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We study the collective dynamics of a driven two-mode Bose-Hubbard model in the Josephson

interaction regime. The classical phase space is mixed, with chaotic and regular components, which

determine the dynamical nature of the fringe visibility. For a weak off-resonant drive, where the chaotic

component is small, the many-body dynamics corresponds to that of a Kapitza pendulum, with the relative

phase ’ between the condensates playing the role of the pendulum angle. Using a master equation

approach we show that the modulation of the intersite potential barrier stabilizes the ’ ¼ � ‘‘inverted

pendulum’’ coherent state, and protects the fringe visibility.
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The Josephson effect [1] is an unambiguous demonstra-
tion of macroscopic phase coherence between two coupled
Bose ensembles. The experimental realization of dilute-gas
Bose-Einstein condensate (BEC) Josephson junctions [2–
5] has led to observations of Josephson oscillations [2,4,6]
as well as macroscopic self-trapping [4,7] and the equiva-
lents of the ac and dc Josephson effect [5,8], present also in
the superconductor [9] or the superfluid helium [10] real-
izations. Beyond these mean-field effects, BEC Josephson
systems allow for the observation of strong correlation
phenomena, such as the collapse and revival of the relative
phase between the two condensates [11] which was ob-
served with astounding precision in an optical lattice in
Ref. [12], in a double-BEC system in Ref. [13], and in a
one-dimensional spinor BEC in Ref. [14].

The bosonic Josephson junction is often described by a
two-mode Bose-Hubbard Hamiltonian (BHH) [15,16],

H ¼ �KL̂x � EL̂z þUL̂2
z : (1)

Here K, E, and U are coupling, bias, and interaction

energies. The SU(2) generators L̂x ¼ ðây1 â2 þ ây2 â1Þ=2,
L̂y ¼ ðây1 â2 � ây2 â1Þ=ð2iÞ, and L̂z ¼ ðn1 � n2Þ=2 are de-

fined in terms of the boson on-site annihilation and creation

operators âi, â
y
i , with the conserved total particle number

n1 þ n2 ¼ N � 2l. Three distinct interaction regimes are
obtained, depending on the characteristic strength of inter-
action u ¼ UN=K [16,17]. The quasilinear Rabi regime
juj< 1, the strong-coupling Josephson regime 1< juj<
N2, and the extremely quantum Fock regime u > N2.

With adjustable parameters, the BHH can also realize an
atom interferometer, in which the bias, E, generates a phase
shift that can be measured by atom-number counting. The
interaction term allows for the creation of nonclassical
input states, but also generates undesired phase-diffusion
noise. Atom interferometers based on this model are of
great current interest because they can potentially resolve

phase shifts below the standard quantum limit of �� �

1=
ffiffiffiffi
N

p
, and are limited instead by the Heisenberg funda-

mental limit �� � 1=N. In such a device, a highly corre-
lated initial state would be prepared in the Josephson or
Fock regime, but the measurement would ideally be made
in the Rabi regime. While tunable, e.g., via Feshbach
resonance, the interaction parameter u will never be ex-
actly zero. Thus understanding, and potentially harnessing,
the dynamical effects of the interaction-induced nonline-
arity will play a crucial role in designing such devices.
To model the nonlinear dynamics in the Josephson and

Rabi regimes, it is convenient to represent the Hamiltonian
(1) in terms of the relative pair-number imbalance n ¼
ðn1 � n2Þ=2 and relative phase ’ between the condensate
modes,

H¼Un2�En�K

2

��
N

2
�n

��
N

2
þnþ1

��
1=2

ei’þH:c:

In the Josephson interaction regime, states initiated with
n � N=2 remain confined to this small population imbal-
ance region, so that it is possible to use Josephson’s ap-
proximated Hamiltonian

HJosephson ¼ Ecðn� nEÞ2 � EJ cosð’Þ; (2)

with EC ¼ U, EJ ¼ KN=2, and nE ¼ E=ð2UÞ. This
Hamiltonian matches that of a pendulum with ‘‘mass’’

