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Quantum dynamics in the bosonic Josephson junction
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We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial
conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial
relative phase between the two condensates. For initially incoherent condensates, we find a universal value for
the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix
coherent preparations, finding striking differences in their convergence to classicality as the number of particles
increases.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) of dilute, weakly in-
teracting gases offer a unique opportunity for exploring
nonequilibrium many-body dynamics, far beyond small pertur-
bations of the ground state. Highly excited states are naturally
produced in BEC experiments and their dynamics can be
traced with great precision and control. The most interesting
possibilities lie in strong correlation effects, which imply a
significant role of quantum fluctuations.

The importance of correlations and fluctuations may be
enhanced by introducing an optical lattice, that can be con-
trolled by tuning its depth. This tight confinement decreases
the kinetic energy contribution with respect to the interactions
between atoms. In the tight-binding limit, such systems are de-
scribed by a Bose-Hubbard Hamiltonian (BHH), characterized
by the hopping frequency K between adjacent lattice sites, the
on-site interaction strength U , and the total atom number N .
The strong correlation regime is attained when the characteris-
tic coupling parameter u ≡ UN/K exceeds unity, as indicated
by the quantum phase transition from a superfluid to a Mott-
insulator [1,2]. The simplest BHH is obtained for two weakly
coupled condensates (dimer). Its dynamics is readily mapped
onto an SU(2) spin problem and is closely related to the physics
of superconductor Josephson junctions [3,4]. To the lowest-
order approximation, it may be described by a Gross-Pitaevskii
mean-field theory, accurately accounting for Josephson os-
cillations [5–7] and macroscopic self-trapping [8], observed
experimentally in Refs. [9,10], as well as the equivalents of
the ac and dc Josephson effect [11] observed in [12].

Both Josephson oscillations and macroscopic self-trapping
rely on coherent (Gaussian) preparations, with different initial
population imbalance. The mean-field premise is that such
states remain Gaussian throughout their evolution so that the
relative phase ϕ between the two condensates remains defined.
However, interactions between atoms lead to the collapse and
revival of the relative phase in a process known as phase
diffusion [13–15]. Phase diffusion has been observed with
astounding precision in an optical lattice in Ref. [16], in a

double-BEC system in Refs. [17–19], and in a one-dimensional
(1D) spinor BEC in Ref. [20]. Typically, the condensates
are coherently prepared, held for a varying duration (“hold
time”) in which phase diffusion takes place, and are then
released and allowed to interfere, thus measuring the relative
coherence through the many-realization fringe visibility. In
order to establish this quantity, the experiment is repeated
many times for each hold period.

Phase-diffusion experiments focus on the initial preparation
of a zero relative phase and its dispersion when no coupling
is present between the condensates. However, in the presence
of weak coupling during the hold time, the dynamics of phase
diffusion is richer. It becomes sensitive to the initial value of
ϕ and the loss of coherence is most rapid for ϕ = π [21–23].
Here, we expand on a recent letter [23], showing that this
quantum effect can be described to excellent accuracy by
means of a semiclassical phase-space picture. Furthermore,
exploiting the simplicity of the dimer phase space, we derive
analytical expressions based on the classical phase-space
propagation [24].

Phase-space methods [25] have been extensively applied for
the numerical simulation of quantum and thermal fluctuation
effects in BECs [26–38]. Such methods utilize the semiclas-
sical propagation of phase-space distributions with quantum
fluctuations emulated via stochastic noise terms, and using a
cloud of initial conditions that reflects the uncertainty of the
initial quantum wave packet. One particular example is the
truncated Wigner approximation [27,30,33,35] where higher
order derivatives in the equation of motion for the Wigner
distribution function are neglected, thus amounting to the prop-
agation of an ensemble using the Gross-Pitaevskii equations.

Due to the relative simplicity of the classical phase space of
the two-site BHH, it is possible to carry out its semiclassical
quantization semianalytically [23,24,39–41] and acquire great
insight on the ensuing dynamics of the corresponding Wigner
distribution [42,43]. In this work, we consider the Jopheson-
regime dynamics of four different preparations, interpreting
the results in terms of the semiclassical phase-space structure
and its implications on the expansion of each of these initial
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states in terms of the semiclassical eigenstates. We first explore
the phase sensitivity of phase diffusion in the Josephson regime
[21,23]. Then we study the buildup of coherence between two
initially separated condensates [40], which is somewhat related
to the phase-coherence oscillations observed in the sudden
transition from the Mott insulator to the superfluid regime
in optical lattices [44–46]. Then we compare two coherent
preparations in the separatrix region of the classical phase
space, finding substantial differences in their dynamics due to
their different participation numbers.

The narrative of this work is as follows [47]: The two-
site Bose-Hubbard model and its classical phase space are
presented in Sec. II. The semiclassical WKB quantization
is carried out in Sec. III. In Sec. IV, we define the initial
state preparations of interest and explain their phase-space
representation. This is used in Sec. V to evaluate their
expansion in the energy basis (the local density of states),
which is the key for studying the dynamics in Secs. VI–VIII.
Both the time-averaged dynamics and the fluctuations of the
Bloch vector are analyzed. In particular we observe in Sec. VIII
that the fluctuations obey a remarkable semiclassical scaling
relation. Conclusions are given in Sec. X.

II. THE TWO-SITE BOSE-HUBBARD MODEL

We consider the Bose-Hubbard Hamiltonian for N bosons
in a two-site system,

H =
∑
i=1,2

[
Eini + U

2
ni(ni − 1)

]
− K

2
(â†

2â1 + â
†
1â2), (1)

where K is the hopping amplitude, U is the interaction,
and E = E2 − E1 is the bias in the on-site potentials. We
use boldface fonts to mark dynamical variables that are
important for the semiclassical analysis, and use regular fonts
for their values. The total number of particles n1 + n2 = N is
conserved, hence the dimension of the pertinent Hilbert space
is N = N + 1. Defining

Jz ≡ 1
2 (n1 − n2) ≡ n, (2)

J+ ≡ â
†
1â2, (3)

and eliminating insignificant c-number terms, we can rewrite
Eq. (1) as a spin Hamiltonian,

H = UJ 2
z − EJz − KJx, (4)

conserving the spin J 2 = j (j + 1) with j = N/2. The BHH
Hamiltonian thus has a spherical phase-space structure. In
the absence of interaction (U = 0) it describes simple spin
precession with frequency � = (K,0,E).

The quantum evolution of the spin Hamiltonian (4) is
given by the unitary operator exp(−iHt). Its classical limit is
obtained by treating (Jx,Jy,Jz) as c numbers, whose Poisson
Brackets (PB) correspond to the SU(2) Lie algebra. The
classical equations of motion for any dynamical variable A are
derived from Ȧ = −[H,A]PB. Conservation of J 2 allows for
one constraint on the noncanonical set of variables (Jx,Jy,Jz).

