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The mesoscopic conductance of ballistic rings

Yoav Etzioni, Swarnali Bandopadhyay‡ and Doron Cohen
Department of Physics, Ben-Gurion University, Beer-Sheva 84005, Israel

Abstract. The calculation of the conductance of ballistic rings requires a
theory that goes well beyond the Kubo-Drude formula. Assuming “mesoscopic”
circumstance of very weak environmental relaxation, the conductance is much
smaller compared with the naive expectation. Namely, the electro-motive-
force induces an energy absorption with a rate that depends crucially on the
possibility to make connected sequences of transitions. Thus the calculation
of the mesoscopic conductance is similar to solving a percolation problem.
The “percolation” is in energy space rather than in real space. Non-universal
structures and sparsity of the perturbation matrix cannot be ignored. The latter
are implied by lack of quantum-chaos ergodicity in ring shaped ballistic devices.

1. Introduction

Closed mesoscopic rings are of great interest [1-13]. For such devices the relation
between the conductance and the internal dynamics is understood much less [14, 15]
than for open systems. First measurements of the conductance of closed mesoscopic
rings have been reported more than a decade ago [13]. In a typical experiment
a collection of mesoscopic rings is driven by a time dependent magnetic flux Φ(t)
which creates an electro-motive-force (EMF) −Φ̇ in each ring. Assuming that Ohm’s
law applies, the induced current is I = −GΦ̇ and consequently the rate of energy
absorption is given by Joule’s law as

Ẇ = Rate of energy absorption = G Φ̇2 (1)

where G is called the conductance §. For diffusive rings the Kubo formalism leads to
the Drude formula for G. A major challenge in past studies was to calculate the weak
localization corrections to the Drude result, taking into account the level statistics and
the type of occupation [12]. It should be clear that these corrections do not challenge
the leading order Kubo-Drude result.

Theoretical challenge: It is just natural to ask [14, 15] what happens to the
Drude result if the disorder becomes weak (ballistic case) or strong (Anderson lo-
calization case). In both cases the individual eigenfunctions become non ergodic: a
typical eigenfunction do not fill the whole accessible phase space. In the ballistic case
a typical eigenfunction is not ergodic over the open modes in momentum space, while

‡ Present address: Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38,
01187 Dresden, Germany
§ The terminology of this paper, and in particular our notion of “conductance” are the same as in
the theoretical review [12] and in the experimental work [13].
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in the strong localization case it is not ergodic over the ring in real space.

Major observation: Lack of quantum ergodicity implies that the perturbation
matrix is very structured and/or sparse. Consequently the calculation of G requires
a non-trivial extension of linear response theory (LRT). Such extension has been pro-
posed in Ref.[15] and later termed “semi linear response theory” (SLRT) [16, 17]. As
in the standard derivation of the Kubo formula, also within the framework of SLRT,
the leading mechanism for absorption is assumed to be Fermi-golden-rule (FGR) tran-
sitions. These are proportional to the squared matrix elements |Inm|2 of the current
operator. Still, the theory of [15] does not lead to the Kubo formula. This is because
the rate of absorption depends crucially on the possibility to make connected sequences
of transitions, and it is greatly reduced by the presence of bottlenecks. It is implied
that both the structure of the |Inm|2 band profile and its sparsity play a major role
in the calculation of G.

SLRT and beyond: Within SLRT it is assumed that the transitions between
levels are given by Fermi-golden-rule, but a resistor network analogy [18] is used in
order to calculate the overall absorption. The calculation of the energy absorption in
Eq.(1) is somewhat similar to solving a percolation problem. The “percolation” is in
energy space rather than in real space. A recent study [19] suggests a way to go be-
yond the FGR approximation. If the results of Ref [19] could be extended beyond the
diffusive regime [20] it would be possible to extend SLRT into the non-linear regime.

Scope: In a follow up work [21] its is demonstrated that for a very strong disorder
SLRT leads naturally to the resistor network “hopping” picture [22, 23], from which
Mott’s variable-range-hopping approximation [24, 25] can be derived. In the present
work we apply SLRT to the other extreme case, of having a ballistic ring. It should
be appreciated that the generalized resistor network picture of SLRT provides a firm
unified framework for the calculation of the mesoscopic conductance: The same recipe
is used in both extreme cases without the need to rely on an ad-hock phenomenology.

Ballistic rings: In the case of a diffusive rings the mean free path ℓ is assumed
to be much less than the perimeter L of the ring. In the case if ballistic ring we have
the opposite situation ℓ ≫ L. One way to model a ballistic ring is to consider very
weak disorder (Fig. 1a). Another possibility is to consider a clean ring with a single
scatterer (Fig. 1b) or a small deformation (Fig. 1c). In the latter cases it is natural to
characterize the scattering region by its total transmission gT ∼ 1. Consequently the
mean free path is

ℓ ≈ 1

1 − gT
L (2)

The assumption of ballistic motion implies that “quantum chaos” considerations are
important. Consequently one should go well beyond the conventional random wave
picture of Mott [24, 25], and beyond the standard Random Matrix Theory analysis.
In fact we are going to explain that in this limit the eigenfunctions are non-ergodic,
and hence the perturbation matrix |Inm|2 is structured and sparse.
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Outline: The purpose of this paper is to discuss the modeling of ballistic rings;
to clarify the procedure which is involved in the calculation of the conductance; and
to analyze the simplest example. In sections 2 we distinguish between

• Disordered rings (e.g. Anderson model)

• Chaotic rings (e.g. billiard systems)

• Network models (also known as “graphs”)

These are illustrated in Fig. 1. In particular we motivate the analysis of a simple
prototype network model for a multimode ring. This model has all the essential
ingredients to demonstrate the major theme of this paper.

