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We study the interplay of squeezing and phase randomization near the hyperbolic instability of
a two-site Bose-Hubbard model in the Josephson interaction regime. We obtain results for the
quantum Zeno suppression of squeezing far beyond the previously found short time behavior. More
importantly, we contrast the expected outcome with the case where randomization is induced by
erratic driving with the same fluctuations as the quantum noise source, finding significant differences.
These are related to the distribution of the squeezing factor, which has log-normal characteristics:
hence its average is significantly different from its median due to the occurrence of rare events.

I. INTRODUCTION

The effect of stochastic driving on unitary evolution
has been a central theme of modern quantum mechanics.
It is well established that quantum decay can be sup-
pressed by frequent interventions, or measurements, or
by the introduction of noise, via the Quantum Zeno Ef-
fect (QZE) [1–12]. The modelling of the “interventions”
as arising from a deterministic or from a noisy source are
often used interchangeably [5–9]. This partially reflects
the paradigm that the Langevin picture and the Master
equation picture of the dynamics are equivalent.

Recent work considered the QZE suppression of
interaction-induced squeezing in bimodal Bose-Einstein
condensates [13, 14]. Since matter-wave squeezing is the
key to the realization of atom interferometers below the
standard quantum limit [15–20], it is highly desirable
to gain better understanding of its interplay with noise.
Noise was shown to arrest the squeezing and build-up of
many-body correlations in the large, multi-particle sys-
tem, prepared with all particles occupying the odd super-
position of the two-modes. In the Josephson regime [21]
this preparation constitutes a hyperbolic saddle point,
leading to a rapid squeezing [22, 23]. It was shown that
the degree of squeezing and the associated phase diffu-
sion [24–29] could be controlled by a noisy modulation of
the coupling between the modes, up to a full arrest via a
Bose-stimulated QZE [13, 14].

In this work we attain two principle goals. (i) We ex-
tend the analytic understanding of the QZE suppression
of squeezing to time-scales which are orders of magnitude
longer than these of Ref. [13, 14], obtaining good agree-
ment with numerical simulations. (ii) We challenge the
fundamental paradigm of replacing quantum noise by de-
terministic erratic driving. Erratic driving can have non-
trivial statistics, hence its typical results do not have to
agree with the average behavior. This is demonstrated
in our system by an important caveat resulting from
the interplay of the nonlinear squeezing dynamics and
the diffusive randomization by driving. While the early
evolution under the influence of either noisy or erratic
driving corresponds to the QZE of Ref. [13, 14], signif-
icant differences arise at later times. These differences
are explained by a statistical analysis: As the squeez-
ing is hyperbolic, while the driving induces diffusion, the

resulting stretch distribution has log-normal characteris-
tics, with rare events separating its mean from its me-
dian. The outcome of a typical erratic driving scenario
is likely to reflect the median, and might be significantly
different from the outcome of a full Feynman-Vernon av-
eraging that is required for the description of quantum
noise. Using semiclassical reasoning [30] we derive ana-
lytic expressions for the median and for the mean single-
particle coherence, given the known normal statistics of
the squeezing parameter.

In Section II we present the model driven Bose-
Hubbard system, the pertinent initial conditions, and
the relation between the squeezing parameter and the
observed fringe visibility for Gaussian squeezed states.
The coherence dynamics with and without noise are pre-
sented in Section III. The concept of erratic driving and
its statistical analysis are introduced in Section IV and a
short summary is provided in Section V.

II. MODELLING

We consider the dynamics generated by the two-mode
Bose-Hubbard Hamiltonian (BHH) [21–23, 30] with an
additional driving source,

Ĥ = UĴ2
z − [K + f(t)]Ĵx , (1)