Due to the spherical phase-space geometry, it is natural to
use the noncanonical conjugate variables (ϕ,θ ),

Jz ≡ [J 2]1/2 cos(θ), (5)

Jx ≡ [J 2]1/2 sin(θ) cos(ϕ), (6)

where [J 2]1/2 is a constant of the motion. In the quantum
mechanical Wigner picture treatment (see later sections) this
constant is identified as [(j + 1)j ]1/2, based on the derivation
of Sec. 2.3 of Ref. [43]. For large j we use [J 2]1/2 ≈ N/2.
With these new variables the Hamiltonian takes the form,

H (θ ,ϕ) = NK

2

[
1

2
u(cos θ )2 − ε cos θ − sin θ cos ϕ

]
, (7)

where the scaled parameters are

u ≡ NU

K
, ε ≡ E

K
. (8)

The structure of the underlying classical phase space is
determined by the dimensionless parameters u and ε. For
strong interactions u > 1 the phase space includes a figure-
eight-shaped separatrix (Fig. 1), provided |ε| < εc, where
[24,48]

εc = (
u

2
3 − 1

) 3
2 . (9)
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FIG. 1. (Color online) Contour lines for u > 2. Sea levels are colored blue, island levels are colored green, and the separatrix is colored
red (left panel). Energy spectrum for N = 20 and u = 10. WKB energies (red x) are compared with exact eigenvalues (blue +). Dashed lines
indicate slopes ωJ for low energies, ωx for near-separatrix energies, and ω+ for high energies (right panel).

053617-2



QUANTUM DYNAMICS IN THE BOSONIC JOSEPHSON . . . PHYSICAL REVIEW A 82, 053617 (2010)

This separatrix splits phase space into three integrable regions:
a “sea” of Rabi-like trajectories and two interaction-dominated
nonlinear “islands.” For zero bias the separatrix is a symmetric
eight-shaped figure that encloses the two islands, and the
relevant energies are [49]

E− = −(1/2)NK = ground energy, (10)

Ex = +(1/2)NK = separatrix, (11)

E+ = (1/4)[u+(1/u)]NK = top energy. (12)

Looking at the phase-space structure as a function of u, the
two islands emerge once u > 1. For u > 2, they encompass the
North and South Poles, yielding macroscopic self-trapping [8],
and for very large u � 1 they cover most of the Northern and
Southern hemispheres, respectively. Note that for u � 1, the
expression E+ ≈ (N/2)2U , reflects the cost of localizing all
the particles in one site, compared to equally populated sites.

As an alternative to Eq. (7), it is possible to employ the
relative number-phase representation, using the canonically
conjugate variables (ϕ,n), with the Hamiltonian,

H = Un2 − En − K
√

(N/2)2 − n2 cos(ϕ). (13)

In the |n| � (N/2) region of phase space, one obtains the
Josephson Hamiltonian, which is essentially the Hamiltonian
of a pendulum,

HJosephson = EC(n − nε)2 − EJ cos(ϕ), (14)

with EC = U and EJ = KN/2 while nε is linearly related to
E . The Josephson Hamiltonian ignores the spherical geometry,
and regards phase space as cylindrical. Accordingly it captures
much of the physics if the motion is restricted to the small-
imbalance slice of phase space, as in the case of equal
initial populations and strong interactions. However, for other
regimes it is an oversimplification because it does not correctly
capture the global topology.

III. THE WKB QUANTIZATION

We begin by stipulating the procedure for the semiclassical
quantization of the spin spherical phase space. In the (ϕ,n)
representation, the area element is d� = dϕdn, so that the
total phase-space area is 2πN with Planck cell h = 2π .
Alternatively, using the (ϕ,θ ) coordinates, the area element
is d� = dϕd cos θ , so that the total area is 4π . Consequently,

h = (Planck cell area in steradians) = 4π

N . (15)

Within the framework of the semiclassical picture, eigenstates
are associated with stripes of area h that are stretched along
contour linesH(ϕ,θ ) = E of the classical HamiltonianH. The
associated WKB quantization condition is

A(Eν) = (
1
2 + ν

)
h, ν = 0,1,2, . . . , (16)

where A(E) is defined as the phase-space area enclosed by an
E contour in steradians:

A(E) ≡
∫ ∫

�(E − H(ϕ,θ )) d�, (17)

while the area of phase space in Planck units is A(E)/h. The
frequency of oscillations at energy E is

ω(E) ≡ dE

dν
=

[
1

h
A′(E)

]−1

. (18)

Consider the semiclassical quantization of the Hamilto-
nian (7). We distinguish three regimes of interaction strength.
Assuming ε = 0, these are

Rabi regime: u < 1 (no islands), (19)

Josephson regime: 1 < u < N2 (see Fig. 1), (20)

Fock regime: u > N2 (empty sea). (21)

In the Fock regime, the area of the sea becomes less
than a single Planck cell, and therefore cannot support any
eigenstates. Our interest throughout this paper is mainly in the
Josephson regime where neither the K term nor the U term
can be regarded as a small perturbation in the Hamiltonian.
This regime, characteristic of current atom-interferometry
experiments, is where semiclassical methods become most
valuable.

In the WKB framework the spacing between energies
equals the characteristic classical frequency at this energy.
If the interaction is zero (u = 0), the energy levels are equally
spaced and there is only one frequency, namely the Rabi
frequency,

ωK = K. (22)

For small interaction (0 < u < 1) the frequencies around the
two stable fixed points are slightly modified to the plasma
frequencies:

ω± = ω(E±) =
√

(K ± NU )K. (23)

If the interaction is strong enough (u � 1), the oscillation
frequency near the minimum point can be approximated as

ωJ = ω(E−) ≈
√

NUK = √
u ωK, (24)

while at the top of the islands we have

ω+ = ω(E+) ≈ NU = u ωK. (25)

The associated approximations for the phase-space area in the
three energy regions (bottom of the sea, separatrix, and top of
the islands) are, respectively,

1

h
A(E) =

(
E − E−

ωJ

)
, (26)

1

h
A(E) = 1

h
A(Ex) + 1

π

(
E − Ex

ωJ

)
ln

∣∣∣∣ NK

E − Ex

∣∣∣∣ , (27)

1

h
A(E) = 4π

h
−

(
E+ − E

U

)1/2

. (28)

In the last expression the total area of the two islands
(E+−E)/U should be divided by two if one wants to
obtain the area of a single island. A few words are in
order regarding the derivation of Eq. (27). In the vicin-
ity of the unstable fixed point the contour lines of the
Hamiltonian are Un2 − (NK/4)ϕ2 = E−Ex , where for con-
venience the origin is shifted (ϕ=π �→ 0). Defining a2 =
4(E−Ex)/NK the area of the region above the separatrix is
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2(NK/4U )1/2[A(a) − A(0)] where A(a) is the inte-
gral over

√
ϕ2 + a2. The result of the integration is

A(a) − A(0) = a2 ln(b/a), with some ambiguity with regard
to b ∼ 1 which is determined by the outer limits of the integral
where the hyperbolic approximation is no longer valid.

