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We study the collective dynamics of a driven two mode Bose-Hubbard model in the Josephson
interaction regime. The classical phase-space is mixed, with chaotic and regular components, that
determine the dynamical nature of the fringe-visibility. For weak off-resonant drive, where the
chaotic component is small, the many-body dynamics corresponds to that of a Kapitza pendulum,
with the relative-phase ϕ between the condensates playing the role of the pendulum angle. Using a
master equation approach we show that the modulation of the inter-site potential barrier stabilizes
the ϕ = π ’inverted pendulum’ coherent state, and protects the fringe visibility.

The Josephson effect [1] is an unambiguous demonstra-
tion of macroscopic phase coherence between two cou-
pled Bose ensembles. The experimental realization of
BEC Josephson junctions [2–5] has led to observations of
Josephson oscillations [2, 4, 6–8] as well as macroscopic
self-trapping [4, 9] and the equivalents of the ac and dc
Josephson effect [5, 10], present also in the superconduc-
tor [12] or the superfluid Helium [13, 14] realizations.
Beyond these mean-field effects, BEC Josephson systems
allow for the observation of strong correlation phenom-
ena, such as the collapse and revival of the relative phase
between the two condensates [15–17] which was observed
with astounding precision in an optical lattice in Refs.
[18], in a double-BEC system in Ref. [19], and in a 1D
spinor BEC in Ref. [20].
The bosonic Josephson junction is often described by

a two-mode Bose-Hubbard Hamiltonian (BHH) [21, 22],

H = −KL̂x − EL̂z + UL̂2
z . (1)

Here K, E, and U are coupling, bias, and interaction en-
ergies. The SU(2) generarators L̂x = (â†1â2 + â†2â1)/2,

L̂y = (â†1â2 − â†2â1)/(2i), and L̂z = (n1 − n2)/2, are de-
fined in terms of the boson on-site annihilation and cre-
ation operators âi, â

†
i , with the conserved total particle

number n1 + n2 = N ≡ 2ℓ. Three distinct interaction
regimes are obtained, depending on the characteristic
strength of interaction u = UN/K [21, 23]. The quasi-
linear Rabi regime |u| < 1, the strong-coupling Josephson
regime 1 < |u| < N2, and the extremely quantum Fock
regime u > N2.
With adjustable parameters, the BHH can also real-

ize an atom interferometer, in which the bias, E , gener-
ates a phase-shift that can be measured by atom-number
counting. The interaction term allows for the creation
of non-classical input states, but also generates unde-
sired phase-diffusion noise. Atom interferometers based
on this model are of great current interest because they
can potentially resolve phase-shifts below the standard
quantum limit (SQL) of ∆φ ≥ 1/

√
N , and are limited

instead by the Heisenberg fundamental limit ∆φ ≥ 1/N .
In such a device, a highly correlated initial state would

be prepared in the Josephson or Fock regime, but the
measurement would ideally be made in the Rabi regime.
While tunable, e.g. via Feshbach resonance, the interac-
tion parameter u will never be exactly zero. Thus un-
derstanding, and potentially harnessing, the dynamical
effects of the interaction-induced nonlinearity will play a
crucial role in designing such devices.
To model the nonlinear dynamics in the Josephson and

Rabi regimes, it is convenient to define the action-angle
variables â = eiϕi

√
ni, â

† =
√
nie

−iϕi . Using these def-
initions, the Hamiltonian (1) can be rewritten in terms
of the relative pair-number n = (n1−n2)/2 and relative-
phase eiϕ ≡ eiϕ1e−iϕ2 operators,

H = Un2 − En− K

2

[(

N

2
−n

)(

N

2
+n+1

)]1/2

eiϕ +H.c.

