. For long times (t � τcl) we can use stochastic picture. Classical
LRT calculation of the diffusion is valid only if the crossover to stochastic be-
havior is captured by the short time analysis. This leads to the classical slowness
condition τcl � tfrc(V ) which we assume from now on. See specific examples in
Sections 13 and 14.

In the quantum mechanical case we follow a similar reasoning. The linear
analysis is carried out using perturbation theory. We have presented [12] a careful
analysis to determine the breaktime tprt(V ; �) of this analysis. It turns out that
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Fig. 12. The dependence of the mesoscopic conductance on the driving frequency. The
calculation is done for a Sinai billiard shaped quantum dot, using LRT. The result
can be regarded as a mesoscopic version of Drude formula. The specific geometry of
the system is reflected in the structure of the response curve. The inset is log-log plot.
Taken from Ref. [45].

this breaktime is not related to the mean level spacing ∆, but rather to the much
larger energy scale ∆b.

In complete analogy with the classical analysis, it turns out that the validity
of LRT in the quantum domain is restricted by the condition τcl � tprt(V ; �).
If this inequality is not satisfied, then we say that we are in a non-perturbative
regime. It is important to realize that the � → 0 limit is a non-perturbative
limit. This means that the semiclassical regime is contained within the non-
perturbative regime.

In the simple examples that are discussed in Sections 13 and 14, the non-
perturbative regime is in fact a semiclassical regime. This coincidence does not
hold in general [9,10,12]. In case of RMT models, obviously we do not have a
semiclassical limit. In such models the non-perturbative response deviates sig-
nificantly from Kubo formula (Fig. 13). The interest in such models can be
physically motivated by considering transport in quantized disordered systems.
Whether similar deviations from Kubo formula can be found in case of quan-
tized chaotic systems is still an open question [11]. In any case, it is important to
remember that the rate of dissipation is just one aspect of the energy spreading
process. Even if Kubo formula does not fail (thanks to quantum-classical corre-
spondence), still there are other features of the dynamics that are affected by the
crossover from the perturbative to the non-perturbative regime. For example: in
Sec.19 we are going to show that different results are obtained for the dephasing
time, depending whether the process is perturbative or non-perturbative.

We can express the condition for being in the non-perturbative regime as [12]

V � δxprt

τcl
. (24)
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Fig. 13. The response of a quantum mechanical system is displayed as a function of
A and Ω. The simulations are done for Wigner model with periodic driving. The units
are chosen such that ∆ = 0.5 and � = 1 and σ = 1. Upper panel: Plots of DE/A2

versus Ω/ωcl for few values of A. For small ω the plots coincide as expected from LRT.
As A becomes larger the deviations from LRT scaling become more pronounced, and
we get response also for Ω > ωcl. Lower panel: Plots of DE/D0 versus A/

√
b for few

values of Ω/ωcl. LRT implies DE/D0 = 1 for Ω/ωcl < 1 and DE/D0 = 0 for Ω/ωcl > 1.
The purpose of the horizontal scaling is to demonstrate that Aprt rather than Ac is
responsible for the deviation from this LRT expectation. Taken from Ref. [11].

The expression in the right hand side scales like �, which reflects that this
condition is related to ∆b and not to ∆. In the next section we discuss the
definition of the adiabatic regime (very small V ) whose existence is related to
having finite ∆. A schematic illustration of the three regimes (adiabatic, LRT,
non-perturbative) is presented in Fig. 14. Some further reasoning [11] allows
to define the non perturbative regime in case of periodic driving. Its location
in (A,Ω) space is also illustrated in Fig. 14. Note that for periodic driving we
define V = ΩA/

√
2. The two V = const curves in the (Ω,A) diagram represent
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Fig. 14. Upper diagram: The various V regimes in the theory of driven systems for
linear driving x(t) = V t. Lower diagram: The various (Ω, A) regimes for periodic
driving x(t) = A sin(Ωt). We use the notations ωcl = 2π/τcl and Ac = δxc and Aprt =
δxprt.

the same conditions as in the case of linear driving. Other details of this diagram
are discussed in the next section, and in [11].