Away from the separatrix, the WKB quantization recipe
implies that the local level spacing at energy E is ω(E) given
by Eq. (18). In particular, the low energy levels have spacing
ωJ , while the high energy levels are doubly degenerate with
spacing ω+. In the vicinity of the separatrix we get

ω(E) ≈
[

1

π
ln

∣∣∣∣ NK

E − Ex

∣∣∣∣
]−1

ωJ . (29)

Using the WKB quantization condition, we find that the level
spacing at the vicinity of the separatrix (E ∼ Ex) is finite and
given by the expression,

ωx = [ln(N/
√

u)]−1ωJ . (30)

Using an iterative procedure one finds that at the same level of
approximation the near-separatrix energy levels are

Eν = Ex +
[

1

π
ln

∣∣∣∣N/
√

u

ν−νx

∣∣∣∣
]−1

(ν−νx) ωJ , (31)

where νx = A(Ex)/h. Figure 1 demonstrates the accuracy of
the WKB quantization, and of the previous approximations.

IV. THE INITIAL PREPARATION AND ITS PHASE-SPACE
REPRESENTATION—THE WIGNER FUNCTION

Our approach for investigating the dynamics of various
initial preparations relies on the Wigner-function formalism
for spin variables, developed in Refs. [42,43]. Each initial
preparation is described as a Wigner distribution function
over the spherical phase space. The dynamics is deduced
from expanding the initial state in terms of the semiclassical
eigenstates described in Sec. III. In this section we specify the
Wigner distribution for the preparations under study whereas
the following section presents the eigenstate expansion of each
of these four initial wave packets, evaluated semiclassically.

To recap the phase-space approach to spin [42,43], the
Hilbert space of the BHH has the dimension N = 2j + 1, and
the associated space of operators has the dimensionality N 2.
According to the Stratonovich-Wigner-Weyl correspondence
(SWWC) [50], any observable A in this space, as well as the
probability matrix of a spin(j ) entity, can be represented by a
real sphere(2j ) function AW (�). The sphere(2j ) is spanned by
the Y 	m(�) functions with 	 � 2j , and the practical details
regarding this formalism can be found in Refs. [42,43]. The
SWWC allows one to do exact quantum calculation in a
classical-like manner. A few examples for Wigner functions
pertinent to this work, are displayed in Fig. 2. Expectation
values are calculated as in classical statistical mechanics:

tr[ρ̂ Â] =
∫

d�

h
ρW (�)AW (�). (32)

In particular the Wigner-Weyl representation of the iden-
tity operator is 1, and that of Jx is as expected
[(j+1)j ]1/2 sin(θ ) cos(ϕ) [43]. We adopt the convention that
ρW is normalized with respect to the measure d�/h, allowing
one to handle on equal footing a cylindrical phase space upon
the reidentification d� = dϕdn and h = 2π .

Within this phase-space representation, the Fock states |n〉
are represented by stripes along constant θ contours (see, e.g.,
left panel of Fig. 2). The |n = N〉 state (all particles in one
site) is a Gaussian-like wave packet concentrated around the
North Pole. From this state, we can obtain a family of spin
coherent states (SCS) |θ,ϕ〉 via rotation.

In what follows, we explore the dynamics of the following
experimentally accessible preparations (see Fig. 2), the first
being a Fock state, whereas the last three are spin coherent
states:

(i) Twin-Fock preparation. The n = 0 Fock preparation.
Exactly half of the particles are in each side of the double
well. The Wigner function is concentrated along the equator
θ = π/2.

(ii) Zero preparation. Coherent (θ = π/2,ϕ = 0) prepara-
tion, located entirely in the (linear) sea region. Both sites are
equally populated with definite 0 relative phase. The minimal
wave packet is centered at (n = 0,ϕ = 0).

−1.75 −1.25 −0.75 −0.25 0.25
−1

−0.5

0

0.5

1

φ / π

 n
/j

π 0

e

FIG. 2. (Color online) An illustration of twin-Fock (n = 0) preparation (left), and of π (“π”), zero (“0”), and edge (“e”) preparations (right)
using Wigner plots on a sphere. The left panel is a three-dimensional plot, while the right panel is a Mercator projection of the sphere using
(ϕ,n) coordinates.
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FIG. 3. (Color online) The evolving quantum state of N = 40 bosons with u = 5 for twin-Fock (n = 0) preparation. Here and below the
units are such that K = 1. The time is t = 4. (a) Wigner function of the evolved quantum state. (b) Semiclassical evolved state. (c) Occupation
statistics, with the semiclassical result shown as dashed-dotted line.

(iii) π preparation. Coherent (θ = π/2,ϕ = π ) on-
separatrix preparation. The sites are equally populated with
π relative phase. The minimal wave packet is centered at
(n = 0,ϕ = π ).

(iv) Edge preparation. Coherent ϕ �= π on-separatrix prepa-
ration. The minimal wave packet is centered on the separatrix
but away from the saddle point on the ϕ = 0 side.

The Wigner function of an SCS resembles a minimal
Gaussian wave packet, and it should satisfy∫

ρW (θ,ϕ)
d�

h
=

∫
[ρW (θ,ϕ)]2 d�

h
= 1. (33)

This requirement helps to determine the phase space spread
without the need to use the lengthy algebra of Refs. [42,43].
For the Fock coherent state |n = N〉, that is centered at the
North Pole (θ = 0), one obtains

ρ
(ψ)
W (θ,ϕ) ≈ 2e− N

2 θ2
. (34)

For the coherent states centered around the equator, it is more
convenient to use (ϕ,n) coordinates (e.g., the ϕ = 0 coherent
state is well approximated as),

ρ
(ψ)
W (n,ϕ) ≈ 1

ab
e
− ϕ2

2a2 − n2

2b2 , (35)

with a = 1/
√

2N and b = √
N /2. Shifted versions of these

expressions describe the ϕ = π and the ‘edge” preparations.
The Wigner function of a Fock state ψ = |n〉 is semiclassically
approximated as

ρ
(ψ)
W (n,ϕ) ≈ δ(n − n), (36)

whereas the Wigner function of an eigenstate is semiclassically
approximated by a microcanonical distribution:

ρ
(ν)
W (n,ϕ) ≈ ω(Eν) δ(H(ϕ,n) − Eν). (37)

In general, none of the previously listed initial states is an
eigenstate of the BHH, but rather a superposition of BHH
eigenstates. Consequently their Wigner function deforms over
time (see, e.g., Fig. 3) and the expectation values of observables
become time dependent (see, e.g., Fig. 4), as discussed in later
sections.