M ¼ 1=ð2UÞ and frequency !J �
ffiffiffiffiffiffiffiffiffiffiffiffi
KUN

p
. The roles of

pendulum angle and angular momentum are played, re-
spectively, by ’ and n. One consequence of this analogy is
that a relative phase of ’ ¼ 0 is classically stable (ground
state of the pendulum), whereas a ’ ¼ � relative phase
(inverted pendulum) is classically unstable.
The term ‘‘phase-diffusion’’ then describes the nonlinear

effects generated by the anharmonic part of the cosð’Þ
potential. The quantum, many-body manifestation of this
anharmonicity is the rapid loss of single-particle coherence
for a coherent state prepared with a � relative phase, as
opposed to the slow phase-diffusion of phase-locked con-
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densates with’ ¼ 0 [17,18]. Several recent works propose
to control such phase-diffusion processes by means of
external noise [19,20] or modulation of the Hamiltonian
parameters to induce � flips of the relative phase [21].

In this Letter, we build further on the pendulum analogy
to explore the effect of oscillatory driving on the collective
phase dynamics of the BHH and determine to what extent
does known driven pendulum physics carry over to this
spherical phase-space model. We consider two possible
time-dependent driving fields, ‘‘vertical’’ (v) and ‘‘hori-
zontal’’ (h), given by

Vv;hðtÞ ¼ fðtÞŴ ¼ Dv;h sinð!tþ�ÞL̂x;y: (3)

Here ‘‘vertical’’ and ‘‘horizontal’’ are in reference to the
pendulum model. The classical phase-pendulum motion is
in the LxLy equatorial plane of the BHH, with the’ ¼ 0,�

stationary points lying on the Lx axis, making it the
‘‘gravitation’’ direction of the pendulum. Hence, Vv is
equivalent to a vertical drive of the pendulum axis and
Vh corresponds to a horizontal drive. With respect to the
two-mode BHH, the first type of driving VvðtÞ is a modu-
lation of the hopping frequency K, which may be attained
by changing the Barrier height, as illustrated in Fig. 1(a),
whereas VhðtÞ may be induced by means of shaking the
double-well confining potential laterally, as illustrated in
Fig. 1(b), thus effectively introducing the equivalent of an
electromotive force in the oscillating frame. It is customary
to define the dimensionless frequency� � !=!J, and the

dimensionless driving strength q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UN=K

p ðD=!Þ ¼

D=ðK�Þ. Fast and slow driving correspond to � � 1
and � � 1, respectively, whereas q � � and q � �
correspond to strong and weak driving.
Within the one-dimensional pendulum approximation,

the angle variable ’ and the momentum n are canonical
conjugate variables. It is well known [22] that off-resonant,
fast driving is effectively equivalent to the additional static
‘‘pseudopotential,’’ Veff

v;h ¼ �ð1=4Þq2Klsin2ð’Þ, as illus-

trated in Fig. 1. It is possible to further refine this effective
description, adding momentum dependent terms, as de-
scribed in [23]. For sufficiently strong (q2 > 2) vertical
drive, the effective term Veff

v can stabilize the ’ ¼ �
inverted pendulum [Fig. 1(c)], an effect known as the
Kapitza pendulum [22]. By contrast, the effective term
Veff
h can destabilize under the same conditions the ’ ¼ 0

pendulum-down ground state, and generate two new de-
generate quasistationary states [Fig. 1(d)].
Generally, the driven BHH has a mixed classical phase-

space structure similar to that of a kicked top [24], with
chaotic regimes bound by Kolmogorov-Arnold-Moser tra-
jectories, making the bosonic Josephson junction a good
system for studying quantum chaos [25,26] along with 3-
mode (trimer) BECs [27], the kicked-rotor realization by
cold atoms in periodic optical lattice potentials [28], ultra-
cold atoms in atom-optics billiards [29], and the recent
realization of a quantum kicked top by the total spin of
single 133Cs atoms [30]. The unique features of the driven
BHH in this respect are (i) it offers a novel avenue of
‘‘interaction-induced’’ chaos, which should be distin-
guished from the single-particle ‘‘potential-induced’’
chaos that had been highlighted in past experiments with
cold atoms, and (ii) the pertinent dynamical variables are
relative phase and relative number, leading to nonlinear
and possibly chaotic phase dynamics, which may be moni-
tored via fringe-visibility measurements in interference
experiments.
Figure 2 shows representative results for near-resonant

