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We study the long time coherence dynamics of a two-mode Bose-Hubbard model in the Josephson
interaction regime, as a function of the relative phase and occupation imbalance of an arbitrary
coherent preparation. We find that the variance of the long time fluctuations of the one-body
coherence can be factorized as a product of the inverse participation number 1/M that depends only
on the preparation, and a semi-classical function C(E) that reflects the phase space characteristics
of the pertinent observable. Temporal fluctuations can thus be used as a sensitive probe for phase
space tomography of quantum many-body states.

The two mode Bose-Hubbard Hamiltonian (BHH) ap-
pears in different guises in a perplexing variety of fields.
Cast in spin form, it is known in nuclear physics as the
Lipkin-Meshkov-Glick (LMG) model of shape phase tran-
sitions [1]. It is broadly used to describe interacting
spin systems [2] and serves as a paradigm for squeezing
and entanglement [3]. As such, it offers schemes for the
generation of squeezed states for optical interferometry
below the standard quantum limit [4], and its matter-
wave equivalent [5]. It is commonly employed to describe
the Josephson dynamics in systems of bosonic atoms in
double-well potentials [6] and suggests prospects for the
generation of macroscopic superposition states [7]. The
same model is also known in condensed matter physics
as the integrable dimer model [8] with applications to
the dynamics of small molecules, molecular crystals, and
self-trapping in amorphous semiconductors.

Like the paradigmatic Jaynes-Cummings model in
quantum optics [9], the bimodal BHH dynamics with a
coherent spin state preparation exhibits a series of col-
lapses and revivals of its single-particle coherence due to
interactions [10–13]. These recurrences are manifested in
the collapse and revival of the Rabi-Josephson popula-
tion oscillations, or of the multi-realization fringe visibil-
ity, when the two condensates are released and allowed
to interfere. Below we study the long time BHH dy-
namics for general coherent spin preparations |θ, φ〉. In
such states all particles occupy a single superposition of
the two modes, with a normalized population imbalance
Sz = cos(θ) and a relative phase φ.

The characteristics of this dephasing-rephasing dy-
namics strongly depend on the dimensionless interac-
tion parameter u = UN/K, where U is the interaction
strength, N is the total particle number, and K is the
hopping amplitude. In the linear Rabi regime (u < 1)
time evolution is straightforward because the interaction
is weak and the nature of the dynamics is essentially
single-particle. Accordingly, one observes only coherent
Rabi oscillations in the population difference with a typ-
ical frequency ωJ ≡

√
K(K − UN) = K

√
1− u ≈ K

which reflects mainly the coupling K between the two
modes, accompanied by a slow loss of single particle co-
herence.

The coherence dynamics in the highly nonlinear Fock

regime (u > N2) are also fairly simple because it reflects
the Fock basis expansion of the initial coherent prepa-
ration. For such strong interactions the two-mode BHH
generates precisely the same coherence dynamics as the
many-mode BHH of a BEC in an optical lattice, because
the local modes are essentially decoupled, hence the dy-
namics is fully captured by the Gutzwiller ansatz of a
direct product of single-site states, each of which is a co-
herent wavepacket of number states [14, 15, 18, 19]. This
allows for monitoring the fringe visibility in single shot in-
terferometery of an optical lattice, rather than repeating
a two-mode experiment many times. The expected coher-
ence recurrences have been observed experimentally for
optical lattices with relatively small occupation numbers
[14, 15] with a striking demonstration of exceptionally
long time dynamics, allowing to probe effective multi-
body interactions through the dependence of U on the
number of atoms [16].

The dynamics in the Josephson regime (1 < u < N2) is
by far richer and more intricate, reflecting the coexistence
of three distinct phase space regions [11, 12]. Unlike the
Fock-space recurrences which only depend on the pop-
ulation imbalance, the Josephson coherence dynamics is
also highly sensitive to the relative phase. Previous work
has considered specific preparations that were of contem-
porary experimental relevance, e.g. small perturbation of
the ground state that results in Josephson oscillations, or
a large population imbalance that leads to self-trapping
[17]. Here we adopt a global, tomographic approach by
characterizing the long time temporal quantum fluctu-
ations for all possible coherent preparations. This ap-
pears to be a formidable task, but as shown below, a
relatively simple semi-classical perspective provides an
adequate framework for the required analysis.