V. THE INITIAL PREPARATION AND ITS EIGENSTATE
EXPANSION—LOCAL DENSITY OF STATES

Having set the stage by defining the phase-space represen-
tation of eigenstates in Sec. III and of the initial conditions in
Sec. IV, the evolution of any initial preparation is uniquely
determined by its eigenstate expansion. Thus, in order to
analyze the dynamics, we now evaluate the local density of
states (LDOS) with respect to the preparation ψ of the system:

P (Eν) = |〈Eν |ψ〉|2 = tr(ρ(ν)ρ(ψ))

=
∫

ρ
(ν)
W (�) ρ

(ψ)
W (�)

d�

h
. (38)

If ψ is mirror symmetric the previous expression should be
multiplied either by 0 or by 2 in the case of odd or even
eigenstates. In Fig. 5, we plot the LDOS associated with
π , edge, zero and twin-Fock preparations. The applicability
of semiclassical methods to calculate the LDOS has been
numerically demonstrated for the case of a three-site (trimer)
model in [34]. By contrast, the simpler two-site (dimer) model
under consideration, offers an opportunity for deriving exact
expressions by substituting Eqs. (35)–(37) into Eq. (38) and
evaluating the integrals under the appropriate approximations.
For clarity, we summarize below the main results of this
analytic evaluation, with the details given in Appendix.

Consider first the π and edge preparations. The Wigner
distributions of both lie on the separatrix and are hence
concentrated around the energy Ex . Yet, their line shapes are
strikingly different: For an edge preparation we have

P (E) ∝ ω(E)

ωJ

exp

[
− 1

N

(
E − Ex

ωJ

)2 ]
, (39)

featuring a dip at E ∼ Ex . The calculation in the π case leads to

P (E) ∼ exp

[
−minimum

{
E − Ex

K/4
,−E − Ex

NU

}]
(40)

The exact expression can be found in the Appendix,
Eq. (A16), and involves a Bessel function whose divergence
for small E − Ex compensates a logarithmic suppression by
an ω(E) prefactor. Accordingly this line shape features a peak
at E ∼ Ex . Consequently, as seen in the following, the fluctua-
tions associated with on-separatrix motion differ dramatically,
depending on where the SCS wave packet is launched.
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FIG. 4. (Color online) The variation of Sx(t) with time for N = 40 particles with u = 5, for zero (a), π (b), edge (c), and twin-Fock
(d) preparations. Note the different vertical scale. The dashed-dotted lines are based on semiclassical simulation. Note that the fluctuations
of a semiclassical preparation always die after a transient, which should be contrasted with both the classical (single trajectory) and quantum
(superposition of M > 1 eigenstates) behavior.

Analytic results are obtained in Appendix, also for the
zero and twin-Fock preparations. In the latter case the
result is

P (E) ∝ ω(E)

NK

[
1 −

(
2E

NK

)2 ]−1/2

. (41)

As shown in Fig. 5, the previous semiclassical expressions
agree well with the exact numerical results.

The LDOS determines the spectral content of the dynam-
ics. Consider first the characteristic oscillation frequency of
dynamical variables. Away from the separatrix, it is given
by the classical estimate ωosc ≈ ω(E). For example, for a
zero preparation, we have ωosc = ωJ . While the classical
frequency vanishes on the separatrix, we still obtain a finite
result for near-separatrix preparations (π , edge) because the
wave packet has a finite width, and because ωx provides a lower
bound on ωosc. In any case the result becomes h dependent.
To be specific, consider the π and the edge preparations
separately. In both cases the width of the wave packet is
n = √

N/2. In case of the π preparation it occupies an

energy range E = Un2 ∝ N , while in the edge preparation
case E = vnn ∝ N1/2, where vn ≈ ωJ is identified as the
velocity of the phase-space points in this region. Using Eq. (29)
we find

ωosc ≈
{

1

2

}
×

[
ln

(
N

u

)]−1

ωJ , (42)

where the additional factor of “2” applies to the edge
preparation: This factor is due to the different dependence of
E on N in the two respective cases. On top we might have an
additional factor of 2 due to mirror symmetry (see discussion
of the dynamics at the end of the next section). Note that as
u/N exceeds unity, the distinction between π , zero, and edge
preparations blurs because the wave packets become wider
than the width of the separatrix region, until at the Fock regime,
all three consist of the same island levels. Thus in this limit, we
get for ωosc essentially the same result as in the (negligable K)
Fock regime: The width of the wave packet is n = √

N/2,
and the dispersion relation ω(E) = 2Un gives the standard
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FIG. 5. (Color online) The LDOS (left) and the spectral content of the fluctuations (right) of N = 500 bosons with u = 4, for zero, π ,
edge, and twin-Fock preparations (top to bottom). The horizontal axes are E − Ex and ω/ωJ . The lines in the LDOS figures are based on a
semiclassical analysis (see text), while the circles are from the exact quantum calculation. Note that due to the mirror symmetry of the zero
preparation the expected frequency should approach 2ωJ , while for the π preparation it is bounded from below by 2ωx (both frequencies are
indicated by vertical dashed lines). Note also the outstanding difference between the spectral support of zero and π preparations compared
with continuous-like support in the case of edge and twin-Fock preparations.

separated-condensates phase-diffusion frequency [16,17],

ωosc ≈
(

u

N

)1/2

ωJ = U
√

N. (43)

It should be clear that in both Eqs. (42) and (43) u/N

should be accompanied with a numerical prefactor that should
be adjusted because the notion of “width” is somewhat
ill defined and in general depends on the precise details
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FIG. 6. (Color online) The participation number M as determined from the LDOS for N = 100 (circles), 500 (squares), and 1000 (diamonds)
particles. The left panel contains the zero (lower set in blue) and π (upper set in red) preparations, while the edge preparation is presented
in the right panel. Note the different vertical scale. In the crudest approximation we expect in the edge case M ∼ N1/2, while in the π case
M � N 1/2 as long as (u/N ) � 1.

of the numerical procedure, which we discuss in the next
section.

For the analysis of the temporal fluctuations it is crucial
to determine the number of eigenstates that participate in
the wave-packet superposition. This is given by the LDOS
participation number,

M =
[∑

ν

P (Eν)2

]−1

. (44)

See Fig. 6 for numerical results. The participation number
can be roughly estimated as M = E/ωosc, where E is the
energy width of the wave packet and ωosc is the mean level
spacing. In the case of a π preparation,

M ≈
[

ln

(
N

u

)]√
u, (45)

while for an edge preparation we find

M ≈
[

ln

(
N

u

)]√
N. (46)

Note that M/
√

N is a function of the semiclassical ratio
(N/u)1/2 between the energy width of the wave packet and
the width of the separatrix region. The expected scaling is
confirmed by the numerical results of Fig. 6. The previous
approximations for M assume u/N < 1 and are useful for the
purpose of rough estimates.