In sections 3-8 we elaborate on the procedure which is used for the calculation of
the conductance. This is not merely a technical issue, since new concepts [15, 17] are
involved. We make a distinction between:

• The Landauer result for the open device

• The classical Drude result for a closed ring

• The (quantum) spectroscopic conductance of a ring

• The (quantum) mesoscopic conductance of a ring

Here ”classical” as opposed to “quantum” should be understood in the sense of
Boltzmann picture. In the “classical” case the interference within the arm of the
ring is ignored, while both the Fermi statistics and the single scattering events are
treated properly. For the prototype model we get the following simple results: Given
that the device has M open modes and its total transmission is gT < 1, the Landauer
conductance is [26]

GLandauer =
e2

2π~
M gT (3)

The Drude result for the closed ring is

GDrude =
e2

2π~
M gT

1 − gT
(4)

and the associated quantum results are

Gspec ≈ e2

2π~
M× minimum

[

gT

1 − gT
,M

]

(5)

Gmeso =
e2

2π~
2M2 gmeso (6)

The calculation of gmeso involves a complicated coarse graining procedure that we
discuss in section 8. The spectroscopic result Gspec describes via Eq.(1) both the
initial (transient) rate and also the long time (steady state) rate of energy absorption,
provided the environment provides a strong relaxation mechanism. The mesoscopic
result describes the (slower) long time rate of energy absorption if the environmentally
induced relaxation is weak. See [15] for an extended quantitative discussion.

The outcome for Gmeso may differ by orders of magnitude from the conventional
Kubo-Drude result. The calculation procedure implies that Gmeso < Gspec ≤ GDrude. In
the last part of this paper (sections 9-12) we demonstrate this point via the analysis of
the prototype model. Our numerical results, whose preliminary version were reported
in [27], suggest that typically Gmeso < GLandauer. The results of the calculation are
contrasted with those of the conventional Kubo approach, and their robustness is
discussed.
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2. Modeling

A simple model for a ballistic ring can be either of the“disordered type” or of the
“chaotic type”. Let us visualize the disordered potential as arising from a set of
scatterers which are distributed all over the ring (Fig 1a). Depending on the scattering
cross section of the individual scatterers we can have ℓ ≪ L for strong disorder or
ℓ ≫ L for weak disorder, where ℓ is the mean free path for velocity randomization,
and L is the perimeter of the ring.

Another possibility is not to make all the scatterers smaller, but rather to dilute
them. Eventually we may have a chaotic ring where the scattering is induced by a
single scatterer (Fig 1b). For example the scatterer can be a disc or a semi-disc as in
Fig 2. These variations of Sinai billiard (billiard with convex wall elements) are known
to be chaotic. It is important to remember that “chaos” means that complicated
ergodic classical dynamic is generated by a simple Hamiltonian (no disorder!).

In our view chaotic rings are more interesting for various reasons. Ballistic devices
are state-of-art in mesoscopic experiments. For example it is quite common to fabricate
Aharonov-Bohm devices. In such devices it is possible to induce local deformation of
the potential by means of a gate voltage. Hence one has a full control over the
amount of scattering. Also from theoretical point of view it is nice to have a well
defined scattering region: This allows to use the powerful S-matrix point of view that
has been initiated by Landauer. In particular we can ask what is the conductance of
a device depending on whether it is integrated in an open geometry as in Fig. 1e or
in a closed geometry as in Fig. 1d. We believe that “chaos” and “disorder” lead to
similar physics in the present context, but this claim goes beyond the scope of the
present paper.

A multimode ring can be visualized as a waveguide of length L and width W .
In such case the number of open modes is M ∝ (kFW )d−1 where d = 2, 3 is the
dimensionality. We label the modes as

a = mode index = 1, 2, ...,M (7)

The scattering arise due to some bump or some deformation of the boundary, and can
be described by an 2M×2M scattering matrix S. For the semi-disc model analytical
complicated expressions are available [29, 30]. The “classical” transitions probability
matrix g is obtained by squaring the absolute values of the S matrix elements.

Disregarding the closed channels, the ballistic ring is described as a set of M open
modes, and a small scattering region that is characterized by its total transmission gT .
Optionally the ballistic ring can be regarded as a network: Each bond corresponds to
an open mode. Let us consider the simplest model where the scattering is the same
for an incident particle that comes from the left or from the right:

g =

(

[gR]a,b [gT ]a,b

[gT ]a,b [gR]a,b

)

(8)

where gR is the reflection matrix and gT is the transmission matrix. The simplest
model that one can imagine is with

[gR]a,b = ǫ2 (9)

[gT ]a,b = (1 −Mǫ2)δa,b (10)

such that the total transmission is

gT = 1 −Mǫ2 (11)
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Such “classical” transitions probability matrix can arise if we take the S matrix as

SD =

(

ǫ exp
(

i 2π a b
M

) √
1 −Mǫ2δa,b√

1 −Mǫ2δa,b −ǫ exp
(

−i 2π a b
M

)

)

(12)

There a lot of simplifications that were involved in construction this S matrix.

• The forward scattering is to the same mode only

• The back scattering is “isotropic”

• The scattering is energy independent

• The scattering phases are not random

One can wonder whether this S matrix still qualifies as ‘generic’, or maybe the model
is over-simplistic. In order to illuminate this point let us look at the Sinai billiard
models of Fig. 2. These models are fully qualified as “quantum chaos” systems. One
observes that the specific g matrix of Eq.(9-10) is inspired by that of Fig. 2a. In
this billiard an incident particle is equally likely to be scattered to any mode in the
backward direction, but the forward scattering is only to the same mode (same angle).
As for the phases: we already have explained that our interest is not in disordered ring,
but rather in chaotic one. Therefore to have random phases in the S matrix is not an
essential feature of the model. The phases are effectively randomized simply because
the wavenumber ka is different in each mode. Optionally, it is more convenient to
assume that all the ka are equal, and instead to have bonds of different lengths La.
This provides the required phase randomization.

