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Quantum response of weakly chaotic systems
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Abstract. - Chaotic systems, that have small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide “weak quantum chaos” regime. This leads to a
novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The
Hamiltonian matrix of the driven system does not look like taken from a Gaussian ensemble, but
rather it is very sparse. This sparsity can be characterized by parameters s and gs that reflect the
percentage of large elements, and their connectivity respectively. For g we use a resistor network
calculation that has direct relation to the semi-linear response characteristics of the system.

The heating of particles in a box with vibrating walls is
a prototype problem for exploring the limitations of linear
response theory (LRT) and the quantum-to-classical cor-
respondence (QCC) principle. In the experimental arena
this topic arises in the theory of nuclear friction [1], and
more recently in the studies of cold atoms that are trapped
in optical billiards [2]. It is also related to the analysis
of mesoscopic conductance of ballistic rings [3]. In typ-
ical circumstances the classical analysis predicts an ab-
sorption coefficient that is determined by the Kubo for-
mula [4–8], leading to the “Wall formula” in the nuclear
context, or to the analogous “Drude formula” in the meso-
scopic context. The question arises [6–12], are there cir-
cumstances in which the quantum theory leads to a novel
anomalous result that does not resemble the semiclassical
prediction? The established examples for such anoma-
lies assume “microscopic” circumstances where QCC is a-
priori not expected. In this Letter we demonstrate that a
quantum anomaly shows up even in genuine “mesoscopic”
circumstances where QCC would be expected by common-
wisdom.
We consider a weakly chaotic billiard, say Fig. 1, that

has linear size L and a convex wall of radius R. The
Hamiltonian can be written schematically as

Htotal = H− f(t)F = H0 + U − f(t)F (1)

whereH0 describes a non-deformed rectangular box, U de-
scribes the deformation of the fixed (left) wall, and F
is the perturbation due to the displacement f(t) of the
moving (right) wall which can be regarded as a piston.
In the classical analysis, if one assumes that the colli-

sions with the walls are uncorrelated, one obtains that
the absorption coefficient is given by the “Wall formula”,
which is based on Eq.(4) below. But our interest is fo-
cused in circumstances in which the Lyapunov (correla-
tion) time tR = R/vE is much longer than the ballistic
time tL = L/vE, where vE = (2E/m)1/2 is the velocity of
the particle. Consequently, the low frequency response is
enhanced by factor tR/tL as implied by Eq.(5).

We call the (classical) value of the absorption coeffi-
cient GLRT. In the quantum analysis we write the re-
sult for the absorption coefficient as G = gsGLRT. If
QCC considerations apply then gs ∼ 1, with small ~ de-
pendent corrections. Otherwise, if QCC does not ap-
ply, we call it an anomaly. There are circumstances in
which an anomaly is not a big surprise: (1) If f(t) is
slowly varying, so-called quantum adiabatic parametric
driving, then Landau-Zener transitions between neighbor-
ing levels might be the dominate mechanism for heat-
ing [6], and hence QCC is not expected. (2) If f(t) is
low frequency noisy driving, that induces Fermi-Golden-
Rule (FGR) transitions between neighboring levels only,
the result would be determined by the level spacing statis-
tics, and hence QCC is not expected [11]. (3) If u is
very small, such that levels are barely mixed, then QCC
is not expected. In the latter case the suppression of the
heating rate (gs ≪ 1) can be regarded as arising from the
non-random nature of the eigenfunctions. This is the case
that had been considered in [12]. In the present work we
ask what happens if u is not very small, such that the
eigenfunctions look like random waves. Do we enter the
traditional “quantum chaos” regime where LRT and QCC

p-1

http://arxiv.org/abs/1005.4207v2


Alexander Stotland1, Louis M. Pecora2 and Doron Cohen1

are commonly expected to be valid?
Turning to the quantum analysis we realize that the

minimal model for H depends on two dimensionless pa-
rameters which are the relative deformation u = L/R,
and the dimensionless Planck constant

~ = λE/L (2)