In the next sections we analyze the temporal fluctuations
of some observables. The associated Fourier power spectrum
(Fig. 5, right panels) is related to the LDOS content of the
wave-packet superposition. Both the characteristic frequency
(Fig. 7) and the spectral spread of the frequencies can be
estimated from the ωosc and the M that are implied by the
previous LDOS analysis.

VI. DYNAMICS (I)—THE TIME EVOLUTION
OF THE BLOCH VECTOR

After describing the semiclassical phase-space picture and
using it to determine the spectral structure of the initial
preparations, we now turn to the ensuing dynamics. At
present, most experiments on the bosonic Josephson system,
measure predominantly quantities related to the one-body
reduced probability matrix, defined via the expectation values
Si = (2/N )〈Ji〉 as

ρ
[1]
ji = 1

N
〈â†

i âj 〉 = 1

2
(1̂ + S · σ̂ )ji , (47)

0.01 1 100
u/N

1

10

w
os

c/w
J

FIG. 7. (Color online) The mean frequency of the Sx(t) oscil-
lations versus u/N for N = 100 (circles), 500 (squares), and 1000
(diamonds) particles. The preparations are (upper to lower sets of
data points) zero (blue), edge (magenta), and π (red). The doubled
Josephson frequency 2ωJ is marked by a dashed blue line. The
theoretical predictions of Eq. (42), doubled due to mirror symmetry,
are represented by red and magenta dashed lines, while Eq. (43) for
u/N � 1 is represented by the black dash-double-dotted line (there
is one fitting parameter as explained there).
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where S = (Sx,Sy,Sz) is the Bloch vector and σ̂ is composed
of Pauli matrices. The population imbalance and relative phase
between the two sites, determined by direct imaging and the
position of interference fringes [10], are given, respectively,
by

(occupation diff) = NSz, (48)

(relative phase) = arctan(Sx,Sy), (49)

whereas single-particle purity is reflected by the measures,

(one-body purity) = (1/2)
[
1 + S2

x + S2
y + S2

z

]
, (50)

(fringe visibility) = [
S2

x + S2
y

]1/2
. (51)

In particular the fringe visibilty, given by the transverse
component of the Bloch vector, corresponds to the visibility
of fringes, averaged over many realizations [18,19]. Loosely
speaking it reflects the phase uncertainty of the state. Coherent
states have maximum one-body purity. Of these, equal-
population coherent states have maximal fringe visibility
with the smallest phase variance. Starting from a coherent
preparation, single-particle purity can be diminished over time
due to nonlinear effects (see below) or due to interaction with
environmental degrees of freedom (decoherence). By contrast,
Fock states carry no phase information, but interactions may
lead to their dynamical phase locking over time and to the
buildup of fringe visibility (see below).

We carry out numerically exact quantum simulations
where the state |ψ〉 is propagated according to |ψ(t)〉 =
exp(−itH)|ψ〉, where the Hamiltonian is given by Eq. (4)
which is equivalent to Eq. (1). The evolved state after time
t can be visualized using its Wigner function. For example,
the time evolution of the initial twin-Fock state is illustrated
in Fig. 3, with the Wigner function of an evolved state shown
in Fig. 3(a). Comparison is made in Fig. 3(b) to the Liouville
propagation for the same duration, of the corresponding cloud
of points, according to the classical equations,

Ṡx = uSzSy, (52)

Ṡy = −(1 + uSx)Sz, (53)

Ṡz = −Sy, (54)

where time has been rescaled (t := Kt). Good quantum-to-
classical correspondence is observed for short-time simulation
(e.g., see Fig. 4). In Fig. 3(c) we plot the resulting occupation
statistics, which can be regarded as a projection of the
phase-space distribution (classical, dash-dotted line) or Wigner
function (quantum, solid line), namely Pt (n) = |〈n|ψ(t)〉|2 =
tr(ρ(n)ρ(ψ(t))). Our main interest is in the fringe visibility, and
hence in

Sx(t) = 2

N
〈Jx〉 = [(j + 1)j ]1/2

j
〈sin(θ) cos(ϕ)〉. (55)

The prefactor in the last equality is implied by Eq. (5), and
cannot be neglected if the number of particles is small. In
Fig. 4 we plot Sx(t) for the four preparations defined in
Sec. IV, comparing semiclassical results (dash-dotted lines)
to the numerical full quantum calculation (solid lines). For
all equatorial preparations (zero, π , twin-Fock), Sx is in fact
the fringe visibility, because Sy(t) = 0 identically throughout
the evolution. As a general observation, the semiclassical

simulation captures well the short-time transient evolution
and the long-time average Sx . For example, for the initial
twin-Fock preparation [Fig. 4(d)], it reproduces the universal
Josephson-regime fringe visibility of ∼ 1/3, resulting from
the dynamical smearing of the Wigner distribution function
throughout the linear sea region of phase space [23].

In what follows we would like to determine the long-time
average Sx and the power spectrum C̃(ω) = TF[f (t)] of the
temporal fluctuations f (t) = Sx(t) − Sx . (TF denotes Fourier
transform). Characteristic power spectra for the pertinent
preparations are shown in the right panels of Fig. 5. We
characterize the fluctuations by their typical frequency ωosc,
by their spectral support (discrete or continuouslike), and by
their vRMS value:

vRMS[Sx] = [f (t)2]1/2 =
[∫

C̃(ω)dω

]1/2

, (56)

The dependence of ωosc, and Sx , and vRMS[Sx] on the
dimensionless parameters (u,N ) is illustrated in Figs. 7 and 8.
It should be realized that the observed frequency of the Sx(t)
oscillations is in fact 2ωosc due to the mirror symmetry of the
observable.

VII. DYNAMICS (II)—FRINGE VISIBILITY
IN THE JOSEPHSON REGIME

In the Fock regime, the fringe visibility of an initial
coherent ϕ preparation decays to zero: The initial Gaussian-
like distribution located at (θ = π/2,ϕ) is stretched along the
equator, leading to increased relative-phase uncertainty with
fixed population mbalance. This phase spreading process is
known in the literature as “phase diffusion” [13–16,20]. By
contrast, a twin-Fock preparation is nearly an eigenstate of
the BHH in this regime, and its zero fringe visibility remains
vanishingly small from the beginning.

In the Josephson regime the dynamics of the single-particle
coherence is more intricate. In this section we discuss the
evolution of S(t) within the framework of the semiclassical
approximation. As a first step, we disregard fluctuations and
recurrences and address only the time-averaged dynamics. In
particular, we determine the long-time average of the fringe
visibility, which for the twin-Fock, π , and zero preparations is
given by Sx(t), as noted after Eq. (55).

Numerical results for the long-time average and for the
vRMS of the fluctuations as a function of u/N are presented
in Fig. 8 and further discussed in the following. The main
observations regarding the dynamics in the Josephson regime
are

(i) The twin-Fock preparation of fully separated conden-
sates develops phase locking at ϕ ∼ 0, with fringe visibility
Sx(t) ≈ 1/3 [40].