12 Adiabatic Response and QM Resonances

Let us assume that we are in the perturbative regime (which means that the
non-perturbative regime of the previous section is excluded). We ask the follow-
ing question: can we use the classical Kubo result as an approximation for the
quantum mechanical result? The answer is “yes” with the following restrictions:
(i) The amplitude of the driving should be large enough; (ii) The frequency of
the driving should be large enough. The two conditions are further discussed
below. If they are satisfied we can trust the classical result. This follows from
the remarkable quantal-classical correspondence which is expressed by Eq. (4).
We have an illustration of this remarkable correspondence in Figs. 7 and 11.

Large enough amplitude means A � δxc. One may say that large-amplitude
driving leads to effective “broadening” of the discrete levels, and hence one can
treat them as if they form a continuum. This is essential in order to justify the use
of Fermi golden rule (FGR) for a small isolated system [11]. Kubo formula can be
regarded as a consequence of FGR. If the driving amplitude is not large enough
to “mix” levels, we cannot use FGR, but we can still use first order perturbation
theory as a starting point. Then we find out, as in atomic physics applications,
that the response of the system is vanishingly small unless the driving frequency
ω matches energy level spacing. This is called “QM resonance”. The strips of QM
resonances are illustrated in the schematic diagram of Fig. 14. It is important to
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realize that higher order of perturbation theory, and possibly non-perturbative
corrections, are essential in order to calculated the non-linear response in this
regime [4]. Still, first order perturbation theory is a valid starting point, and
therefore we do not regard this (non-linear) regime as “non-perturbative”.

Large enough frequency means ω � ∆/�. The remarkable quantal-classical
correspondence which is expressed by Eq. (4) is valid only on energy scales that
are large compared with ∆. If this condition is not satisfied, we have to take
into account the level spacing statistics [48,49]. This means that we can have
significant difference between the quantal LRT calculation, and the classical
LRT calculation.

However, this is not the whole story. If V is small enough, first order pertur-
bation theory implies “QM adiabaticity”. The condition for QM adiabaticity is
V � δxc/tH where tH = 2π�/∆ is the Heisenberg time. A useful way of writing
the QM adiabaticity conditions is:

V � 1
b3/2

(
δxprt

τcl

)
. (25)

In the adiabatic regime, first order perturbation theory implies zero probability
to make a transition to other levels. Therefore, to the extend that we can trust the
adiabatic approximation, all the probability remains concentrated in the initial
level. Thus, in this regime, as in the case of small amplitudes, it is essential
to use higher orders of perturbation theory, and non-perturbative corrections
(Landau-Zener [4]). Still we emphasize that first order perturbation theory is
in fact a valid starting point, and therefore we do not regard this (non-linear)
regime as “non-perturbative”.

13 Driving by Electro-motive Force

Consider a charged particle moving inside a chaotic ring. Let x represent a
magnetic flux via the ring. If we change x in time, then by Faraday law V = ẋ
is the electro-motive force (measured in Volts). The fluctuating quantity F(t)
has the meaning of electric current. The variance of the fluctuations is C(0) =
(evE/L)2, where vE =

√
2E/m, and L is the length of the ring. The correlation

time of these fluctuations is the ballistic time τcl = τcol = Lcol/vE.
Having characterized the fluctuations, we can determine the bandwidth∆b =

�/τcol. A straightforward calculation leads to the result:

b =
[

L

Lcol

]
×
(
L⊥
λE

)d−1

, (26)

where λE = 2π�/(mvE) is the De-Broglie wavelength, and L⊥ is the width of the
ring. Using Eq. (7) we can determine the non-perturbative parametric scale:

δxprt =
[

L

Lcol

]
× �

e
, (27)
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which up to a geometric factor equals the quantal flux unit. Note that in order to
mix levels a relatively small change in the flux is needed, as implied by comparing
Eq. (6) with Eq. (7).