Here λE=2π~planck/(mvE) is the de Broglie wavelength. For
a given deformation (R determines u) and energy window
(E determines ~) we calculate the eigenvalues and eigen-
functions of H using the boundary element method [13],
find the ordered eigenenergies En, and calculate the ma-
trix elements Fnm. An image of a representative matrix
is displayed in Fig. 2, and its bandprofile is presented in
Fig. 3.
The power spectrum of the driving ḟ(t) is described by

a spectral function S̃(ω). As common in the mesoscopic
context we assume its spectral support to be narrower
than 1/tR but larger compared with the mean level
spacing. We assume FGR transitions between levels,
whose rate is proportional to |Fnm|2S̃(En−Em). The cal-
culations of gs is done within the framework of semi-linear
response theory (SLRT) [10–12], using a resistor-network
analogy. The results for gs are presented in Fig. 4.

Conflicting expectations.– The rate of heating due
to low frequency driving, and hence gs, are determined by
the couplings |Fnm|2 between nearby levels. For a small
deformation, first order perturbation theory (FOPT)
implies that these couplings are ∝ u2. But as u becomes
larger the common expectation, based on Wigner theory,
is to have Lorentzian mixing, leading to ∝ 1/u2. In the
formally equivalent problem of a conductance calculation
this implies G ∝ 1/u2, where u represents the strength
of the disordered potential (instead of using the FGR or
Wigner picture one can use the equivalent Drude picture
where the Born mean free path is ∝ 1/u2). On the other
hand QCC considerations, based on Eq. (3) below and
using Eq. (5), imply that the couplings should be ∝ 1/u.
The purpose of the following paragraphs is to resolve
this confusion by adopting a generalized random matrix
theory (RMT) perspective and hence to highlight the
emergence of a quantum anomaly.

RMT modeling.– So called “quantum chaos” is the
study of quantized chaotic systems. Assuming that the
classical dynamics is fully chaotic, as in the case of a bil-
liard with convex walls (Fig. 1), one expects the Hamilto-
nian to be like a random matrix with elements that have
a Gaussian distribution. This is of course a sloppy state-
ment, since any Hamiltonian is diagonal in some basis.
The more precise statement is following [14]: Assume that
H generates chaotic dynamics, and consider an observable
F that has some classical correlation function C(t), with
some correlation time tR. Then the matrix representation
Fnm in the basis of H looks like a random banded ma-
trix. The bandwidth is ~/tR. If tR is small, such that

the bandwidth is large compared with the energy window
of interest, then the matrix looks like it is taken from a
Gaussian ensemble.
What emerges in our numerical example, we would like

to call “weak quantum chaos” (WQC) circumstances,
for which the traditional RMT modeling does not ap-
ply. Namely, in such circumstances it is not enough
to characterize Fnm by its semiclassically-determined
bandprofile. Rather one should further characterize Fnm

by its quantum-mechanically-determined sparsity [15] and
by its texture.

Bandprofile.– Define a matrix X whose elements
are Xnm = |Fnm|2. The bandprofile C̄a(r) is obtained by
averaging the elementsXnm along the diagonals n−m = r,
within the energy window of interest. In the same way
we also define a median based bandprofile C̄s(r). Given
that the mean level spacing ∆0 = 2π/(mLxLy) is small
compared with the energy range of interest, it is well
known [14] that

C̄a(n−m) =

(

2π

∆0

)

−1

C̃(En − Em) (3)

where C̃(ω) is the classical power spectrum, that can be
obtained via the Fourier transform of the classical auto-
correlation function 〈F (0)F (t)〉.
The calculation of the classical C̃(ω) and of its quantum

mechanical version is carried out as described in [17]. The
applicability of Eq. (3) to the analysis of our billiard sys-
tem is confirmed in Fig. 3, down to very small frequencies.
Analytical results for C̃(ω) can be obtained. For large fre-
quencies the power spectrum becomes flat and reaches the
constant value [12]

C(ω ≫ 1/tL) =
8

3π

m
2v3

E

Lx
(4)

For intermediate frequencies the effect of the deformation
is mainly to ergodize the collision angle and one can ob-
tain analytical expression (represented in Fig. 3 by dashed
red line). For small frequencies the effect of the deforma-
tion is less trivial and we find that the power spectrum is
logarithmically divergent:

C̃(ω ≪ 1/tL) ≈
m

2v3
E
R

16L2
x

ln
2vE

ωR
(5)

The divergence comes because there are vertically
bouncing trajectories with very long horizontal bouncing
period, as in the related analysis of [18].