where Ĵx = (â†1â2+â†2â1)/2, Ĵy = (â†1â2−â†2â1)/(2i), and
Ĵz = (n̂1− n̂2)/2. The âi and â†i are bosonic annihilation
and creation operators, respectively. The particle num-
ber operator in mode i is n̂i = â†i âi. The total particle
number n̂1 + n̂2 = N = 2j is conserved. The dimen-
sionless interaction parameter is u = NU/K. We note
that the undriven two-mode BHH is known in nuclear
physics as the Lipkin-Meshkov-Glick model [31, 32], and
it has been also used to describe interacting spin systems
[33] and magnetic molecules [34]. Our interest lies in the
Josephson regime where 1� u� N2 [21], hence in the
classical limit J0 = (−j, 0, 0) is a hyperbolic point. The
driving source induces a fluctuating field f(t) which cor-
responds to the modulation of the barrier in a double-well
realization of the two-mode BHH. We assume that this
perturbation has a zero average and a short correlation
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FIG. 1: (color online) Noise-free squeezing (a) vs. the sup-
pressed decay in the presence of noise (b) for the unitless time.
Solid lines are numerical results, dashed lines correspond to
the linearized expressions of Ref. [13, 14], whereas dash-dotted
lines are the improved expressions of Eq. (6) in (a) and Eq. (8)
in (b). Parameters in (a) are u = 10, N = 100, D = 0, and in
(b) u = 2, N = 100, and (from weak to strong suppression)
D = 10wJ , 20wJ , 40wJ . Insets show representative Husimi
distributions at the marked times for the squeezed states in
the absence of noise (a) and for the QZE-protected coherent
state (b). The rectangular frame in the upper left corner of
panel (b) denotes the time and fringe-visibility domain stud-
ied in Ref. [13, 14].

time, such that upon averaging over time,

〈f(t)f(t′)〉 = 2Dδ(t− t′) . (2)

Hence the averaged dynamics is described by a Master
equation which includes a term that generates angular
diffusion around the Jx axis:

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
−D

[
Ĵx,
[
Ĵx, ρ̂

]]
, (3)

where ρ̂ is the N -particle density matrix. We preform
numerical simulations of two possible scenarios: (a) Dy-
namics that is generated by the master equation; (b)
Dynamics that is generated by a typical realization of
f(t) [35]. Formally, the mixed state obtained in (a) can
be regarded as the average over the pure states obtained
in (b), provided that all possible realizations of f(t) are
included.

One body coherence.– We consider an initial coher-
ent preparation that is centered at the hyperbolic point
J0. This corresponds to an N -particle occupation of the
anti-symmetric superposition of the two modes [22, 23].
The one-body coherence of the evolving state is charac-
terized by the length of the Bloch vector S = 〈Ĵ〉/j. The
symmetry of the Hamiltonian (1) and the initial prepa-
ration implies that Sy = Sz = 0 so that the length of the
Bloch vector is just the fringe visibility of an experimen-
tal multiple-shot interferometric measurement.

The Wigner function of the assumed coherent state
preparation resembles a Gaussian centered at J0 and

having the angular width r2
0 = 2/N that corresponds

to the minimum uncertainty of J2
y + J2

z . A squeezed
state is obtained by e±Λ stretching along orthogonal
major axes. The Wigner-Weyl representation of Jz is
[j(j + 1)]1/2 cos(θ), with corresponding expressions for
Jx and Jy. Accordingly, the length of the Bloch vector
for a squeezed state is

S =
[
1 +

2
N

]1/2

|〈cos(r)〉| = e−(1/2)R2
(4)

= exp{−r2
0 sinh2(Λ)} , (5)

where R2 = 〈r2〉 − r2
0 is the angular spreading. This is

equivalent to a Gaussian squeezed state approximation,
where the factorization 〈r2p〉 ≈ 〈r2〉p(2p−1)!! is exact, al-
lowing for the replacement of |〈cos(r)〉| by exp(−〈r2〉/2).
For the dynamical squeezing under study, this approxi-
mation is valid as long as R � j. Thus, the error de-
creases for large N and short evolution times.

III. LOSS OF SINGLE-PARTICLE COHERENCE
DUE TO SQUEEZING

In the absence of noise the BHH (1) induces pure
squeezing of the initial preparation at the Josephson
rate wJ =

√
K(NU −K) = K

√
u− 1, while the an-

gle between the squeezing axes is twice the value of
Θ = tan−1(wJ/K) [13, 14]. Accordingly, the to-
tal angular variance of the Wigner function around
the hyperbolic point J0 grows initially as 〈r2〉 =[
1 + cot2(2Θ)2 sinh2(wJ t)

]
r2
0, leading to the loss of

single-particle coherence as

S = exp
{
−r2

0 cot2(2Θ) sinh2(wJ t)
}
. (6)

As shown in Fig. 1a, Eq. (6) provides a good approxi-
mation for the numerically observed decay, beyond the
previously used linearized form [13, 14].