We turn now to the analysis of the spreading in the time dependent case, say
for linear driving. The classical “slowness” condition which has been mentioned
in section 11 is simply eV � E where E is the kinetic energy of the charged
particle. Upon quantization we should distinguish the non-perturbative regime
using Eq. (24), leading to

eV �
[

L

Lcol

]
�

τcol

. (28)

Disregarding the geometric prefactor, the quantity in the right hand side is the
so called Thouless energy. We also should distinguish the QM adiabatic regime
using Eq. (25), leading to

eV �
(
λE

L

)3/2
�

τcol

, (29)

where we have assumed for simplicity a simple 2D quantum dot geometry as in
Fig. 4a.

14 Driving by Moving Walls

There is an ongoing interest [15,16] in the problem of 1D box with moving wall
(also known as the infinite well problem with moving wall). If the wall is moving
with constant velocity, then it is possible to transform the Schrödinger equation
into a time-independent equation, and to look for the stationary states.

We are interested in the dynamics, and therefore we would like to go beyond
this limited scope of study. Before we discuss the general case, it is useful to
point out the d > 1 generalization of the above picture. We can easily show that
for any “special deformation” which is executed in either constant “velocity” or
“acceleration”, we can transform the Schrödinger equation into a time-dependent
equation. By “special deformation” we mean either translation or rotation or
dilation, or any linear combination of these. The statement is manifestly trivial
for translations and rotations (it is like going to a different reference frame), but
it is also true for dilations. The 1D box with moving wall is just a special case
of dilation.

It is important to realize that in case of generic deformation of chaotic box,
we cannot “eliminate” the time dependence. Thus it is not possible to reduce
the study of “dynamics” to a search for “stationary solutions”.

The determination of ∆b for this system is quite obvious but subtle [31]. As
one can expect naively the result is ∆b = 2π�/τcol, where τcol is the mean time
between collisions with the moving walls. The subtlety here is that we cannot
interpret ∆b as “bandwidth”. Formally the correlation time of F(t) is τcl = ∞
which implies infinite bandwidth. Still, some non-trivial reasoning [30,31] leads
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to the conclusion that the naive result (rather than the “formal” one) is in fact
effectively correct. A straightforward calculation leads to the result:

b =
Vbox

Lcolλ
d−1
E

=
Awalls

λd−1
E

, (30)

where λE = 2π�/(mvE) is the De-Broglie wavelength, and Vbox is the volume of
the box, and Lcol is the mean free path between collisions. As for the effective
value of δxprt, again the details are subtle, but the naive guess turns out to be
correct. With the proper (natural) choice of units for the displacement parameter
x, the result is simply δxprt = λE.

The way to analyze the dynamics for box with moving walls is outlined in [62].
The classical LRT domain is V � vE, where vE =

√
2E/m. Upon quantization

we should distinguish the non-perturbative regime using Eq. (24), leading to

V � �

mLcol

. (31)

In the non-perturbative regime the dynamics has a semiclassical nature, and the
energy spreading process has a resonant random-walk nature. This should be
contrasted with the behavior in the perturbative non-adiabatic regime, where
Fermi-golden-rule (FGR) picture applies.

We also should distinguish the QM adiabatic regime using Eq. (25), leading
to

V �
(
λd−1

E

Awalls

)3/2
�

mLcol

. (32)

In the QM adiabatic regime the spreading is dominated by transitions between
near-neighbor levels: This is the so called Landau-Zener spreading mechanism
[4]. See also Section 20 of [12], and the numerically related work in [50].

15 Brownian Motion

Brownian motion is a paradigm for the general problem of system that interacts
with its environment. (See Fig. 15 and general discussion in the next section).
One can imagine, in principle, a “zoo” of models that describe the interaction
of a Brownian particle with its environment. However, following Caldeira and
Leggett [55], the guiding philosophy is to consider “ohmic models” that give
Brownian motion that is described by the standard Langevin equation in the
classical limit. Four families of models are of particular interest:

• Interaction with chaos.
• Interaction with many-body bath.
• Interaction with harmonic bath.
• Interaction with random-matrix bath.
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Fig. 15. Block diagram illustrating the interaction between system (x) and environ-
mental (Q) degrees of freedom (DoF). See discussion in the text.