(� � 1) horizontal driving. Stroboscopic Poincaré plots of
the classical (mean-field) evolution at drive-period inter-
vals are shown on the left for varying drive strength, q,
demonstrating the growth of the stochastic component to
form a chaotic ‘‘sea’’ surrounding regular ‘‘islands’’ of
nonchaotic motion. On the right, we represent the full
many-body BHH evolution via the Husimi Q function
Qðn; ’Þ ¼ jhn; ’jc ðtÞij2, which provides visualization
for the expansion of the time-dependent many-particle

state jc ðtÞi in the spin coherent states basis jn; ’i ¼
ðN!Þ�1=2½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2þ n=N
p

ây1 þ ei’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2� n=N

p
ây2 �Njvaci.

For weak driving the initial preparation j0; 0i lies within a
regular region of phase space and retains its coherence. In
contrast, for larger values of q the initial coherent state
spreads quickly throughout the chaotic sea, resulting in a
highly correlated many-body state, as manifest in the

dynamics of fringe visibility gð1Þ12 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL̂xi2 þ hL̂yi2

q
=l.

Similar results, with a slightly different classical phase-
space structure are obtained for vertical driving.

FIG. 1 (color online). Schematics of a driven Bose-Josephson
junction: (a) The vertical driving obtained by time-dependent
modulation of the barrier height between the wells. (b) The
horizontal driving is via lateral shaking of the double-well
potential. (c) The potential term in the Josephson Hamiltonian
without driving (dash-dotted line), and with vertical driving
(solid line), which includes the effective potential (dashed
line). Circles denote stable stationary points whereas 	 denotes
instabilities. (d) The same for horizontal driving. It should be
noted that ‘‘vertical’’ and ‘‘horizontal’’ refer to the motion of the
pendulum axis in the Kapitza analogy, which incidentally
matches the direction of potential modulation.
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For an off-resonant weak driving with � � 1 and q �
�, the chaotic component of phase space becomes hard to
resolve. In this case we obtain the many-body manifesta-
tion of the Kapitza pendulum physics [22], where a peri-
odic vertical drive of the pendulum axis stabilizes the
’ ¼ � inverted pendulum and a horizontal drive destabil-
izes its ground ’ ¼ 0 state.

In generalizing the Kapitza pendulum physics into the
context of the driven bosonic Josephson junction, we have
to deal with two modifications: (i) the phase space of the
full BHH is spherical and not canonical, as opposed to the
truncated, cylindrical Josephson phase space; (ii) realis-
tically fðtÞmay include a noisy component whose effect on
the effective potential should be determined. We therefore
rederive the Kapitza physics for the full BHH, using a
master equation approach rather than by the standard
time scale separation methodology. The quantum state of
the system is represented by the probability matrix �,
satisfying d�=dt ¼ i½H ; �� where H ¼ H þ fðtÞW
with fðtÞ ¼ sinð!tþ�Þ. The small parameter is the driv-
ing period �t ¼ 2�=! for harmonic drive, or the correla-
tion time if fðtÞ is noisy. Using a standard iterative pro-
cedure the difference �ðtþ �tÞ � �ðtÞ can be expressed to
1st order as an integral over ½H þ fðt0ÞW;��. The 2nd
order adds a double integral over ½Hþ fðt0ÞW; ½H þ
fðt00ÞW;���, and the 3rd order adds a triple integral over
½H þ fðt0ÞW; ½H þ fðt00ÞW; ½H þ fðt000ÞW;����. If fðtÞ
contains a noisy component, as in the standard master
equation treatment, we obtain after integration over the

second order contribution a diffusion term ½W; ½W;���. In
the familiar classical Focker-Planck context, with W ¼ x,
this term takes the form @2�ðx; pÞ=@p2. However, for a
strictly periodic noiseless driving the time integration over
a period vanishes, and evaluation to 3rd order is required.
Integrating the 3rd order contribution over a period we get
terms that can be packed as ½½W; ½W;H��; ��. Hence, the
effective static potential is