IV. EFFECT OF NOISE

Here we would like to re-consider the scenario that
has been analyzed in [13, 14]. Using the analogy to the
standard QZE, the result that has been obtained there
was an exponential decay

S = exp[−r2
04Dwt] , Dw = [cot2(2Θ)]

w2
J

8D
. (7)

As seen in Fig. 1b, while this expression is accurate
for the first few Josephson periods, it fails on longer
time-scales. Long time accuracy may be improved us-
ing the semi-classical strategy of the previous para-
graph. Thus, instead of applying the QZE sequence
of projections directly to S as done in [13, 14], we ap-
ply it here to the angular variance 〈r2〉. One may
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FIG. 2: (color online) Fringe visibility dynamics for erratic
driving for N = 50, u = 2, D/wJ = 37.5, and unitless time.
Single realizations of erratic driving are marked by gray lines.
The mean over 2000 realizations (solid green) lies in between
the median value (dashed red) and the true average over an
infinite number of realizations, which is equal to the propa-
gation of the master-equation (3) (dash-dotted blue). Sym-
bols correspond to the extraction of the median (circles) and
average (squares) from the Gaussian approximation of the
squeezing parameter Λ distribution, according to Eq. (9) and
Eq. (10), respectively. Dotted red lines mark the 25th and
75th percentiles.

visualize a sequence of squeezing intervals of dura-
tion tD = 1/(2D) wherein 〈r2〉 grows as 〈r2〉t+tD =
[1 + 2 cot2(2Θ) sinh2(wJ tD)]〈r2〉t before being reset by
the noise. In the limit where tD � tJ ≡ 1/wJ , the
spreading within each interval is quadratic in time, so
that 〈r2〉t = r2

0 exp[cot2(2Θ)(w2
J/D)t]. Consequently

S = exp
{
−r

2
0

2
[exp (8Dwt)− 1]

}
. (8)

Comparison of Eq. (7) and Eq. (8) to the full numerical
evolution (Fig. 1b) demonstrates great improvement over
the short time result of Ref. [13, 14]. The simple expo-
nential of Eq. (7) is only valid for t� tQZ ≡ 1/Dw where
it can be approximated by a linear function. In compar-
ison, Eq. (8) is valid for t < tQZ log(N), after which S
decreases significantly below unity and the Gaussian ap-
proximation no longer holds.

V. ERRATIC DRIVING VS. NOISE

While Eq. (6) and Eq. (8) dramatically improve our
quantitative understanding of the many-body QZE, far
beyond the previously studied regime, our main focus
here is to challenge the paradigm of replacing quantum
noise by deterministic erratic driving. Erratic driving
means that the Hamiltonian is time dependent due to
some deterministic but fluctuating f(t). An experimen-
talist can repeat one experiment many times with exactly

the same f(t), and determine the final quantum state.
The experimentalist can also repeat the experiment with
different realizations of f(t) and accumulate statistics.

By contrast, a noisy process as described by Eq. (3)
can be viewed as arising from f(t) realizations that are
induced by a bath. These realizations are not under ex-
perimental control: the individual f(t) cannot be re-
produced from run to run. The best measurement the
experimentalist can do already yields a density matrix
ρ, which we may call the average. In effect, it is Na-
ture, rather than the experimentalist, who averages over
f(t). While the experimentalist considers individual re-
alizations of f(t), Nature averages over all realizations.

It is thus clear that in the case of erratic driving we
should consider the statistics of S = S[f ], while in the
case of a noisy driving only the averaged S (i.e., the S of
the mixed state) has a physical meaning, as implied by
the master equation.

Alternatively, erratic driving is aiming to emulate
quantum noise by realizations that sample the ensem-
ble of all possible paths. The naive expectation would
be that for a reasonably large number of such realiza-
tions one would obtain a typical value which coincides
with the true average. However, we show below that
due to the interplay of Gaussian randomization and hy-
perbolic amplification, rare events which are missed by
erratic driving play an important role in determining the
final (typical) outcome of the squeezing in the presence
of noise. Consequently, erratic driving sampling will typ-
ically differ substantially from the ideal average, even
when the number of realizations is large.

VI. EFFECT OF ERRATIC DRIVING

Fig. 2 displays the time dependence of S for a few rep-
resentative realizations of erratic driving, out of a large
sample of 2000 random scenarios. The mean, median,
25th and 75th percentiles, and the true average (from
the master equation simulation) are indicated as well.
As shown, the sample mean taken over the entire ensem-
ble deviates from the “true” master equation result, and
lies between the median and the true average.