In the Josephson interaction regime, states initiated with
n ≪ N/2 remain confined to this small population im-
balance region, so that it is possible to use Josephson’s
approximated Hamiltonian

HJosephson = Ec(n− nE)
2 − EJ cos(ϕ) , (2)

with EC = U , EJ = KN/2, and nE = E/(2U). This
Hamiltonian matches that of a pendulum with ‘mass’
M = 1/(2U) and frequency ωJ ≈

√
KUN . The role of

pendulum angle is played by the relative phase ϕ between
the two condensate modes, while the relative population
imbalance, n, plays the role of angular momentum. One
consequence of this analogy is that a relative-phase of
ϕ = 0 is classically stable (ground state of the pendu-
lum), whereas a ϕ = π relative-phase (inverted pendu-
lum) is classically unstable.
The term “phase-diffusion” then describes the non-

linear effects generated by the anharmonic part of the
cos(ϕ) potential. The many-body manifestation of this
anharmonicity is the rapid loss of single-particle coher-
ence for a coherent state prepared with a π relative-
phase, as opposed to the slow phase-diffusion of phase-
locked condensates with ϕ = 0 [23, 24]. Several recent
works propose to control such phase-diffusion processes
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by means of external noise [25, 26] or modulation of the
Hamiltonian parameters to induce π flips of the relative
phase [27].
In this work, we build further on the pendulum analogy

to explore the effect of oscillatory driving on the collective
phase dynamics of the BHH. We consider two possible
time-dependent driving fields, “vertical” (v) and “hori-
zontal” (h), given by

Vv,h(t) = f(t)Ŵ = Dv,h sin(ωt+ φ) L̂x,y . (3)

Here ‘vertical’ and ‘horizontal’ are in reference to the
pendulum model. The classical phase-pendulum motion
is in the LxLy equatorial plane of the BHH, with the
ϕ = 0, π stationary points lying on the Lx axis, making
it the ’gravitation’ direction of the pendulum. Hence, Vv
is equivalent to a vertical drive of the pendulum axis and
Vh corresponds to a horizontal drive. With respect to
the two-mode BHH, the first type of driving Vv(t) is a
modulation of the hopping frequency K, which may be
attained by changing the Barrier height, as illustrated
in Fig. 1(a); whereas Vh(t) may be induced by means
of shaking the double-well confining potential laterally,
as illustrated in Fig. 1(b), thus effectively introducing
the equivalent of an electromotive force in the oscillat-
ing frame. It is customary to define the dimension-
less frequency Ω ≡ ω/ωJ , and the dimensionless driving
strength q ≡

√

UN/K(D/ω) = D/(KΩ). Fast and slow
driving correspond to Ω ≫ 1 and Ω ≪ 1, respectively,
whereas q ≫ Ω and q ≪ Ω correspond to strong and
weak driving.
Within the 1D pendulum approximation, the angle

variable ϕ and the momentum n are canonical conjugate
variables. It is well known [28] that off-resonant, fast
driving is effectively equivalent to the additional static
‘pseudo-potential ’, V eff

v,h = ±(1/4)q2Kℓ sin2(ϕ), as illus-
trated in Fig. 1. It is possible to further refine this effec-
tive description, adding momentum dependent terms, as
described in [29]. For sufficiently strong (q2 > 2) verti-
cal drive, the effective term V eff

v can stabilize the ϕ = π
inverted pendulum (Fig. 1(c)), an effect known as the
Kapitza pendulum [28]. By contrast, the effective term
V eff

h can destabilize under the same conditions the ϕ = 0
pendulum-down ground state, and generate two new de-
generate quasi-stationary states (Fig. 1(d)).
Generally, the driven BHH has a mixed classical phase-

space structure similar to that of a kicked top [30], with
chaotic regimes bound by KAM trajectories, making the
bosonic Josephson junction a good system for studying
quantum chaos [31, 32] along with the kicked-rotor real-
ization by cold atoms in periodic optical lattice potentials
[33], ultracold atoms in atom-optics billiards [34], and the
recent realization of a quantum kicked top by the total
spin of single 133Cs atoms [35]. The unique features of
the driven BHH in this respect are: (i) It offers a novel
avenue of ’interaction-induced’ chaos, which should be
distinguished from the single-particle ’potential-induced’