(ii) Starting from an SCS preparation, phase diffusion
becomes phase sensitive. The zero preparation is phase locked,
while the coherence of the π preparation is partially lost
[21,23,51], exhibiting huge fluctuations.

(iii) The edge preparation exhibits distinct behavior, that
neither resembles the zero nor the π preparations, involving
sign reversal of Sx(t).

In the remaining part of this section we quantify these
observations by finding the long-time average Sx(t) based on
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FIG. 8. (Color online) (Left) The long-time average of Sx(t) versus u/N for N = 100 (circles), 500 (squares), and 1000 (diamonds)
particles. The preparations are (upper to lower sets of data points) zero (blue), twin-Fock (black), edge (magenta), and π (red). The symbols
are used for the quantum results and the dashed lines are the semiclassical prediction for 40 particles. Note that the scaling holds only in the
Josephson regime 1 � u � N 2, and therefore, for a given u/N range, becomes better for large N . (Right) The long-time vRMS of Sx(t) for the
three coherent preparations (lower to upper sets) are zero (blue), edge (magenta), and π (red). The implied N1/4 scaling based on Eq. (69) is
confirmed. In the inset, the vRMS of Sx(t) for edge (up triangle) and π (down triangle) preparations is plotted versus N while u = 4 is fixed.
The dashed lines are power-law fits that nicely agree with the predictions of Eq. (70).

simple phase-space considerations. In the Josephson regime,
the value of Sx(t) for a coherent preparation should be
determined by the ratio between its n ≈√

N/2 width and
the width of the separatrix region n ≈√

NK/U , that is,

the semiclassical ratio = (u/N )1/2. (57)

This ratio determines the long-time phase-space distribution
of the evolving semiclassical cloud: In the case of a twin-Fock
preparation this cloud fills the entire sea region; in the “zero”
case it is confined to an ellipse within the sea region; and in
the “π” case it stretches along the separatrix and therefore
resembles a microcanonical distribution. The projected phase-
distribution P (ϕ) is determined accordingly. Disregarding a
global normalization factor we get

P (ϕ) ≈ exp[−ϕ2/(4u/N )] (zero), (58)

P (ϕ) ≈ [(u/N ) + cos2(ϕ/2)]−1/2 (π ), (59)

P (ϕ) ≈ cos(ϕ/2) (twin-Fock). (60)

A few words are in order regarding the derivation of the
previous expressions. The zero case preparation is repre-
sented by the Gaussian of Eq. (35) whose major axis is
n ≈ (N/2)1/2. This Gaussian evolves along the contour
lines of the Hamiltonian H(n,ϕ) = Un2 + (NK/2) cos(ϕ).
After sufficiently long time the evolving distribution still has
the same n, but because of the spreading its other major
axis, as determined by the equation Un2 = (NK/4)ϕ2,
becomes ϕ ≈ (2U/K)1/2 leading to Eq. (58). The twin-Fock
preparation is represented by Eq. (36). After sufficiently long
time the evolving distribution fills the whole seaH(θ,ϕ) < Ex .
The equation that describes this filled sea can be written as
n < nx(ϕ), where

nx(ϕ) =
√

NK

2U
[1 + cos(ϕ)]. (61)

The projection of area under n < nx(ϕ) is simply
P (ϕ) ∝ nx(ϕ), leading to Eq. (60). The π case preparation is
represented by the Gaussian that is located on the separatrix.
After sufficiently long time the evolving distribution is
stretched along n ∼ nx(ϕ), and looks like δ(H(θ,ϕ) − Ex).
If we neglected the finite width of this distribution we would
obtain P (ϕ) ∝ 1/nx(ϕ), which is divergent at ϕ ∼ π . But if we
take into account the n ≈ √

N/2 width of the preparation,
which is effectively like adding (N/2) under the square root
of Eq. (61), then we get Eq. (59).

As implied by the Wigner-Weyl picture one can get from
P (ϕ) the long-time average Sx through the integral,

Sx ≈
∫

cos(ϕ)P (ϕ) dϕ. (62)

The calculation is straightforward leading to

Sx ≈ exp[−(u/N )] (zero), (63)

Sx ≈ −1 − 4/ ln
[

1
32 (u/N )

]
(π ), (64)

Sx ≈ 1/3 (twin-Fock). (65)

These expressions agree with the numerics of Fig. 8, and
confirm the predicted scaling with u/N .

VIII. DYNAMICS (III)—LONG-TIME FLUCTUATIONS

To complete our phase-space characterization of the Bloch
vector dynamics, we need to address the long-time fluctuations
f (t) from the average value Sx . As demonstrated in Fig. 4, the
evaluation of Sx could be done to excellent accuracy based
on the semiclassical propagation of phase-space distributions
according to purely classical equations of motion. This
corresponds to the truncated Wigner approach of quantum
optics [27,30,33,35], retaining only the leading Liouville
term in the equation of motion for the Wigner distribu-
tion. Obviously one cannot guarantee that the remaining
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Moyal-bracket terms, which are initially O(1/N), will remain
small throughout the evolution. This is the source of the
fluctuations observed in Fig. 4. While their characterization
goes beyond the lowest-order truncated Wigner semiclassics,
we still can estimate them based on the phase-space LDOS
expansion, as described in the following.

The two-site BHH has essentially one degree of freedom
since both the energy and the number of the bosons is
conserved. Therefore, away from the separatrix, level spacing
is determined by the classical frequency ω(E) with small
h-dependent corrections. This should be contrasted with higher
dimensions d > 1, for which the level spacing ∝ hd−1 is highly
nonclassical. For d = 1, the only region where h determines
the level spacing ∝ | ln(h)|−1 is in the vicinity of the separatrix
as implied by Eq. (30).

The Heisenberg time is defined as the inverse of the mean
spacing of the participating levels. For a d = 1 system and
away from the separatrix, the Heisenberg time is merely the
period of classical oscillations. Thus in the case of a zero
preparation we have ωosc = ωJ (the observed frequency is
doubled due to mirror symmetry). Close to the separatrix,
ωosc becomes h dependent as in Eqs. (42) and (43). This
prediction is confirmed by the numerics (see Fig. 7), including
the nonsymmetry related factor 2 that distinguishes the edge
from the π preparation.

Assume the system is prepared in some state ψ (e.g., a
Gaussian-like SCS). We define M as in Eq. (44), implying
that ψ is roughly a superposition of M energy states. If
the energy levels are equally spaced the motion is strictly
periodic. Otherwise it is quasiperiodic. Our aim is to trace the
nonclassical behavior in the vRMS of the temporal fluctuations
of an observable A, say of the fringe visibility as defined in
Eq. (56).