Veff ¼ � 1

4!2
½W; ½W;H��: (4)

Other terms also exist [producing the tilt of the islands in
Figs. 3(c) and 4(c)]; however, they depend on the driving
phase �, and vanish if the stroboscopic sampling is aver-

aged. In the standard canonical case with Ŵ ¼ Wðx̂Þ this
expression gives the familiar Kapitza result ½W 0ðxÞ�2=
ð4M!2Þ as in [23]. For the BHH noncanonical spherical
phase space, with W / Lx or W / Ly, it is straightforward

to verify that Eq. (4) generates the expected Kapitza terms
L2
y ¼ l2sin2�sin2’ or L2

x ¼ l2sin2�cos2’, approaching the

pendulum effective potential in the equatorial region � �
�=2. Additional terms slightly renormalize the bare values
of U and K.
The predicted Kaptiza physics effects are confirmed

numerically in Fig. 3 and Fig. 4 for the vertical VvðtÞ and
horizontal VhðtÞ drive, respectively. Comparison of the
stroboscopic Poincaré plots for the undriven (a) and
driven (c) BHH clearly shows the stabilization of the

j0; �i coherent state by the vertical L̂x driving (Fig. 3),
and the destabilization of the j0; 0i preparation by the

FIG. 2 (color online). Mean-field stroboscopic phase-space
plots of classical trajectories (left), and a representative N ¼
100 many-body quantum Husimi distribution (right), for the
dynamics that is generated by the BHH with VhðtÞ driving,
assuming j0; 0i coherent preparation. The parameters are u ¼
30, and � ¼ 1. The strength of the driving is q ¼ 0:1 (top), and
q ¼ 0:5 (middle), and q ¼ 1:0 (bottom). The evolution of the
fringe-visibility is plotted in the lower panel for q ¼ 0:1 (bold
solid line, green) and q ¼ 1:0 (solid line, blue).

FIG. 3 (color online). Quantum Kapitza pendulum with verti-
cal driving, and j0; �i coherent preparation. The panels are
arranged as in Fig. 1. The parameters are u ¼ 100, � ¼ 30,
and N ¼ 100. The strength of the driving is q ¼ 0 (a, b, lower
panel dashed blue line) and q ¼ 3 (c, d, lower panel solid red
line). Circles in the lower panel denote the time at which the
Husimi distribution in (c, d) is plotted. The classical stabilization
of the inverted pendulum results in a protected single-particle
coherence of the initial preparation.
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horizontal L̂y driving (Fig. 4). These classical effects are

mirrored in the evolution of the quantum Husimi function,
thereby affecting the many-body fringe-visibility dynam-
ics, leading to the protection of coherence by VvðtÞ driving
for ’ ¼ � coherent preparation, and to its destruction by
VhðtÞ for ’ ¼ 0.

To conclude, the driven BHH, currently attainable in a
number of experimental setups, presents a wealth of non-
linear phase-dynamics effects. Strong, resonant driving
fields result in large chaotic phase-space regions, opening
the way for the generation of exotic highly correlated
quantum states [25]. The properties of such states, as
well as their manifestation in interference experiments,
and the more conventional tunneling effects between regu-
lar islands, are novel manifestations of semiclassical phys-
ics. For weak and fast off-resonant drive we have obtained
the many-body equivalents of the Kapitza pendulum ef-
fects, with the relative phase between the condensates act-
ing as the pendulum angle. Such effects could be readily
observed in interference experiments and utilized to pro-
tect fringe visibility. We note that noise-protected coher-
ence was also studied in Ref. [19], yet with a rather
different quantum-Zeno underlying physics.
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