The BHH.– We consider a similar scenario to that
in Ref. [15], which observed the long time collapse and
revival of coherence in the Fock regime. In the Josephson
regime, the dynamics of a lattice with one mode per site
is quite different from the two-mode dynamics. However,
the two-mode model can be realized with two spin com-
ponents in each isolated site [20] or with an array of inde-
pendent double wells [21], thus retaining the convenience
of single-shot measurements. We note recent work on
BECs in 1D double-well traps reporting the breakdown
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FIG. 1: (color online) Phase-space structure of the bosonic
Josephson junction in the Josephson regime (u = 2.5).
Lines depict equal energy contours, i.e. classical trajecto-
ries. A separatrix trajectory with an isolated hyperbolic
point at (θ, φ) = (π/2, π) separates Rabi-Josephson oscilla-
tions around the ground state in a K-dominated ’sea’ from
nonlinear self-trapped phase-oscillations in two high-energy
’islands’. Symbols denote the coherent preparations used in
Fig. 2.

of the lowest Bloch band BHH model at interaction pa-
rameter values as low as u = 2.15 for this realization
[22, 23].

Assuming that no bias field is applied, the pertinent
BHH is,

H = −K
2

(
â†1â2 + â†2â1

)
+
U

2
[n̂1 (n̂1 − 1) + n̂2 (n̂2 − 1)] , (1)

where âi and â†i are bosonic annihilation and creation
operators, respectively. The particle number operator in

mode i is n̂i = â†i âi. Since the total particle number
n̂1 + n̂2 = N is conserved, we can eliminate respective
c-number terms and obtain the BHH in spin form,

Ĥ = −KĴx + UĴ2
z , (2)

where Ĵx=(â†1â2+â†2â1)/2, Ĵy=(â†1â2−â
†
2â1)/(2i), and

Ĵz=(n̂1−n̂2)/2. The number conservation becomes an-
gular momentum conservation with j = N/2. Below we
assume for simplicity that the interaction is repulsive
U > 0, but the U < 0 case (to the extent that the parti-
cle number is sufficiently small that the attractive BEC
is stable) amounts to a simple transformation K 7→ −K,
and E 7→ −E. Thus the phase space with attractive
interaction is simply an inverted mirror image of the
repulsive-interaction case and there is no loss of gener-
ality. In this spin representation, each state is character-
ized by the normalized Bloch vector S ≡ 〈J〉/j, where its
z projection Sz = cos(θ) corresponds to the normalized
population imbalance, its azimuthal angle φ corresponds
to the relative phase between the modes, and its length
S corresponds to the single-particle coherence.

The classical phase space structure of the BHH is set
by the previously defined dimensionless interaction pa-
rameter u. Its characteristics in the three interaction

regimes are discussed in great detail elsewhere [6, 11, 12].
In Fig. 1 we plot the equal-energy contour lines and the
pertinent phase-space regions in the Josephson regime
(1 < u < N2). Two nonlinear islands are separated from
a nearly-linear sea region by a separatrix trajectory. The
sea trajectories correspond to Rabi-Josephson population
oscillations around the ground state, whereas the island
trajectories correspond to self-trapped phase-oscillations
[17]. In the Fock regime (u > N2) the sea becomes too
small to support quantum states, while in the opposite
limit - in the Rabi regime (u < 1) - the islands disappear,
so that only Rabi-type oscillations are feasible.

Evolution.– We study the dynamics induced by the
Hamiltonian of Eq.(2), starting from an arbitrary spin
coherent state preparation,

|θ, φ〉 ≡ 1

N !

[
cos(θ/2)â†1 + sin(θ/2)eiφâ†2

]N
|vac〉

= exp(−iφĴz) exp(−iθĴy)|Jz = j〉, (3)

where |vac〉 and |Jz = j〉 are the vacuum states of the
Heisenberg-Weil and SU(2) algebras, respectively. The
preparation of such arbitrary coherent states can be at-
tained via a two step process as implied by Eq. (3) and
demonstrated experimentally in Ref. [24], in which θ is
set by a coupling pulse and φ by a bias pulse. We focus
our attention on experimentally relevant observables such
as the population imbalance Sz and the single-particle
coherence S. Note that S is the best fringe visibility
one may expect to measure by proper manipulation of
the Bloch vector, i.e. if we are allowed to perform any
SU(2) rotation. The expected fringe visibility if inter-
ferometry is carried out without further manipulation is