Generality: Though the arguments above strongly suggest that the simplified
network model is generic, we were careful to verify [28] that indeed all the results
that we find are also applicable in the case of the Sinai-type system of Fig. 2b where
the scatterer is a semi-disc. We further discuss the robustness of the results in the
concluding section. Sinai-type billiards are recognized as generic chaotic systems. The
reason for preferring the network model as the leading example in the present paper
is both pedagogical and practical: The mathematics is much simpler, and the quality
of the numerics is much better.

3. The classical Kubo formula and Drude

The Fluctuation-Dissipation version of the Kubo formula expresses the conductance G
as an integral over the current-current correlation function:

G = ̺F × 1

2

∫ ∞

−∞

〈I(t)I(0)〉dt (13)

The density of states at the Fermi energy is

̺F = GeometricFactor ×M L

π~vF

(14)

where vF is the Fermi velocity. The geometricfactor depends on the dimensionality
d = 1, 2, 3. The current observable is defined as follows:

I = ev̂δ(x̂− x0) (15)

where v̂ and x̂ are the velocity and the position observables respectively. In the
quantum case a symmetrization of this expression is required, so as to obtain an
hermitian operator. The section through which the current is measured is arbitrary
and we simply take x0 = +0, namely just to the right of the scattering region.
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Optionally, if there were not the “black box” region of the S matrix, one could average
over x0, leading to I = (e/L)v.

The term “classical” Kubo formula implies in this context that the current-current
correlation function is evaluated classically, ignoring quantum interference. In the
case of hard chaos system this correlation function decays exponentially. The Drude
expression is the simplest classical approximation:

〈I(t)I(0)〉 =
1

d

( e

L
vF

)2

exp
[

−2
(vF

ℓ

)

|t|
]

(16)

Substitution into the Kubo formula leads to

GDrude =
e2

2π~
M ℓ

L
(17)

where we have dropped the d dependent prefactor which equals 1 for networks (d = 1).
In the case of a ballistic ring with a restricted scattering region (as in Fig. 1d) it is
more convenient to characterize the device by its total transmission 0 < gT < 1 instead
of the mean free path. The envelope of the current-current correlation function is

|2gT − 1|#rounds ⇔ exp
[

−2
(vF

ℓ

)

|t|
]

(18)

With the identification of #rounds as t/(L/vF) we deduce that for gT ∼ 1 the mean
free path is ℓ ≈ L/(1 − gT ). A more detailed analysis [14] leads to the result

GDrude =
e2

2π~

∑

a,b

[

2gT /(1 − gT + gR)
]

a,b
(19)

If the device were opened as in Fig. 1e we could ignore the multiple rounds. In such
case we would obtain

GLandauer =
e2

2π~

∑

a,b

[gT ]a,b (20)

Both results, the Drude result for the closed device and the Landauer result for the
corresponding open geometry, are “classical” in the sense of Boltzmann, which means
that they depend only on g.

Let us see what do we get for GLandauer and for GDrude in the case of the prototype
system that we have defined in section 2. The calculation of GLandauer is trivial and
leads to Eq.(3). The calculation of GDrude is more complicated since it involves matrix
inversion. Still g is sufficiently simple to allow a straightforward calculation that leads
to Eq.(4). The rest of this section is devoted to the details of this calculation.

We write gT = τ21 and gR = ǫ2Υ, where τ and ǫ are defined via
gT = τ2 = 1 −Mǫ2, and where we have introduced the following M×M matrices

1 =













1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
· · ·
· · ·













and Υ =













1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
· · ·
· · ·













(21)

Note that the two matrices commute. Using these notations we get

2gT

1− gT + gR
=

2τ2

1 − τ2

1

1 + ǫ2

1−τ2Υ
(22)

=
2τ2

1 − τ2

1

1 + cct
=

2τ2

1 − τ2
1− ǫ2τ2

(1 − τ2)2
Υ (23)
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where we have defined the normalized column vector

ca =
ǫ√

1 − τ2
a = 1, 2, · · ·M (24)

and we have used the identity

1

1 + cct
= 1 − 1

1 + ctc
cct = 1− 1

2
cct (25)

Observing that
∑

ab 1ab = M and
∑

ab Υab = M2 we get the desired result Eq.(4).

4. The quantum Kubo formula and beyond

Our objective is to find the conductance of the closed ring in circumstances such that
the motion inside the ring is coherent (quantum interference within the bonds is not
ignored). The calculation is done using the quantum version of Eq.(13) which involves
the matrix elements Inm of the current operator:

G = π~ ̺2
F
× 〈〈|Inm|2〉〉 (26)

This equation would be the traditional Kubo formula if 〈〈...〉〉 stood for a simple
algebraic average over near diagonal matrix elements at the energy range of interest.
By near diagonal elements we mean |En − Em| . Γ, where Γ is level broadening
parameter. The levels of the system are effectively “broadened” due to the non-
adiabaticity of the driving [31] or due to the interaction with the noisy environment [5].
In what follows we assume

∆ ≪ Γ ≪ ∆b (27)

where ∆ = 1/̺F is the mean level spacing, and ∆b = π~vF/L is the Thouless energy.
(Note that ∆b/∆ = M). Contrary to the naive expectation it has been argued in [15]
that depending on the physical circumstances the definition of 〈〈...〉〉 may involve a
more complicated coarse graining procedure. Consequently the result for G may differ
by orders of magnitude from the traditional Kubo-Drude result. We shall discuss this
key observation in later sections.