Below we assume that the total Hamiltonian has the following general form

Htotal = H0(x, p) + H(Q,P ;x) , (33)

where (x, p) are the system coordinates, and (Q,P ) are the environmental de-
grees of freedom.

Interaction with chaos provides the simplest model for Brownian motion [51].
See Fig. 16a for illustration of the model. The large Brownian particle is described
by the canonical coordinates (x, p), while the gas particles are described by
the canonical coordinates (Q,P ). It is important to realize that in order to
have Brownian motion, it is not essential to consider “many particle gas”. “One
particle gas” in enough, but the motion of the gas particle should be chaotic.

The fluctuations of the environment are in fact (according to our definition
in Section 3) the random-like collisions of the gas particle with the Brownian
particle. These fluctuations are like “noise”. If the motion of the gas particle
is strongly chaotic, then the power spectrum of these fluctuations (Fig. 6) is
just like that of white noise. [This characterization is meaningful up to a cutoff
frequency which is determined by the rate of the collisions.]

On the other hand we have the effect of dissipation. If the particle is launched
with a velocity ẋ = V , then the rate of dissipation is proportional to V 2 as
explained in section 9. Having dissipation implies that the Brownian particle
experiences friction force which is proportional to the velocity V . This is the
reason why the dissipation coefficient is known also as friction coefficient.

Interaction with chaos can be regarded as the “mesoscopic” version of Brow-
nian motion. Our interest in this set of lectures is in this type of interaction.
We want to know whether few degree of freedoms can serve as a “bath”. Before
we further get into this discussion we would like to describe the “conventional”
point of view regarding Brownian motion. The rest of this section is dedicated
for this clarification.

The conventional point of view regarding Brownian motion assumes an in-
teraction with many body bath. We can consider a bath that consists of either
Bosons or Fermions [56,57]. The emerging models are quite complicated for anal-
ysis, and therefore, as already mentioned above, it is more common to adopt a
phenomenological approach.
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(Q,P)

V
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Fig. 16. (a) The Brownian motion is induced due to the interaction with chaotic de-
grees of freedom. (b) The Brownian particle in the ZCL model experiences a fluctuating
homogeneous field of force. (c) In case of the DLD model the fluctuating field is farther
characterized by a finite correlation distance. In (b) and (c) the background image is a
“snapshot” of the fluctuating environment. Namely, the gray levels correspond to the
“height” of an instantaneous potential which is experienced by the Brownian particle.

Interaction with (many body) harmonic bath is not very natural, but yet
very popular model for Brownian motion. In order to have “white noise” (at
high temperatures or in the classical limit) we should make a special assumption
regarding the frequency distribution of the bath oscillators. This is known in the
literature as the “ohmic choice”. [The characterization of the noise as “white” is
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valid up to some cutoff frequency. The latter is determined by the specific choice
of the frequency distribution.] Also here, as in the case of interaction with chaos,
we have fluctuation-dissipation theorem that implies “ohmic” dissipation rate
(proportional to V 2).

There is still some freedom left in the definition of the interaction with the
harmonic bath. This leads to the introduction of the Diffusion-Localization-
Dissipation (DLD) model [52,53,54]. This model gives in the classical limit Brow-
nian motion which is described by the standard Langevin equation (white noise
+ ohmic dissipation). The familiar Zwanzig-Caldeira-Leggett (ZCL) model [55]
can be regarded as a special limit of the DLD model. The physics of the ZCL
and of the DLD model is illustrated in Fig. 16b and Fig. 16c respectively, and
the model Hamiltonians can be visualized by the drawings of Fig. 17. The ZCL
model describes a motion under the influence of a fluctuating homogeneous field
of force which is induced by the environmental degrees of freedom. In case of
the DLD model the induced fluctuating field is further characterized by a finite
correlation distance.