g
(1)
12 = (1/j)[|〈Ĵx〉|2 + |〈Ĵy〉|2]1/2. For presentation pur-

pose we focus on S, but the results for g
(1)
12 are very sim-

ilar.
The intricacy of the Josephson regime quantum dy-

namics is illustrated in Fig. 2, where we plot the full
quantum evolution under the BHH (2), of the popula-
tion imbalance and of the one-particle coherence for sev-
eral representative coherent preparations (corresponding
to the symbols in Fig. 1). It is clear that different prepa-
rations lead to qualitatively different behavior, depend-
ing on the initial population imbalance and on the rela-
tive phase. Moreover, different preparations located on
the same classical trajectory produce dramatically dif-
ferent recurrence patterns (see e.g. the differences in
the coherence dynamics between the two on-separatrix
preparations marked by square and inverted triangle in
Fig. 2b). The cause of this diversity is that different
coherent preparations sample different parts of the spec-
trum. Each coherent spin state constitutes a superpo-
sition of eigenstates that can be associated with qual-
itatively different regions in the corresponding classical
phase space. This is in a stark contrast to the Rabi and
Fock regimes, where the eigenstates occupy, so to say, a
single component phase space that allows only one type
of motion.
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FIG. 2: (color online) Collapse and revival dynamics of the
normalized population imbalance Sz (top) and of the single-
particle coherence S (bottom) for the representative coherent
preparations marked in Fig. 1. The BHH parameters here
and in all subsequent figures are N = 100 and u = 2.5, corre-
sponding to the Josephson regime.

For each preparation |θ, φ〉 we characterize the tempo-

ral fluctuations of the expectation values A(t) = 〈Â〉t of

the pertinent observables, by their time-average A(t) and

by their variance σ2
A ≡ A2(t)− A(t)

2
taken over long

times compared to the collapse and revival timescale. In
order to see the overall picture, we plot in Fig. 3 an im-
age of Sz(θ, φ), S(θ, φ), σ2

Sz
(θ, φ), and σ2

S(θ, φ) for all the
possible coherent preparations |θ, φ〉.

The Sz(θ, φ) average in Fig. 3a is straightforward to
understand in classical terms. Sea trajectories have zero
average population imbalance, whereas self-trapped is-
land trajectories retain a finite imbalance. Note that the
formal infinite-time average of the population imbalance
is identically zero also for island preparations, due to the
definite mode-exchange parity of energy eigenstates im-
plying the many-body tunneling between islands. How-
ever, the N -particle tunnel splitting of the odd and even
catlike eigenstates constituting a localized island prepa-
ration, is exponentially small in N . Therefore this formal
observation is of no physical relevance, e.g. in our simu-
lations here it corresponds to no less than 1013 Josephson
periods before localization is lost. It should thus be un-
derstood that ’long time average’ is still carried over a
much shorter time than the N -particle tunneling time.

The imbalance fluctuations (Fig. 3c) show a far more
complex structure which does not seem to be directly re-
lated to the mean-field trajectories. Similarly, the av-
erage and fluctuations of the single-particle coherence
(Fig. 3b,d) can not be attributed to classical features
alone. Below we analyze and explain these observed pat-
terns, showing that they are the product of distinct quan-
tum and semiclassical factors.
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FIG. 3: (color online) (a) Long time average of the population
imbalance Sz(t), (b) Long time average of the one-particle
coherence S(t), (c) variance of Sz(t), (d) variance of S(t), all
starting from arbitrary coherent preparations |θ, φ〉. The left
side of panels c,d correspond to the numerical results which
are the same as Eq. (5) whereas the right side is the factor-
ization of Eq. (6).

Analysis.– In order to deduce the exact time average
of any A(t), we expand it in the energy basis as

A(t) =
∑
ν,µ

c∗νcµAνµ exp[(Eν − Eµ)t/~], (4)

where |Eν〉 are the BHH eigenstates, cν = 〈Eν |ψ〉 are the
expansion coefficients of the initial state |ψ〉 = |θ, φ〉, and

Aνµ = 〈Eν |Â|Eµ〉. The long-time average eliminates the

oscillating terms, hence A(t) =
∑
ν pνAνν , with proba-

bilities pν ≡ |cν |2, while the variance is

σ2
A =

∑
ν 6=µ

pνpµ|Aνµ|2 . (5)

The matrix elements in Eq.(5) can be evaluated semi-
classically using the following prescription [12, 25]: a
classical trajectory of energy E is generated using the
BHH mean field equations of motion, and Acl(t) is cal-

culated; then the classical power-spectrum C̃clA (ω) is ob-

tained via a Fourier transform of [Acl(t)−Acl]; and fi-
nally the result is divided by the mean level spacing %
at that energy, providing the approximation |Aνµ|2 ≈
C̃clA (Eν−Eµ)/(2π%). This is a very general procedure
which is usually applied to chaotic systems, but it ap-
plies equally well to the integrable non-linear motion
of the two-mode BHH. The number of eigenstates that
contribute to Eq. (5), is conventionally evaluated as
the participation number M ≡ [