FIG. 1: (Color online) Schematics of a driven Bose-Josephson
junction: (a) The ’vertical’ driving obtained by time-
dependent modulation of the barrier height between the wells;
(b) The ’horizontal’ driving is via lateral shaking of the
double-well potential; (c) The potential term in the Joseph-
son Hamiltonian without driving (dash-dot), and with vertical
driving (solid) which includes the effective potential (dashed).
Circles denote stable stationary points whereas ’x’ denotes in-
stabilities; (d) The same for horizontal driving. It should be
noted that ’vertical’ and ’horizontal’ refer to the motion of
the pendulum axis in the Kapitza analogy, which incidentally
match the direction of potential modulation

chaos that had been highlighted in past experiments with
cold atoms; (ii) The pertinent dynamical variables are
relative-phase and relative-number, leading to nonlinear
and possibly chaotic phase dynamics, which may be mon-
itored via fringe-visibility measurements in interference
experiments.

Figure 2 shows representative results for near-resonant
(Ω ≈ 1) horizontal driving. Stroboscopic Poincare plots
of the classical (mean-field) evolution at drive-period in-
tervals are shown on the left for varying drive strength,
q, demonstrating the growth of the stochastic component
to form a chaotic ’sea’ surrounding regular ’islands’ of
non-chaotic motion. On the right, we represent the full
many-body BHH evolution via the Husimi Q function
Q(n, ϕ) = |〈n, ϕ|ψ(t)〉|2, which provides visualization for
the expansion of the time-dependent many-particle state
|ψ(t)〉 in the spin coherent states |n, ϕ〉 basis. For weak
driving the initial preparation |0, 0〉 lies within a regu-
lar region of phase-space and retains its coherence. In
contrast, for larger values of q the initial coherent state
spreads quickly throughout the chaotic sea, resulting in
a highly correlated many-body state, as manifest in the

dynamics of fringe visibility g
(1)
12 (t) =

√

〈L̂x〉2 + 〈L̂y〉2/ℓ.
Similar results, with a slightly different classical phase-
space structure are obtained for vertical driving.

For an off-resonant weak driving with Ω ≫ 1 and q ≪
Ω, the chaotic component of phase-space becomes hard
to resolve. In this case we obtain the many-body mani-
festation of the Kapitza pendulum physics [28], where a



3

FIG. 2: (Color online) Mean-field stroboscopic phase-space
plots of classical trajectories (left), and a representative
N=100 many-body quantum Hussimi distribution (right), for
the dynamics that is generated by the BHH with Vh(t) driv-
ing, assuming |0, 0〉 coherent preparation. The parameters
are u=30, and Ω=1. The strength of the driving is q=0.1
(top), and q=0.5 (middle), and q=1.0 (bottom). The evolu-
tion of the fringe-visibility is plotted in the lower panel for
q=0.1 (bold solid, green) and q=1.0 (solid, blue). The circle
indicates the time of the Hussimi plot.

periodic vertical drive of the pendulum axis stabilizes the
ϕ = π inverted pendulum and a horizontal drive desta-
bilizes its ground ϕ = 0 state.

In generalizing the Kapitza pendulum physics into the
context of the driven bosonic Josephson junction, we
have to deal with two modifications: (i) The phase-
space of the full BHH is spherical and not canoni-
cal, as opposed to the truncated, cylindrical Joseph-
son phase-space; (ii) Realistically f(t) may include
a noisy component whose effect on the effective po-
tential should be determined. We therefore re-derive