For completeness we note that random-matrix modeling of the environment,
in the regime where it has been solved [58], leads to the same results as those
obtained for the DLD model.

16 System Interacting with Environment

The general problem of system that interacts with its environment is of great
importance in many fields of physics. The basic ingredients of this interaction are
illustrated in Fig. 15. On the one hand we have the effect of dissipation, meaning
that energy is lost by the “system” (Brownian particle) and is absorbed by
the “environment” (gas particles). On the other hand the environment induces
fluctuations that acts like “noise” on the system. The “noise” has two significant
effects: One is to pump “thermal” energy into the system, and the other is to
spoil quantum coherence. The latter effect is called decoherence.

In case of bounded system, in the absence of external time dependent fields,
the interplay between “noise” and “dissipation” leads eventually to “thermaliza-
tion”. One may say that in the thermal state the effect of dissipation is balanced
by the energy which is pumped by the noise. Thus, both classically and quan-
tum mechanically we have to distinguish between a “damping” scenario and an
“equilibrium” situation. The thermalization process is traditionally described as
“irreversible”. On the other hand we have the issue of “recurrences”. We discuss
the latter issue in Section 20.

A systematic approach for the study of the dynamics of a “system”, taking
into account the influence of its environment, has been formulated by Feynman
and Vernon [59]. The state of the system is represented by the probability matrix
ρ(x′, x′′). It is assumed that initially the “system” is prepared is some arbitrary
state. Its state at a later time is obtained by a propagator K(x′, x′′|x′

0, x
′′
0) which

acts on the initial preparation. The calculation of this propagator involves a dou-
ble path integral over all the possible trajectories xA(t) and xB(t) that connect
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V

x

V

Fig. 17. Schematic illustration of the ZCL model (upper panel) and the DLD model
(lower panel). The Hamiltonian of these “spring systems” is literally the ZCL model
and the DLD model respectively. In the latter case the height of the masses should be
interpreted as the “height” of the potential which is experienced by the particle.

(x′
0, x

′′
0) with (x

′, x′′). This double path integral incorporates the effect of the
environment via an “influence functional” which is defined as follows:

F [xA, xB ] = 〈 U [xB ]Ψ0 | U [xA]Ψ0 〉 . (34)

Here Ψ0 is the initial state of the environment. If the environment is in “mixed”
state, typically a canonical (thermal) state, then the influence functional should
be averaged accordingly.

The absolute value of the influence functional can be re-interpreted as arising
from the interaction with a c-number noisy field (with no back reaction). The
“phase” of the influence functional can be regarded as representing the effect of
“friction” (back reaction). Thus there is one to one correspondence between the
Feynman-Vernon formalism, and the corresponding classical Langevin approach.
Note however that the distinction between “noise” and “friction” is a matter of
“taste”. Some people regard this distinction meaningless.

It should be realized that the calculation of the influence functional for a
given environment takes us back to the more restricted problem of considering a
“driven system”. The influence functional F [xA, xB ] is nothing but the survival
amplitude for a driving scheme that involves “time reversal” (Eq. (15)).

17 Entanglement, Decoherence and Irreversibility

The definition of decoherence is not a trivial matter conceptually. There are
several equivalent ways to think about decoherence. The most “robust” approach
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is to define decoherence as the irreversible entanglement of the system with the
environment: Let us describe the the state of the system using the probability
matrix ρ(x′, x′′). If the system is prepared in pure state then trace(ρ2) = 1.
Due to the interaction with the environment the system gets entangled with the
environment, and as a result we will have trace(ρ2) ≤ 1. If the “environment”
consists of only “one spin”, then we expect trace(ρ2) to have “ups” and “downs”,
and from time to time to have trace(ρ2) ∼ 1. In such case we cannot say that the
entanglement process is “irreversible”. But if the environment consists of many
degrees of freedom, as in the case of interaction with “bath”, then the loss of
“purity” becomes irreversible, and we regard it as a “decoherence process”.