For a network system ̺F = ML/(π~vF). Furthermore it is convenient to define a
scaled matrix Inm via the relation

Inm = −i(evF/L)Inm (28)

so as to deal with real dimensionless quantities. Thus we re-write Eq.(26) as:

G =
e2

2π~
2M2 g (29)

where g ≡ 〈〈|Inm|2〉〉. In later sections we shall discuss the recipe for the g calculation.
It is important to realize (see next section) that g < 1. This implies a quantum
mechanical bound on G.

5. The quantum bound on G

We write the channel wavefunctions as Ψa(x) = Aa sin(kx + ϕ), where a labels the
modes. In our simplified network model the modes are re-interpreted as bonds, and
we assume that the wavevector k = (2mE)1/2 is the same for all bonds. For the matrix
elements of I we have the expression

Inm ≈ −ievF

∑

a

1

2
A(n)

a A(m)
a sin(ϕ(n)

a − ϕ(m)
a ) (30)
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were the approximation takes into account that our interest is in the couplings between
levels with kn ≈ km ≈ kF. From this expression we deduce that the scaled matrix
elements of Eq.(28) are bounded as follows:

Inm <
∑

a

L

2
A(n)

a A(m)
a < 1 (31)

Therefore, irrespective of the details of the averaging or coarse graining procedure, it
is clear that g < 1 as stated at the end of the previous section. Consequently

G
∣

∣

∣

maximal

=
e2

2π~
M2 (32)

In the last expression we have omitted a factor of 2. This is not a typo. We shall
explain this point in section 12.

6. The ergodic result for G

The simplest hypothesis is that all the wavefunctions are ergodic random waves. This
is in the spirit of Mott’s derivation [24, 25], where it has been demonstrated that
a random wave assumption recovers (via Eq.(26)) the Drude result. If indeed the
wavefunctions were spread equally over all the bonds, it would imply |Aa|2 ∼ 2/(ML).
If this were true we would get

|Inm|2 =

∣

∣

∣

∣

∣

1

M
∑

a

sin(ϕ(n) − ϕ(m))

∣

∣

∣

∣

∣

2

≈ 1

2M (33)

This would imply that the conductance of a ballistic (chaotic) ring is

G
∣

∣

∣

ergodic

=
e2

2π~
M (34)

We would like to argue that this result is wrong. Moreover, it must be wrong. The
result is wrong because the eigenfunction of a ballistic ring are not ergodic. This
we discuss in section 10. Furthermore, the result must be wrong because it violates
quantum-classical correspondence, which we discuss in the next section.

7. The quantum conductance and Drude

In this section we define the distinction between mesoscopic and spectroscopic
conductance and further discuss the latter. In the next section we elaborate
on the calculation procedure of both. We would like to clarify in advance that
the spectroscopic conductance is the outcome of the traditional Kubo calculation.
Moreover, it is only the spectroscopic conductance which obeys quantum-classical
correspondence considerations.

Mesoscopic conductance: If the environmentally induced relaxation can be
neglected, the rate of energy absorption depends on having connected sequences of
transitions between levels [15]. In the next section we explain the proper procedure
for calculating the conductance in such circumstances. The result that comes out from
such calculation is what we call the mesoscopic conductance Gmeso.

Spectroscopic conductance: Within the framework of linear response theory,
it is assumed that the EMF-induced transitions are very slow compared with the
environmentally induced relaxation. Then one can argue that Eq.(26) is valid with
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〈〈|Inm|2〉〉 interpreted as an algebraic average over the matrix elements. This is what
we called in section 4 the traditional Kubo formula. Optionally, if applicable, one
may perform an algebraic average over realizations of disorder. The latter is a very
common procedure in diagrammatic calculations. The outcome of the (traditional)
calculation is what we call the spectroscopic conductance Gspec. For further discussion
of the conditions that justify a “spectroscopic” calculation see Ref. [15].

The spectroscopic conductance is not very sensitive to Γ. In fact the Γ dependence
of the result is nothing else but the weak localization correction [12]. It scales like
∆/Γ for diffusive rings, where ∆ is the mean level spacing (note Eq.(27)).

Disregarding weak localization corrections it can be argued [15] that the
obtained result for Gspec is GDrude provided some reasonable quantum-to-classical
correspondence conditions (see below) are satisfied. It follows that the ergodic
hypothesis of the previous section cannot be correct, because GDrude is definitely not
bounded by the number of open modes - it can be much larger.

The necessary condition for quantum-classical correspondence can be deducted
by taking into account the quantum bound of section 5. As gT becomes closer to 1, the
Drude expression diverges. Quantum-to-classical correspondence is feasible provided
the quantum bound is not exceeded:

1

1 − gT
≪ M (35)

This can be re-phrased as

ℓ

L
<M (36)

or as

tcl ≪ tH (37)

where tcl = ℓ/vF is the ballistic time, and tH = M×(L/vF) is the Heisenberg time (the
time to resolve the quantized energy levels). In order to establish quantum-to-classical
correspondence in a constructive manner one should express the Kubo formula using
Green functions, leading to a double summation over paths. Then one should argue
that energy averaging justify the use of the diagonal approximations. The procedure
is the same as in [32]. Needless to say that Eq.(34) is not consistent with this argued
correspondence and therefore a-priori must be wrong.

8. The calculation of G

The SLRT recipe for the calculation of G is implied by the following statements:

[A] The transitions rates between levels (wnm) are given by the FGR.

[B] The diffusion in energy (D) is given by a resistor network calculation.

[C] The diffusion-dissipation relation at low temperatures is Ẇ = ̺FD.