∑
ν p

2
ν ]−1. Assuming

M � 1, approximating pν ≈ 1/M , and neglecting non-
participating eigenstates, we obtain that,

σ2
A =

1

M
CA(E), (6)
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FIG. 4: (color online) (a) The participation number M(θ, φ)
for all coherent preparations |θ, φ〉 (b) image of the matrix el-
ements |Anm|, with color-scale in log10 units; (c) The power
spectrum CA(E), evaluated according to the middle (sym-
bols) and the r.h.s. (lines) of Eq.(7). The separatrix energy
is E/Kj=1.

where,

CA(E) =
∑
|r|>0

|Aνµ|2 =

∫
C̃clA (ω)

dω

2π
. (7)

Above r = (ν − µ) is the diagonal coordinate of the ma-
trix, and it is implicit that the summation is carried out
over a section ν+µ = const such that (Eν +Eµ)/2 ∼ E.
Note that the time variation of Acl(t) is non-linear but
periodic, accordingly the integral in Eq. (7) is related, up
to a form factor, to the classical amplitude.

Equation (6) with the definition (7) constitutes our
primary result in this work. Given any observable with
a fluctuating expectation value that has long time av-
erage, its variance can be approximated accurately as a
product of the quantum term 1/M and a semi-classical
term CA(E), corresponding to the classical fluctuations
of A along a mean-field trajectory that has an energy E.
Below we show that indeed this factorization results in
the apparently complex patterns of Fig. 3c,d.

Numerical verification.– The required ingredients
for the calculation of the variance σ2

A(θ, φ) according to
the semiclassical prescription, are shown Fig. 4 for the
population imbalance A = Jz. In order to evaluate the
variance of the fluctuations, we need to calculate the par-
ticipation number M for a general coherent preparation
|θ, π〉. The result is shown in Fig. 4a. Due to the fac-
torization Eq.(6), this function needs be calculated only
once for all desired observables. While we do not have
a closed analytic expression for M(θ, φ), its characteris-
tic value and its dependence on u and N in the different
phase space regions can be evaluated from general consid-

erations as detailed in Ref. [12]. Generally speaking, the
highest participation numbers are obtained at the top of
the separatrix and scale as M ≈

√
N log(N/u), i.e. like

the square root of N . By contrast, the equatorial states
|π/2, 0〉 and |π/2, π〉 have participation numbers of order
unity: M(π/2, 0) ≈

√
u and M ≈

√
u log(N/u), respec-

tively.

The matrix elements (Jz)νµ are shown in panel Fig. 4b,
confirming the assumption of a broad spectrum contain-
ing many frequencies but within a narrow band from the
main diagonal. The results of the summation over the
matrix elements and the integration over the classical
fluctuations to obtain the power spectrum CA(E) accord-
ing to Eq.(7) are compared in panel Fig. 4c, showing good
agreement except for a small region in the vicinity of the
separatrix energy.

Similar calculations were carried out for the single-
particle coherence and fringe visibility. On the right
hand side of Fig. 3c and Fig. 3d we use the participation
number M and the calculated power spectrum CA(E)
to predict the variance of the population imbalance and
coherence oscillations for the various preparations. Com-
parison to the results obtained by numerical propagation
or by using Eq.(5) (left side of the same panels) shows
good agreement and confirms the validity of Eq.(6). Sim-
ilar agreement is obtained for the fringe visibility which
is not shown here for lack of space.

The interpretation of the fluctuation patterns in panels
c,d of Fig. 3 now becomes clear. Long time population
oscillations will only survive in the vicinity of the unsta-
ble equal-population φ = π preparation, where the power
spectrum is large and the participation number is small.
Note that the classical fluctuations are large for the other
separatrix preparations, too, but away from φ = π the
participation number is large, and hence the quantum
fluctuations are quenched. It should also be noted that
our approximation breaks down in the vicinity of the hy-
perbolic point (θ, φ) = (π/2, π) because the semiclassical
assumption M � 1 is not satisfied.

Summary.– The magnitude of the long-time quan-
tum fluctuations of an arbitrary observable A can be de-
duced from the tractable classical dynamics and from
the a-priori known participation number of all coherent
preparations. Moreover, because CA(E) only depends on
energy, it is possible to obtain a tomographic image of
the phase space from the observed fluctuations by plot-
ting Mσ2

A. The contours of this plot trace the equal
energy lines and their values are specific to the measured
observable. Eq.(6) constitutes a dramatic reduction in
complexity and offers great insight on the dynamics of
the two-mode BHH. It is successfully employed above to
characterize the observed fluctuations in population im-
balance, one-particle coherence, and fringe-visibility.
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