Before proceeding, it should be made clear that the vRMS of
the fluctuations of any observable A in a classical simulation
(i.e., classical propagation of a single trajectory) is nonzero
and characterized by its power spectrum C̃cl(ω). However, the
vRMS of the fluctuations in the semiclassical evolution (i.e.,
classical, leading-order propagation of a cloud of trajectories
emulating the Wigner function) goes to zero due to the ergodic-
like spreading of the wave packet. In contrast, the vRMS of the
fluctuations in the quantum evolution (corresponding to the full
propagation to all orders, of the Wigner distribution) depends
on M . This dependence on M can be figured out by expanding
the expectation value in the energy basis,

〈A〉t =
∑
ν,µ

ψ∗
ν ψµAνµei(Eν−Eµ)t , (66)

where ψν = 〈Eν |ψ〉. The time average of this expectation
value is 〈A〉t = ∑

ν pνAν,ν where pν = P (Eν) of Eq. (38).
This average has a well-defined h-independent classical limit.
But if we first square, and then take the time average we get

〈A〉2
t =

∑
ν,µ

pνpµ|Aν,µ|2. (67)

The matrix elements can be evaluated semiclassically using
the well-known relation |Aν,µ|2 = C̃cl(Eν−Eµ)/(2π�), where
� is the mean level spacing [see Eq. (6) of Ref. [52] and
references therein]. For presentation purpose it is convenient
to visualize C̃cl(ω) as having a rectangularlike line shape of

width ωcl, such that its total area is C̃(0) × ωc. It is also
convenient to define the dimensionless bandwidth b as the
spectral width of C̃cl(ω) divided by the mean level spacing,
namely b = �ωc.

Using the semiclassical estimate for the matrix elements,
we consider the outcome of Eq. (67), in two limiting cases.
If the energy spread of the wave packet is smaller than the
spectral bandwidth, we can factor out C̃cl(0)/(2π�), and carry
out the summation

∑
pνpµ = 1, leading to

vRMS[〈A〉t ] =
[

1

b

∫
C̃cl(ω)dω

]1/2

. (68)

For integrable one-dimensional systems b ∼ 1 reflects that
only nearby levels are coupled. A semiclassically large
bandwidth b ∝ h̄1−d is typical for chaotic systems, which is
not the case under consideration. Therefore we turn to the other
possibility, in which the energy spread of the wave packet is
large compared with the spectral bandwidth. In such a case
we can make in Eq. (67) the replacement pν �→ 1/M , and
consequently the sum

∑ |Aν,µ|2 equals M times the area of
C̃cl(ω), leading to

vRMS[〈A〉t ] =
[

1

M

∫
C̃cl(ω)dω

]1/2

. (69)

This is the same as the classical result but suppressed by factor
1/

√
M . Note again that the semiclassical result is always zero,

and corresponds formally to M = ∞.
Consider now the vRMS of Sx(t). For twin-Fock preparation

it follows from Eq. (41) that M ∝ N and hence Eq. (69) implies
1/N1/2 suppression of the vRMS. For coherent preparations
C̃cl(ω) becomes N dependent, too, and consequently from
the discussion after Eq. (46) it follows that the vRMS is a
function of the semiclassical ratio Eq. (57), and multiplied by
1/N1/4 suppression factor that spoils the semiclassical scaling.
This is confirmed by the numerics (Fig. 8). If the dynamics is
very close to the separatrix the classical fluctuations are O(1)
and therefore the quantum result is vRMS[Sx(t)] ≈ 1/

√
M .

The implication for the on-separatrix coherent preparations,
π versus edge, is striking: Substitution of Eqs. (45) and (46)
into Eq. (69) leads to

vRMS[Sx(t)] ∼
{

N−1/4 for edge,

[ln(N )]−1/2 for π
. (70)

Thus, convergence to classicality is far more rapid for the
edge preparation than it is for the π preparation, even though
both lie on the separatrix. With the π preparation, even
if N is very large (small “h”), quantum fluctuations still
remain pronounced. In fact, from Eq. (45) it follows that the
fluctuations in the π case are mainly sensitive to the strength
u of the interaction.

Finally, we mention that the analysis of fluctuations
previously mentioned is somewhat related to the discussion
of thermalization in Ref. [53], and we would like to further
connect it with the observation of collapses and quantum
revivals as discussed, for example, in Ref. [54]. Relating to
the LDOS, as defined in Sec. V, we note that the collapse time
is the semiclassical time which is determined by the width of
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the classical envelope, while the revival time is related to the
spacing between the spectral lines. The latter can be calculated
using the formula,

trevival = 2π [dEν/dν]−1 , (71)

with the WKB estimate for Eν in Sec. III, leading in the
separtatrix region to ∼ 2π/ωx .

IX. CONCLUSIONS

To conclude, we have applied a semiclassical phase-space
picture to the analysis of the one-particle coherence loss and
buildup in the bosonic Josephson junction, described by the
two-site BHH. The simplicity of the classical phase space of
the dimer allows for its semianalytic WKB quantization. Thus,
closed semiclassical results are obtained for the local density
of states of the various initial preparations, providing useful
insights for the associated quantum evolution.

Within the framework of mean-field theory (MFT), the
dynamics is obtained by evolving a single point in phase
space, using the Gross-Pitaevskii (GP) equation, which in this
context is better known as the discrete nonlinear Schrödinger
(DNLS) equation. By contrast, the truncated Wigner phase-
space method evolves an ensemble of points according to the
DNLS equation, and thereby takes into account the nonlinear
squeezing or stretching of the distribution.

In the semiclassical treatment the quantum state in any
moment is regarded as a “mixture” of wave functions ψi

rather than a single ψi . It is worth noting that the stationary
solutions of the DNLS equation are simply the fixed points
of the Hamiltonian flow. The small oscillations obtained
by linearization around these fixed points are the so-called
Bogoliubov excitations. The typical oscillation frequency
of the Bloch vector generally approaches the classical fre-
quency as N is increased keeping u fixed. However, in
the vicinity of the separatrix convergence to the (vanishing)
classical frequency is logarithmically slow, as found via WKB
quantization.

Based on the ratio between the width of the semiclassical
distribution for SCS and the width of the separatrix phase-
space region, we find that the long-time fringe visibility of an
initially coherent state in the Josephson interaction regime, has
a u/N dependent value (Fig. 7). The functional dependence
on u/N varies according to the preparation. In particular,
whereas a zero relative-phase preparation remains roughly
Gaussian (i.e., phase locked) throughout its motion, thereby
justifying the use of MFT for the description of Josephson
oscillations around it, a π relative-phase SCS squeezes rapidly
and its relative-phase information is lost [21,23]. In contrast,
starting from fully separated modes, the phase distribution
in the Josephson regime assumes a nonuniform profile,
peaked at ϕ = 0, yielding a universal fringe visibility value
of 1/3 [40].