[D] The expression for the conductance G is identified via Eq.(1).

In this section we give all the relevant details for using this recipe. The Hamiltonian of
the ring in the adiabatic basis is H 7→ Enδnm+Wnm whereWnm = iΦ̇~Inm/(En−Em),
and −Φ̇ is the EMF. The FGR transition rate between level n and level m is

wnm =
2π

~
δ(En − Em)|Wnm|2 (38)
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Since we are dealing with a closed system one should take explicitly into account the
broadening of the delta function:

δ(En−Em) 7−→ 1

Γ
F

(

En − Em

Γ

)

(39)

The normalized kernel F () reflects either the power spectrum or the non-adiabaticity of
the driving. For the purpose of numerical demonstration we assume F (r) = exp(−2|r|)
as in [17]. The level broadening Γ is identical with Γ of Ref.[15, 31] and with ~ω0 of
Ref.[17]. As in the conventional derivation of linear response theory [12], also here
we regard Γ as a free parameter in the theory. It is convenient to use dimensionless
quantities, so we re-write Eq.(38) as:

wnm = ̺F

e2

π~
M2gnmΦ̇2 (40)

where the dimensionless transition rates are

gnm = 2̺−3
F

|Inm|2
(En − Em)2

1

Γ
F

(

En − Em

Γ

)

(41)

In practice we could make the approximation (En−Em)/∆ ≈ (n−m), that
underestimates exceptionally large couplings between almost degenerated levels. Such
an approximation would not be reflected in the Gmeso calculation (see below), because
the latter is determined by the bottlenecks.

The FGR transitions between levels lead to diffusion in energy space. We would
like to calculate the coarse grained diffusion coefficient D without assuming that all
the |Inm|2 are comparable. For this purpose it is useful to exploit the following resistor
network analogy [17]:

w−1
nm ⇐⇒ resistor between node n and node m (42)

D−1 ⇐⇒ resistivity of the network (43)

In dimensionless units wnm is denoted as gnm as defined via Eq.(40). In dimensionless
units D is denoted as g and it is defined via the following equation:

D = ̺−1
F

e2

π~
M2gΦ̇2 (44)

The extra ̺−2
F

factor compared with Eq.(40) arise because the resistivity D−1 is
calculated per unit “energy length” while the scaled resistivity g−1 is per unit site.

A standard numerical procedure is used for extracting g for a given resistor
network gnm. The steps are as follows: (i) Cut an N site segment out of the network
(Fig. 3). (ii) Define a vector Jn(n = 1..N) whose elements are all zero except the
first and the last that equal J1 = +J and JN = −J . (iii) Solve the matrix equation

Jn =
∑

m

gnm(Vn − Vm) (45)

This equation should be solved for Vn. In practice it is easier to write this equation
as J = −g̃V where g̃nm = gnm − δnm

∑

m′ gnm′ . The difference V1 −VN is obviously
proportional to the injected J . (iv) Find the overall resistance of the truncated
network gN = J/(VN − V1). And finally: (v) Define the resistivity as g−1 = g−1

N /N .
For a locally homogeneous network it has been argued in Ref.[15] that g can be
obtained via an harmonic average:

g

∣

∣

∣

meso

≈





1

N

N
∑

n

[

1

2

∑

m

(m− n)2gnm

]−1




−1

(46)
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The internal sum reflects addition of resistors in parallel, while the harmonic average
reflects addition of resistors in series. This should be contrasted with the algebraic
average which is used in order to calculate the spectroscopic result:

g

∣

∣

∣

spec

=

[

1

N

N
∑

n

[

1

2

∑

m

(m− n)2gnm

]]

(47)

It is a simple exercise to verify that if all the matrix elements are the same, say
|Inm|2 = σ2, then gmeso = gspec = σ2. But if the matrix is structured or sparse then
gmeso is much smaller compared with gspec. Schematically we write in both cases

g = 〈〈|Inm|2〉〉 (48)

It should be clear that in both cases (spectroscopic, mesoscopic) the “averaging”
requires the specification of the smoothing scale Γ as implied by Eq.(41). It is also
clear that the mesoscopic result is much more sensitive to the value of Γ. Unlike
the spectroscopic result where the dependence on Γ is merely a “weak localization
correction” [12], in the case of the mesoscopic result the dependence on Γ is a leading
order effect.

The diffusion-dissipation relation states that the rate of energy absorption is
Ẇ = ̺FD. Then it is implied by Eq.(1) that the conductance G is given by Eq.(29).
The procedure above can be summarized by saying that g can be calculated from |Inm|2
via an appropriate “averaging procedure”. The appropriate averaging procedure is
algebraic (Eq.(47)) in the case of the spectroscopic conductance. The appropriate
averaging procedure is harmonic-type (as discussed above) in the case of mesoscopic
conductance.

9. The eigenstates of the network model

The network model that we have presented in section 2 is defined in terms of the
scattering matrix SD, and the free propagation matrix SW,

SD =

(

ǫ exp
(

i 2π a b
M

) √
1 −Mǫ2δa,b√

1 −Mǫ2δa,b −ǫ exp
(

−i 2π a b
M

)

)

(49)

SW =

(

0 eikLa δab

eikLa δab 0

)

(50)

The wavefunction can be written as

|ψ〉 7−→
M
∑

a=1

(

ALaei k (x−La) +ARae−i k x
)

⊗ |a〉. (51)

The set of amplitudes AL and AR that can be arranged as a column vector of
length 2M. The linear equation for the eigenstates is

(

AL

AR

)

= SW SD

(

AL

AR

)

(52)

and the associated secular equation for the eigenvalues is

det[ SW SD − 1 ] = 0 (53)