To be more specific let us consider the prototype example of interference in
Aharonov-Bohm ring geometry. The particle can go from the input lead to the
output lead by traveling via either arms of the ring. This leads to interference,
which can be tested by measuring the dependence of the transmission on the
magnetic flux via the ring. Consider now the situation where there is a spin
degree of freedom in one arm [23]. The particle can cause a spin flip if it travels via
this arm. In such case interference is lost completely. However, this entanglement
process is completely reversible. We can undo the entanglement simply by letting
the particle interact with the spin twice the time. Therefore, according to our
restrictive definition, this is not a real decoherence process.

Consider now the situation where a particle gets entangled with bath degrees
of freedom. If the bath is infinite, then the entanglement process is irreversible,
and therefore it constitutes, according to our definition, a decoherence process.

At first sight it seems that for having irreversibility one needs “infinity”.
This point of view is emphasized in Ref. [60]: Irreversibility can be achieved
by having the infinity of the bath (infinitely many oscillators), or of space (a
lead that extends up to infinity). In this set of lectures we emphasize a third
possibility: Having irreversibility due to the interaction with chaos. Thus we do
not need “infinity” in order to have “irreversibility”.

18 Interpretation of Decoherence as a Dephasing Process

“Dephasing” is used as a synonym for “decoherence” whenever a semiclassical
point of view is adopted. Determining the dephasing (decoherence) time τϕ for
a particle (x, p) that interacts with an environmental degrees of freedom (Q,P )
is a central theme in quantum physics. In the absence of such interaction the x
motion is coherent, and interference should be taken into account. This means,
from semiclassical point of view, that at least two trajectories x(τ) = xA(τ) and
x(τ) = xB(τ) have a leading contribution to the probability to travel, say, from
x(0) to x(t), as in the prototype example of the two slit experiment.

In the semiclassical framework the probability to travel from one point to
some other point is given by an expression that has the schematic form

∑
A,B

F [xA, xB ] exp
(
i
S[xA]− S[xB ]

�

)
, (35)
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where S[x] is the classical action, and F [xA, xB ] is the influence functional. Each
pair of trajectories is a “stationary point” of the Feynman-Vernon double path
integral. The “diagonal terms” are the so-called classical contribution, while the
“off-diagonal terms” are the interference contribution. It should be kept is mind
that the validity of the semiclassical approach is a subtle issue [61].

The off-diagonal interference contribution is suppressed due to the interac-
tion with the environment if |F [xA, xB ]| � 1. Therefore |F [xA, xB ]| is called
the “dephasing factor”. From the definition of the influence functional it is clear
that it reflects the probability to “leave a trace” in the environment. Having
|F [xA, xB ]| = 0 means that a different “trace” is left in the environment, de-
pending on whether the particle goes via the trajectory xA(t) or via the trajec-
tory xB(t). In such case one can regard the interaction with the environment
as a “measurement” process. In case of the DLD model (see Section 15) this
“trace” can be further interpreted as leaving an excitation along the way. For
critical discussion of this point see Appendix C of [54]. In the more general case
the notion of “leaving a trace” does not have a simple meaning. All we can say
is that decoherence means that the environment is left in different (orthogonal)
states depending on the trajectory that is taken by the particle.

The law of “action and reaction” holds also in the world of decoherence
studies. Feynman and Vernon have realized that the dephasing factor can be re-
interpreted as representing the effect of a c-number noise source (see Section 16).
From this point of view the decoherence is due to the “scrambling” of the rela-
tive phase by this noise. Hence the reason for using the term “dephasing” as a
synonym for “decoherence”. The analysis of dephasing using this latter point of
view can be found in [54]. See also [63]. At high temperatures it is possible to
use a Markovian master equation approach (dynamical semigroups) in order to
obtain the (reduced) evolution of the Brownian particle. The Markovian master
equation approach is described in other lectures of this school. The master equa-
tion in case of the DLD model can be found in Section 3 of [54]. Similar, but not
identical master equations are obtained in case of interaction with many body
bath [57].