Sparsity and Texture.– For strongly chaotic systems
the elements within the band have approximately a Gaus-
sian distribution. But in the WQC regime the matrix
becomes sparse and textured as demonstrated in Fig. 2.
Loosely speaking sparsity means that only a small frac-
tion (s ≪ 1) of elements are large, while the texture refers
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to their non-random arrangement. The precise definition
of s[[X ]] can be found in Section III of [19]. It is related to
the size distribution of the in-band elements. [An optional
measure for sparsity is the ratio (q ≪ 1) of the median to
the average.] In the WQC regime the size distribution
of the in-band elements becomes log-wide (approximately
log-normal) as seen in Fig. 5. This is reflected by having
C̄s(r) ≪ C̄a(r) as seen in Fig. 3.
The sparsity and the texture of Fnm are important for

the analysis of the energy absorption rate [12] as implied
by SLRT [10,11]. Accordingly, we suggest to characterize
the sparsity by a resistor network measure

gs = gs[X] ≡ 〈〈X〉〉s/〈〈X〉〉a (6)

Here 〈〈X〉〉a is the algebraic average over the in-band
elements of the matrix, while 〈〈X〉〉s is the corresponding
resistor network average that takes their connectivity
into account. For precise definitions of these averages see
Section IV of [19], where it is also explained why gs is
the SLRT suppression factor of the heating rate. For a
strictly uniform matrix gs = s = 1, for a Gaussian matrix
s = 1/3 and gs ∼ 1, while for sparse matrix s, gs ≪ 1.
In the RMT context a realistic estimate for 〈〈X〉〉s
can be obtained using a generalized variable-range-
hopping procedure [19]. In the numerics of Fig. 4 we see
that gs reflects better than s the variation in the “spar-
sity” of the perturbation matrix as we go higher in energy.

The WQC regime.– With the classical tL and tR,
we can associate the energies ∆L = 2π/tL and ∆R =
2π/tR. Conversely, with the mean levels spacing we can
associate the Heisenberg time tH = 2π/∆0. Note that
tH = (1/~)d−1tL where d=2. It is also possible to define
the Ehernfest time tE = [log(1/~)]tR, which is the time
required for the instability to show up in the quantum
dynamics. The traditional condition for hard quantum
chaos (HQC) is tE ≪ tH, but if we neglect the log factor
it is simply tR ≪ tH. This can be rewritten as ∆R ≫ ∆0,
or in a more illuminating way as u ≫ ub, where ub = ~.
Consequently, the naive expectation is to have the WQC
regime roughly within u < ub.
We observe (Fig. 4) that the WQC regime is much larger

than naively expected. This can be explained as follows.
If a wall of a billiard is deformed, the levels are mixed.
FOPT is valid provided |Unm| < ∆0. This condition de-
termines a parametric scale uc. If the unperturbed bil-
liard were chaotic, the variation required for level mixing
would be [16] uc ≈ ~/(kEL)

1/2 = ~
3/2. This expression as-

sumes that the eigenstates look like random waves. In the
Wigner regime (uc < u < ub) there is a Lorentzian mixing
of the levels and accordingly, the number of mixed levels
is ∼ (u/uc)

2. But our unperturbed (rectangular) billiard
is not chaotic, the unperturbed levels of the non-deformed
billiards are not like random waves. Therefore, the mixing
of the levels is non-uniform.
By inspection of the Unxny,mxmy

matrix elements one
observes that the dominant matrix elements that are re-

sponsible for the mixing are those with large nx but small
|ny−my|. Accordingly, within the energy shell Enxny

∼ E,
the levels that are mixed first are those with maximal nx,
while those those with minimal nx are mixed last. The
mixing threshold for the former is

uc ≈ ~/(kEL) = ~
2 (7)

while for the latter one finds u∞

c ∼ ~
0, which is much

larger than ub = ~
1. Straightforward analysis of this mix-

ing (extending that of [12]) leads to the result

gs ≈ u3/~ (8)

which is confirmed by our numerics. It follows that the
WQC-HQC crossover is at

ub = ~
1/3 (9)

and not at ub = ~. Accordingly, the WQC regime extends
well beyond the traditional boundary of the Wigner
regime, and in any case it is well beyond the FOPT
border uc.