the Kapitza physics for the full BHH, using a mas-
ter equation approach rather than by the standard
timescale separation methodology. The quantum state
of the system is represented by the probability matrix
ρ, satisfying dρ/dt = i[H, ρ] where H = H+f(t)W with
f(t) = sin(ωt+ φ). The small parameter is the driving
period δt = 2π/ω for harmonic drive, or the correlation
time if f(t) is noisy. Using a standard iterative procedure
the difference ρ(t+ δt)− ρ(t) can be expressed to 1st or-
der as an integral over [H+f(t′)W,ρ]. The 2nd order
adds a double integral over [H+f(t′)W, [H+f(t′′)W,ρ]],
and the 3rd order adds a triple integral over
[H+f(t′)W, [H+f(t′′)W, [H+f(t′′′)W,ρ]]]. If f(t) con-
tains a noisy component, as in the standard master equa-
tion treatment, we obtain after integration over the sec-
ond order contribution a diffusion term [W, [W,ρ]]. In
the familiar classical Focker-Planck context, withW = x,
this terms takes the form ∂2ρ(x, p)/∂p2. However, for
a strictly periodic noiseless driving the time integration
over a period vanishes, and evaluation to 3rd order is
required. Integrating the 3rd order contribution over a
period we get terms that can be packed as [[W, [W,H ]], ρ].
Hence, the effective static potential is,

V eff = − 1

4ω2
[W, [W,H ]] (4)

Other terms also exist (producing the tilt of the islands in
Figs. 3c, 4c), however they depend on the driving phase
φ, and vanish if the stroboscopic sampling is averaged. In
the standard canonical case with Ŵ =W (x̂) this expres-
sion gives the familiar Kapitza result [W ′(x)]2/(4Mω2)
as in [29]. For the BHH non-canonical spherical phase-
space, with W ∝ Lx or W ∝ Ly, it is straightforward to
verify that Eq.(4) generates the expected Kapitza terms
L2
y or L2

x, as well as additional terms that slightly re-
normalize the bare values of U and K.
The predicted Kaptiza physics effects are confirmed

numerically in Fig. 3 and Fig. 4 for the vertical Vv(t)
and horizontal Vh(t) drive, respectively. Comparison of
the stroboscopic Poincare plots for the undriven (a) and
driven (c) BHH, clearly shows the stabilization of the
|0, π〉 coherent state by the vertical L̂x driving (Fig. 3),
and the destabilization of the |0, 0〉 preparation by the
horizontal L̂y driving (Fig. 4). These classical effect are
mirrored in the evolution of the quantum Husimi func-
tion, thereby affecting the many-body fringe-visibility
dynamics, leading to the protection of coherence by Vv(t)
driving for ϕ = π coherent preparation, and to its de-
struction by Vh(t) for ϕ = 0.
To conclude, the driven BHH, currently attainable in a

number of experimental setups, presents a wealth of non-
linear phase-dynamics effects. Strong, resonant driving
fields result in large chaotic phase-space regions, open-
ing the way for the generation of exotic highly correlated
quantum states [31]. The properties of such states, as
well as their manifestation in interference experiments,
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FIG. 3: (Color online) Quantum Kapitza pendulum with ver-
tical driving, and |0, π〉 coherent preparation. The panels are
arranged as in Fig. 1. The parameters are u=100, Ω=30, and
N=100. The strength of the driving is q=0 (a,b, lower panel
dashed blue) and q=3 (c,d, lower panel solid red). Circles
denote the time at which the Husimi distribution in (c,d) is
plotted. The classical stabilization of the inverted pendulum
results in a protected single-particle coherence of the initial
preparation.

and the more conventional tunneling effects between reg-
ular islands, are novel manifestations of semiclassical
physics. For weak and fast off-resonant drive we have ob-
tained the many-body equivalents of the Kapitza pendu-
lum effects, with the relative-phase between the conden-
sates acting as the pendulum angle. Such effects could be
readily observed in interference experiments and utilized
to protect fringe-visibility. We note that noise-protected
coherence was also studied in Ref. [25], yet with a rather
different quantum-Zeno underlying physics.
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