In the absence of driving we have time reversal symmetry, and the unperturbed
eigenfunctions can be chosen as real (see appendix A):

|ψ〉 7−→
M
∑

a=1

Aa sin(kx+ ϕa) ⊗ |a〉. (54)
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The wavefunction is normalized as
M
∑

a=1

∫ La

0

A2
a sin2(kx+ ϕa) dx = 1 (55)

which implies
M
∑

a=1

La

2
A2

a ≈ 1 (56)

For a given gT we can find numerically the eigenvalues and the eigenstates, thus
obtaining a table

(kn, ϕ
(n)
a , A(n)

a ) n = level index (57)

For the numerical study we have chosen a network system consisting of M = 50 bonds.
The length of each bond is randomly selected in the range La = 1 ± 0.1. We select
the eigenvalues with kn ∼ 2000. The numerical results over the whole range of gT

values are presented in Figs. 4-7. In the following sections we discuss and analyze
these results.

It is of course possible to determine analytically what are the eigenvalues and the
eigenstates in the gT → 1 limit. The combined scattering matrix is

SW SD =

(

τ eikLaδa,b −ǫ ei(kLa−
2π

M
a×b)

ǫ ei(kLa + 2π

M
a×b) τ eikLaδa,b

)

(58)

where we use the notation τ = (1−Mǫ2)1/2. For gT = 1 this matrix becomes diagonal.
Then it has M distinct eigenvalues, each doubly degenerate. We are interested in the
non-degenerate case in the limit ǫ → 0. The eigenstates are still localized each in
a single a bond, but the degeneracy is lifted. Within the framework of degenerate
perturbation theory we have to diagonalize the 2 × 2 matrix

(

τ eikLa −ǫ ei(kLa −
2π a

2

M
)

ǫ ei(kLa + 2π a
2

M
) τ eikLa

)

(59)

whose eigenvalue are determined by the associated secular equation

(ǫ2 + τ2)e2ikLa − 2τeikLa + 1 = 0 (60)

Hence we get the following approximations

kn ≈
(

2π × integer ± 1√
M

ǫ

)

1

La
(61)

ϕ(n)
a ≈ − a2

Mπ − 1

2
knLa +

{

π/4
3π/4

(62)

We have verified that the numerical results of Fig. 4 and Fig. 7 agree with these
estimates. We note that for hard wall scatterer each ϕa would become either 0 or π/2
in the gT → 1 limit.

10. The non-ergodicity of the eigenfunctions

In Fig. 5 we display images of the column vectors A
(n)
a for two representative values

of gT so as to illustrate the crossover from localized to ergodic wavefunctions. Each
eigen-function can be characterized by its participation ratio:

PR =

[

∑

a

(

La

2
A2

a

)2
]−1

(63)
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This constitutes a measure for the ergodicity of the eigen-functions. By this definition

PR ≈
{

1 for a single bond localized state
M for a uniformly distributed state

(64)

We distinguish between 3 regimes depending on the value of the total transmission gT ,

• The trivial ballistic regime (1 − gT ) ≪ 1/M for which PR ∼ 1

• The non-trivial ballistic regime 1/M ≪ (1 − gT ) ≪ 1.

• The non-ballistic regime where gT is not close to 1 and PR ∼ M
In the trivial ballistic regime the eigenstates are like those of a reflection-less ring with
uncoupled modes, hence PR ∼ 1. Once (1 − gT ) becomes larger compared with 1/M
first order perturbation theory breaks down, and the mixing of the levels is described
by a Wigner Lorentzian. The analysis is completely analogous to that of the single
mode case of Ref.[15], leading to PR ∝ (1− gT )×M. For gT values that are not close
to 1 the eigen-functions become ergodic with PR ∼ M. From RMT we expect [33]
PR ∼ M/3. A satisfactory global fit, that works well within the non-trivial ballistic
regime is (Fig. 8):

PR ≈ 1 +
1

3
(1 − gT )M (65)

Our interest is focused in the non-trivial ballistic regime 1/M ≪ (1− gT ) ≪ 1, where
we have strong mixing of levels (PR ≫ 1), but still the mean free path ℓ ≈ L/(1− gT )
is very large compared with the ring’s perimeter (ℓ ≫ L). In view of the discussion
in section 6, it is important to realize that in this regime we do not have “quantum
chaos” ergodicity. Rather we have PR ≪ M meaning that the wavefunctions occupy

only a small fraction of the classically accessible phase space.

11. The calculation of matrix elements

Given a set of eigenstates, it is straightforward to calculate the matrix elements of the
current operator (Figs. 9-12). We recall that the scaled matrix elements are

Inm ≈
∑

a

La

2
A(n)

a A(m)
a sin(ϕ(n)

a − ϕ(m)
a ) (66)

with the associated upper bound

Īnm ≈
∑

a

La

2
A(n)

a A(m)
a (67)

For n = m we have Īnm = 1 due to normalization, and Inm = 0 due to time reversal
symmetry. From now on we are interested in n 6= m. There are several extreme cases
that allow simple estimates:

Īnm ≈







0 for pair of states localized on different bonds
1 for pair of states localized on the same bond
1 for pair of ergodic states

If we take the phases into account we get

|Inm|2 ≈







0 for pair of states localized on different bonds
1 for pair of nearly degenerated states on the same bond

1/(2M) for pair of uncorrelated ergodic states
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We have already explained in section 6 that the “ergodic” hypothesis is wrong in
the ballistic case. It should be clear that the small PR of the eigenfunctions implies
sparsity of Inm: The matrix elements are very small for any pair of states that are
localized on different sets of bonds. This observation is demonstrated in Figs. 9-12.
As the reflection 1 − gT is increased, more and more elements become non-negligible,
and the matrix becomes less structured and less sparse.