Comments.– As a side remark we note that we
are studying in this work a driven chaotic system, and
not a driven integrable system. Remarkable examples
for driven integrable system are the kicked rotator [20]
and vibrating elliptical billiards [21]. In the absence of
driving such systems are integrable, while in the presence
of driving a mixed phase space emerges. This is not what
we call here weak chaos. It is also important to note
that questions regarding dynamical localization [22] are
irrelevant here because we assume low frequency noisy
driving and not strictly periodic driving.

Summary.– The discovery of “anomalies”, i.e. major
deviations from QCC in circumstances where QCC is
expected by common wisdom, is a major challenge in
quantum-mechanics studies. For example: Anderson’s
Localization (wavefucntions were commonly expected
to be extended); Heller’s scars (wavefucntions were
commonly expected to look like random waves). Here
we highlighted an anomaly in the theory of response:
the rate of heating is unexpectedly suppressed for a
quantized chaotic system. Our analysis has been based
on SLRT. This theory applies to circumstances in which
the environmental relaxation is weak compared with
the f(t)-induced transitions. In such circumstances
the connectivity of the transitions from level to level is
important, and the LRT result should be multiplied by gs.
We have highlighted that there is a distinct WQC regime,
where semiclassics and Wigner-type mixing co-exist.
This is the regime where an LRT to SLRT crossover is
expected as the intensity of the driving is increased.

Acknowledgements.– This research has been sup-
ported by the US-Israel Binational Science Foundation
(BSF).
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Fig. 1: The billiard system. Sketch of the model system
of Eq. (1). The unperturbed billiard is a rectangular of size
Lx=1.5 and Ly=1.0. The deformation U , due to the curvature
of the left wall (radius R=8), is characterized by the parameter
u = Ly/R. In order to break the mirror symmetry the center
of the curved wall is shifted upwards a distance ε=0.1. The
time dependent perturbation is due to the displacement f(t)
of the right wall. In the numerics the units are chosen such that
~planck=1 and the mass ism=1/2. The image in the background
represents the eigenstate En≃13618.

Fig. 2: Image of the perturbation matrix. Image of
the matrix X = {|Fnm|2} for the billiard of Fig. 1 within the
energy window 3500 < En < 4000. This matrix is sparse. More
generally it might have some texture. The latter term applies if
the arrangement of the large elements is characterized by some
pattern.
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Fig. 3: The band profile of the matrix. (a) The al-
gebraic average and median along the diagonals of the Xnm

matrix versus ω ≡ (En−Em). The vertical axis is normalized
with respect to the prediction of Eq. (4), while the horizon-
tal axis is ω/vE. The classical power spectrum is presented
to demonstrate the applicability of the semiclassical relation
Eq. (3). The red line is the analytical expression that applies
to zero deformation. The quantum analysis is for R = 8 with
100 < E < 4000 (EW1), and with 10000 < E < 14000 (EW2).
The dotted vertical line is the frequency 1/tL and the dashed
one is 1/tR. (b) Zoom of the ω ≪ 1/tL region. For sake of
comparison we display results also for R = 2. The vertical lines
indicate the mean level spacing. The dashed red curves are a
refined version of Eq.(5).
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Fig. 4: Sparsity versus energy. The sparsity measure s
and the resistor network result for gs versus the energy E for
the billiard of Fig. 1. The calculation of each point has been
carried out on a 100×100 sub-matrix of X centered around E.
The “untextured” data points are calculated for an artificial
random matrix with the same bandprofile and sparsity (but
no texture). The dashed line is g ∝ 1/~, where ~=λE/L with
λE=2π~planck/(mvE).
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Fig. 5: The size distribution of the matrix. Histogram of
the values of Xnm for the central band of the EW1 and EW2
matrices as defined in Fig. 3. For sake of comparison we display
results also for R = 1.
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