19 Determination of the Dephasing Time

In the above described semiclassical framework, the problem of dephasing re-
duces to the more restricted problem of studying the dynamics of a time depen-
dent Hamiltonian H(Q,P ;x(t)), cf. Fig. 18. Moreover, we see that the Feynman-
Vernon dephasing factor is just the absolute value of the fidelity amplitude F (t)
that corresponds to Eq. (15). Note however that here we use a more general no-
tion of fidelity: The restricted definition of fidelity (Eq. (17)) is formally obtained
if xA(τ) and xB(τ) are “rectangular pulses”.

The dephasing time τϕ is defined as the time that it takes for |F (t)| to drop
significantly from |F (t)| ∼ 1 to some very small value |F (t)| � 1. Let us concen-
trate on the Brownian motion model of Fig. 16a. If the motion of the Brownian
particle is characterized by a velocity V , then we have to distinguish between
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the following possibilities: Having very small “adiabatic” velocities; Having in-
termediate velocities that allow LRT treatment; And having non-perturbative
velocities. In the latter case a semiclassical picture can be justified.

A

(Q,P)

x (t)

Bx (t)

Fig. 18. Schematic illustration of an interference experiment using a semiclassical point
of view. The Brownian particle can take either the x = xA(t) trajectory, or the x =
xB(t) trajectory as in a two slit experiment.

The detailed analysis of the problem can be found in [62]. Here we just quote
the final results. In the semiclassical regime

τϕ = τcol =
Lcol

vE

, (36)

where Lcol is the mean free path between collisions with the Brownian particle.
This is the expected naive result. It means that one collision with the Brownian
particle is enough in order to “measure” its trajectory. The other extreme case
in having extremely small adiabatic velocities. To the extend that we can trust
adiabaticity there is no dephasing at all: The gas particle simply “renormalize”
the bare potential, which is in fact the Born-Oppenheimer picture. Of course, if
we take into account corrections to the adiabatic picture, then we get a finite
dephasing time. In the LRT regime of velocities we can estimate the dephasing
time as

τϕ ≈
(
Lcolλ

2
E

vEV 2

) 1
3

. (37)

Both results have re-interpretation within the framework of an effective
DLD/ZCL model. See [62] for details.

20 Recurrences

Consider ice-cube inside a cup of hot water. After some time it melts and disap-
pears. But if we wait long enough (without time reversal) we have some probabil-
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ity to see the ice-cube re-emerging due to recurrences. The issue of recurrences
becomes relevant whenever we consider a closed (un-driven) system. In other
words, whenever we do not try to control its evolution from the outside.

There are recurrences both in classical and quantal physics. In the latter case
the tendency for recurrences is stronger due to the quasi-periodic nature of the
dynamics. However, if the time scale for recurrences is long enough with respect
to other relevant time scales, then we can practically ignore these recurrences.
Actually it is useful to regard these recurrences as “fluctuations”, and to take
the standpoint that our interest is only in some “average” or “likely” scenario.

The thermalization process of the particle-environment system is tradition-
ally described as “irreversible”. Indeed, if the bath is infinite, then also the time
for recurrences of the particle-bath system becomes infinite. On the other hand,
if the bath is finite, then we have to consider the recurrences of the particle-bath
system. These recurrences can lead back to the initial un-entangled state.

In practice “recurrences” do not constitute a danger for “irreversibility”. The
time to get un-entangled by recurrences is extremely large (typically larger than
the age of the universe). Assuming a chaotic environment, and ignoring issues
of level statistics, the time scale for recurrences is at least the Heisenberg time
(inverse of the mean level spacing) of the combined particle-environment system.
It scales like �

−(d+d0) where d0 and d are the number of degrees of freedom of
the particle and the environment respectively.

It goes without saying that the above issue of recurrences becomes irrelevant
if the x motion is treated classically. There is however a twist to this latter
statement in the case where the time variation of x is strictly periodic. This is
due to dynamical localization effect [6]. Note however that dynamical localization
is a very fragile effect: Even in case that it is found, it turns out that it manifests
itself only after a time that scales like �

−(1+2d), which is much larger than the
Heisenberg time of the environment [11].
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