12. Numerical results for the conductance

Once we have the matrix elements |Inm|2 we can calculate Gspec using the algebraic
average recipe Eq.(47). We can also calculate Gmeso using either the resistor network
procedure or the harmonic average approximation Eq.(46). Fig. 13 displays the results
for an M = 50 network model. The conductance goes to zero for both gT → 0 and
gT → 1. The dependence on Γ is plotted in Fig. 14. The rough accuracy of the
harmonic average has been verified (not displayed).

The dependence of G on the smoothing parameter Γ is easily understood if we
keep in our mind the band profile which is illustrated in Fig. 10. In order to improve
our intuition we show in Fig. 12 the average value of |In,n+r|2 for r = 1, 2, 3, 4, 5 as a
function of 1 − gT for r = 1, 2, 3, 4, 5.

It should be clear that the large r = 1 elements originate from the pairs of
almost degenerate states that were discussed in section 9. Their contribution to the
spectroscopic conductance is dominant. The upper bound Eq.(32) on G is implied
by the upper bound on |In,n+1|2. It was already pointed out in section 11 that the
maximal value |Inm| = 1 is attained for the nearly degenerate states. The algebraic
average with the interlacing vanishingly small couplings leads to the factor of 1/2 that
was mentioned after Eq.(32). To avoid miss-understanding we emphasize that this
prefactor is model specific.

On the other hand, the large r = 1 couplings almost do not affect the mesoscopic
conductance. This is because they do not form connected sequences. Moreover,
as implied by our calculation recipe, large value of Γ cannot help to overcome the
bottlenecks. In order to get a classical result the environment should induce not only
level broadening (which is like the 1/T2 rate of pure dephasing in NMR studies), but
also a relaxation effect (analogous to the 1/T1 rate in NMR).
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13. Discussion

In this paper we have studied the mesoscopic conductance of a ballistic ring with
mean free path ℓ ≫ L. The specific calculation has been done for a network model,
but all its main ingredients are completely generic. Ballistic rings with ℓ ≫ L are
not typical “quantum chaos” systems. Their eigenfunctions are not ergodic over

the whole accessible phase space, and cannot be regarded as an extended “random
wave”. Consequently the perturbation matrix Inm is highly structured and sparse,
and we have to go beyond the Kubo formalism in order to calculate the mesoscopic
conductance.

Results vs expectations: The “averaging” over the matrix elements of the
current operator should be done according to the appropriate prescription: algebraic
scheme for the spectroscopic conductance Gspec, and resistor-network scheme for the
mesoscopic conductance Gmeso. The calculation procedure implies that

Gmeso < Gspec ≤ GDrude (68)

Our original naive belief, before we started with the numerical work, was that it is
feasible to get quite large Gmeso, possibly of the order of Gspec. To our surprise the
numerics has revealed that typically

Gmeso < GLandauer (69)

We have pushed our numerical verification of this statement up to M = 450 (Fig. 14b).
For an optimal value of Γ, such that Gmeso is maximal, we still have Gmeso . GLandauer.
The numerical prefactor in the latter inequality appears to be roughly 3, but obviously
we cannot establish that there is a strict limitation. Still, as far as order of magnitude
estimates are concerned, our conjecture is that this statement is true in general. We
did not find a mathematical argument to establish this conjecture, except the very
simple case of a single mode ballistic ring[15] where the calculations of G can be done
analytically.

Robustness: Our results are not sensitive to the details of the model.
Disregarding the details, the eigenfunctions are doomed to be non-ergodic in mode
space if gT ∼ 1. This by itself implies that Inm is sparse and possibly structured.
Consequently the resistor network picture implies thatGmeso is much smaller compared
with the naive expectation. We have further tested the generality of our quantitative
statements by analyzing [28] another, more realistic model, where the ring is modeled
as a waveguide with a semi-disc scatterer (Fig. 2b). The S matrix for this model
is known [29, 30]. In particular we have verified that the participation ratio of the
eigenstates has roughly the expected dependence on gT . Indeed for both the semi-
disc model, and our simplified network model, the participation ratio does not exhibit
anomalous saturation as typical, say, for a “star graph” [34]. Eventually we have
verified that the results for the mesoscopic conductance of the semi-disc model are
similar to those that were obtained for the network model.

Challenges: It is still an open challenge to derive an estimate for the mesoscopic
conductance in terms of gT . It was possible to derive such an expression in the
single mode case. There we have found that Gmeso ∝ (1 − gT )2gT . In the general case
(M > 1) the calculation is more complicated. We suspect that our expression for the
participation ratio Eq.(65) constitutes an important step towards this goal. In any
case we were not able to derive a reliable closed analytical expression.

Limitations: It should be emphasized that if there is either a very effective
relaxation or decoherence process, then the semi-linear response theory that we have
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discussed do not apply. In the presence of strong environmental influence one can
justify, depending on the circumstances [14], either the use of the traditional Kubo-
Drude result, or the use of the Landauer result.