In order to explain the observed difference between er-
ratic driving and noise, we perform a statistical anal-
ysis of the evolving ensemble of squeezed states under
erratic driving. In Fig. 3a we show the distribution of
the squeezing axis direction and the degree of squeezing,
with two extreme states. Each Gaussian squeezed state
is represented by a pair of points along its long principle
axis. The distance between the points is ∆+, which is
two times the square root of the long axis variance. The
latter obtained by the diagonalization of the variance ma-
trix ∆ij = 〈ĴiĴj+ Ĵj Ĵi〉/2−〈Ĵi〉〈Ĵj〉 with i, j = y, z. The
empty internal ring corresponds to the minimal coherent
state variance. We note that the principle axis direction
is completely randomized with rare events of repeated
stretching (the distant points).
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FIG. 3: (color online) Statistics of erratic driving: (a) Distri-
bution of realizations. Each squeezed state is represented by
a pair of points along its long principle axis, separated by the
principle-axis variance ∆+, as illustrated for two representa-
tive realizations; (b) evolution of the squeezing parameter Λ
distribution; (c) Gaussian distribution of Λ; (d) log-wide dis-
tribution of the fringe visibility. Parameters are the same as
in Fig. 2. Panel (a) is taken at Dwt = 0.35 whereas panels
(c) and (d) are taken at Dwt = 0.5.

The resulting S distribution is log-wide as shown in
Fig. 3d, with its median significantly smaller than its av-
erage. This log-normal statistics is explained as follows:
for a given realization of f(t) the wavepacket undergoes
a sequence of squeezing operations. Dividing the time
into intervals of size tD, one realizes that the squeezing
operations are uncorrelated, and can be regarded as a
random sequence of stretching and un-stretching steps.
Accordingly, the accumulated squeezing parameter Λ is
a sum of uncorrelated variables, and according to the
central limit theorem it should have a normal distribu-
tion. From Eq. (5) it follows that S will have log-wide
distribution.

We can deduce the effective squeezing parameter Λ for
each realization from its single-particle coherence S by
inverting Eq. (5). The time evolution of the deduced
Λ distribution is shown in Fig. 3b, and a representative
cross section is plotted in Fig. 3c. As expected, after
a short transient of unfolding the squeezing parameter
distribution takes a Gaussian form, for which we find
the mean µ = 〈Λ〉 and variance σ2 = 〈Λ2〉 − µ2. The
obtained µ2(t) and σ2(t) are plotted as a function of time
in Fig. 4, along with three representative insets for the Λ
distribution.

Having characterized the Λ distribution by its µ and
σ, we can now go back and deduce the expected values
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FIG. 4: (color online) Evolution of the mean squared µ2

(dashed red) and the variance σ2 (dash-dotted, green) of the
squeezing parameter distribution. The solid blue line denotes
〈Λ2〉 = µ2 + σ2. Insets depict the squeezing parameter distri-
bution for 2000 realizations at the marked times, with super-
imposed Gaussian fits (black lines). Parameters are the same
as in Fig. 2 and Fig. 3

for the median and the average of S. The median value
is obtained by substitution of the prevalent squeezing pa-
rameter µ into Eq. (5),

Smed = exp
{
−r2

0 sinh2(µ)
}
, (9)

whereas the mean value is found by averaging,

Savg ≈ exp[−r2
0〈sinh2(Λ)〉] (10)

= exp
{
−r

2
0

2

[
e2σ2

cosh(2µ)− 1
]}

.

As shown in Fig. 2, substitution of µ and σ from Fig. 4
into Eq. (9) and Eq. (10) gives excellent agreement with
the median and true average of the S distribution.

To conclude, small sampling errors of the normal Λ
distribution correspond to miss-sampling of the tail of
the log-wide distribution of the spreading R, whose me-
dian is distinct from its average. Since the average S
is strongly affected by the tails, we end up producing
large errors. However, the miss-sampled tails can be
properly deduced from a Gaussian approximation for the
squeezing-parameter distribution, so as to overcome the
sampling issue and get a prediction for the true aver-
age. We note that without performing this procedure,
the average obtained by an experimentalist over many
realizations of erratic driving is likely to reflect the me-
dian, which is the typical value, rather than the true
average of the distribution.

VII. SUMMARY

We have studied the process of squeezing around the
hyperbolic fixed point of the two site Bose-Hubbard
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model, in the presence of intense noise. We have greatly
extended the quantitative understanding of the observed
Quantum Zeno effect [13, 14] and investigated one of
the principle paradigms in the theory of quantum noise,
namely the replacement of an ideal quantum bath by de-
terministic erratic driving. We have shown that the inter-
play of diffusive quantum noise and hyperbolic squeezing
results in log-wide statistical distributions of variances
and fringe visibilities, so that their mean is different than

their typical value. Consequently, we find that the fringe-
visibility dynamics in a typical erratic driving scenario
will differ from that obtained by coupling to an ideal
quantum bath.
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ture 419, 51 (2002).
[29] A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier,
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