Focusing on two types of coherent preparations in the
vicinity of the separatrix we find significant differences in their
M dependence on (u; N ). The π SCS preparation (with van-
ishing population imbalance and a π relative phase) exhibits
u-dependent fluctuations, whereas the edge SCS (having a
comparable population imbalance but located elsewhere along

the separatrix) exhibits N -dependent fluctuations. Only in the
latter case is the classical limit approached easily by taking
large N at fixed u.
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APPENDIX: LDOS SEMICLASSICAL CALCULATION

Using the definition Eq. (38) we can calculate the LDOS in
the semiclassical approximation using Eq. (37). The integral
that should be calculated in the case of zero (ϕ− = 0) and π

(ϕx = π ) preparations is

P (E) = ω(E)
∫ ∫

dϕdn

2π
δ

(
Un2 − NK

2
cos(ϕ) − E

)

× 1

ab
exp

[
− (ϕ − ϕ−,x)2

2a2
− n2

2b2

]
, (A1)

with E = Eν . Most of the contribution comes from the vicinity
of the fixed point, so we can use a quadratic approximation:

P (E)

= ω(E)
∫ ∫

dϕdn

2π
δ

(
Un2 ± 1

4
NKϕ2 − (E−E−,x)

)

× 1

ab
exp

[
− ϕ2

2a2
− n2

2b2

]
. (A2)

Later we derive the following results for the zero and π

preparations:

P (E) = 2 exp

[
−

(
1

NU
+ 4

K

)
(E − E−)

]
I0

×
[(

4

K
− 1

NU

)
(E − E−)

]
, (A3)

P (E) = 1

π

(
ω(Ex)

ωJ

)
exp

[(
4

K
− 1

NU

)
(E − Ex)

]
K0

×
[(

4

K
+ 1

NU

)
|E − Ex |

]
. (A4)

In order to simplify notations we define in the following ε as
the difference E−E− or E−Ex .

In order to estimate the integral in the zero case we change
to polar coordinates r and −π < t < π :

ϕ = [4ε/NK]1/2 r cos(t), (A5)

n = [ε/U ]1/2 r sin(t), (A6)
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leading to

P (E) = ω0

∫ ∫
rdrdt

2π

2

ω0
δ(r2 − 1)

1

ab
exp

[
−(4ε/NK)

[cos(t)]2

2a2
r2 − (ε/U )

[sin(t)]2

2b2
r2

]
(A7)

= 1

2π

∫ +π

−π

dt
1

ab
exp

[
−(4ε/NK)

[cos(t)]2

2a2
− (ε/U )

[sin(t)]2

2b2

]
(A8)

= 1

π

∫ +π

−π

dt exp

[
−

(
2ε

K
+ ε

2NU

)
−

(
2ε

K
− ε

2NU

)
cos(2t)

]
(A9)

= exp

[
−

(
2

K
+ 1

2NU

)
ε

]
2I0

[(
2

K
− 1

2NU

)
ε

]
. (A10)

It is important to realize that the semiclassical evaluation in
the zero case is valid only if the contour lines of the Gaussian
intersect the contour lines of the eigenstates transversely.
Otherwise, the Airy structure of the eigenstates should be taken
into account, or perturbation theory rather than semiclassics
should be used. The asymptotic behavior of the Bessel function
is I0(x) ≈ exp(x)/

√
2πx and hence P (E) ∼ exp[−ε/(NU )].

One observes that the tails of the LDOS reflect the

relatively slow decay of the Gaussian tails in the n

direction.
In order to estimate the integral in the π case we change to

the coordinates r and −∞ < t < ∞:

ϕ = [4ε/NK]1/2 r sinh(t) or cosh(t) for ε < 0, (A11)

n = [ε/U ]1/2 r cosh(t) or sinh(t) for ε < 0, (A12)

leading to

P (E) = ω(E)
∫ ∫

rdrdt

2π

2

ω0
δ(r2 − 1)

1

ab
exp

[
−(4|ε|/NK)

[sinh(t)]2

2a2
r2 − (|ε|/U )

[cosh(t)]2

2b2
r2

]
(A13)

= 1

2π

(
ω(E)

ω0

)∫
|t |< 1

π
( ω(E)

ω0
)
dt

1

ab
exp

[
−(4|ε|/NK)

[sinh(t)]2

2a2
− (|ε|/U )

[cosh(t)]2

2b2

]
(A14)

= 1

π

(
ω(E)

ω0

) ∫
|t |< 1

π
( ω(E)

ω0
)
dt exp

[
±

(
2|ε|
K

− |ε|
2NU

)
−

(
2|ε|
K

+ |ε|
2NU

)
cosh(2t)

]
(A15)

= 1

π

(
ω(E)

ω0

)
exp

[
±

(
2

K
− 1

2NU

)
|ε|

]
K0

[(
2

K
+ 1

2NU

)
|ε|

]
. (A16)

Note that without the Gaussian, the result of the integral should
be unity reflecting the proper normalization of the microcanon-

ical state. The upper cutoff of the t integration reflects the
finite size of phase space. The cutoff prevents the singularity
in the limit ε → 0. The Bessel function expression is obviously
valid only outside of the cutoff-affected peak. The asymptotic
behavior of the Bessel function is K0(x) ≈ exp(−x)/

√
2πx,

and hence we get P (E) ∼ exp[−|ε|/(NU )] for ε > 0 and
P (E) ∼ exp[−|ε|/(K/4)] for ε < 0. One observes that the
tails of the LDOS for ε < 0 reflect the relatively rapid decay
of the Gaussian tails in the ϕ direction.

Finally we point out that the calculation of the LDOS for the
edge and for the twin-Fock preparations is much easier. In the

former case the δ function of ρ(ν)(n,ϕ) merely replaces the n

coordinate in ρ(ψ)(n,ϕ) by a constant proportional to E − Ex ,
leading to a Gaussian for P (E). Similarly for the twin-Fock
preparation,

P (E) = ω(E)
∫ ∫

dϕdn

2π
δ

(
Un2 − NK

2
cos(ϕ) − E

)

× δ(n) ∝
[

ω(E)

(NK/2)| sin(ϕ)|
]

E

. (A17)

The latter expression should be calculated for (NK/2)
cos(ϕ) = E leading to Eq. (41) in the main text.
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Nature (London) 415, 39 (2002).

[3] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,
357 (2001); R. Gati and M. K. Oberthaler, J. Phys. B 40, R61
(2007).

[4] Gh-S. Paraoanu et al., J. Phys. B: At. Mol. Opt. Phys. 34, 4689
(2001); A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

[5] J. Javanainen, Phys. Rev. Lett. 57, 3164 (1986).
[6] F. Dalfovo, L. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4213

(1996).
[7] I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A 57, R28 (1998).
[8] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.

Rev. Lett. 79, 4950 (1997).
[9] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,

A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
(2001).
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