Appendix A. Implications of time reversal symmetry

We can decompose the eigenstate equation as follows:
(

BLa

BRa

)

= SD

(

ALa

ARa

)

(A.1)

(

ALa

ARa

)

= SW

(

BLa

BRa

)

(A.2)

Above BLa and BRa are the amplitudes of the outgoing waves from x = 0, while
ALa and ARa are the amplitudes of the ingoing waves. Conventional time-reversal-
symmetry implies that both ψ(x) and its complex-conjugate ψ(x)∗ satisfy the same
Schrödinger equation. Complex conjugation turns out the incoming wave into outgoing
one and vice versa, and therefore

(

A∗
La

A∗
Ra

)

= SD

(

B∗
La

B∗
Ra

)

(A.3)

(

B∗
La

B∗
Ra

)

= SW

(

A∗
La

A∗
Ra

)

(A.4)

It is not difficult to see that the two sets of equations are equivalent provided

Stransposed

D
= SD (A.5)

Stransposed

W
= SW (A.6)

If we have this (conventional) time reversal symmetry, the unperturbed eigenfunctions
can be chosen as real in position representation:

|ψ〉 =

M
∑

a=1

Aa sin(kx+ ϕa) ⊗ |a〉. (A.7)

where

Aa = 2|ALa| = 2|ARa| (A.8)

ϕa =
1

2
(π + arg(ALa/ARa) − kLa) (A.9)
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(e)

(b)(a)

(d)(c)

S

S

Fig.1: (a) A ring with disorder. The mean free path can be either ℓ ≪ L for diffusive ring or ℓ ≫ L
for ballistic ring, where L is the length of the ring. (b) A chaotic ballistic ring. Here we have a
single scatterer. The annular region supports M open modes. (c) Another version of a chaotic ring.
Here the scattering is due to a deformation of the boundary. (d) A chaotic ring can be regarded
as a network. Namely, each bond corresponds to an open mode. In the numerics the lengths of the
bonds (0.9 < La < 1.1) are chosen in random. The scattering is described by an S matrix. (e) The
associated open (leads) geometry which is used in order to define the S matrix and the Landauer
conductance.

Fig.2: (a) upper panel: a waveguide with convex scatterer. This geometry has inspired our simple
network model. (b) lower panel: the semi disc model. For this geometry we have some preliminary
numerical results that will be published elsewhere.
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Fig.3: Within the framework of the Fermi golden rule picture the flow of the probability current in
a multi level system is analogous to the flow of current via a resistor network. Thus the inverse of
the course grained diffusion coefficient can be re-interpreted as the resistivity of the network. On the
right we display a truncated segment, where +J is the current injected from one end of the network,
while −J is the same current extracted from the other end. The injected current to all other nodes
is zero. The resistance of each “resistors” in the network corresponds to g−1

nm.
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Fig.4: The eigenvalues kn within a small energy window around k ∼ 2000 are shown as a function
of the reflection 1 − gT . We consider here a network model with M = 50 bonds. The length of each
bond was chosen in random within 0.9 < La < 1.1.
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Fig.5: Each culumn is a grey-level image of one eigenvector |A
(n)
a |2, where a = 1..M is the bond

index. We display the eigenvectors in the range 2000 < k < 2031. Left panel: gT = 0.999. Right panel:
gT = 0.5.
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Fig.6: The amplitudes |A
(n)
a |2 with a = 1...M of one representative state (kn ≈ 2011) as a function

of the reflection. The wavefunction is localized on a single bond for small reflection, and becomes
ergodic for large reflection.
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Fig.7: The phases ϕ
(n)
a for the same eigenstate of Fig. 6. The solid lines are the values which are

implied by Eq.(62). The crosses indicate the phases within the bond a where most of the wavefunction
is localized. Indeed in the limit gT → 1 this phase coincides with one of the predicted values.
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Fig.8: For each value of gT we calculate the participation ratio (PR) for all the eigenstates. We display
(as symbols) the minimum value, the maximum value, and a set of randomly chosen representative
values. The solid line is the average PR, while the dotted line is Eq.(65). The left panel is log-linear
while the right is log-log.
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Fig.9: Images of |Īnm|2. The main diagonal is eliminated from the image. In left upper panel we
display a relatively large representative piece for gT = 0.9. In the other panels we display zoomed
images for gT = 0.999, 0.9, 0.5. As the reflection 1 − gT becomes larger, more elements become non-
negligible, and the matrix becomes less structured and less sparse.
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Fig.10: Images of |Inm|2. The main diagonal is zero due to time reversal symmetry. In left upper
panel we display a relatively large representative piece for gT = 0.9. In the other panels we display
zoomed images for gT = 0.999, 0.9, 0.5. As the reflection 1−gT becomes larger, more elements become
non-negligible, and the matrix becomes less structured and less sparse.
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Fig.11: The n-averaged value of 2M|Īn,n+r|2 as a function of 1− gT for r = 1, 2, 3, 4, 5. The ergodic
value for this quantity (2M) is indicated by the solid horizontal line. We also indicate the value M
by a dashed horizontal line. The left panel is normal scale, while the right panel is log-log.
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Fig.12: The n-averaged value of 2M|In,n+r|2 as a function of 1− gT for r = 1, 2, 3, 4, 5. The ergodic
value for this quantity (1) is indicated by the solid horizontal line. We also indicate the maximal
value M by a dashed horizontal line. The left panel is normal scale, while the right panel is log-log.
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Fig.13: (a) Left panel: The mesoscopic conductance G in units of e2/(2π~) as a function of 1− gT .
The curves from bottom to top are for γ ≡ Γ/∆ = 1, 2, 3, 4, 5. The total number of open modes
is M = 50. The dotted line is GLandauer while the dashed line is GDrude. (b) Right panel: The
mesoscopic conductance (lower solid line) is compared with the spectroscopic conductance (upper
solid line). Here γ = 3. The dotted and the dashed lines are as in the left panel.
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Fig.14: (a) Left panel: The mesosocopic conductance as a function of γ ≡ Γ/∆. The curves
from top to bottom are for gT = 0.8, 0.7, 0.5. The number of open modes is M = 50. (b)
Right panel: The mesosocopic conductance divided by the number of modes for gT = 0.8 and
M = 50, 100, 150, 200, 250, 300, 350, 400, 450.
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