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Parametric invariant Random Matrix Model and the emergence of multifractality
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We propose a random matrix modeling for the parametric evolution of eigenstates. The model
is inspired by a large class of quantized chaotic systems. Its unique feature is having parametric
invariance while still possessing the non-perturbative breakdown that has been discussed by Wigner
50 years ago. Of particular interest is the emergence of an additional crossover to multifractality.
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I. INTRODUCTION

The analysis of structural changes of eigenstates as a
parameter x is varied, has sparked a great deal of re-
search activity for many years [1, 2, 3, 4, 5, 6, 7, 8, 9]. Of
particular importance are quantized chaotic or complex
systems where the change of x may represent the effect
of some externally controlled field (like electric field, gate
voltage or magnetic flux). Thus, these studies are rele-
vant for diverse areas of physics ranging from nuclear
[1, 10] and atomic physics [11] to quantum chaos [4, 5, 6]
and mesoscopics [7].

In all these studies, Random Matrix Theory (RMT)
played a dominant role as a reference theory that de-
scribes the universal properties of the eigenstates of com-
plex systems. RMT was introduced 50 years ago by
Wigner as a tool to describe the statistical properties of
the eigenvalues of complex nuclei. Until recently, the ma-
trices in the frame of RMT were assumed to be homoge-
neous, i.e., all matrix elements were set to have identical
statistical properties. Under this simplification random
matrices are rotationally invariant, a property that sim-
plifies their theoretical analysis. In physical applications
this implies that interactions are assumed to be so strong
and complex that no other parameters, apart from the
symmetry of the Hamiltonian matrix, are relevant. As
a result, such random matrices can be associated to the
extreme case of maximal chaos, which is known to ap-
pear in various physical systems such as heavy nuclei,
atoms, metallic clusters, etc. Moreover, one can treat
full random matrices as a typical model when describ-
ing local statistical properties of spectra and eigenstates
in some range of the energy spectrum, typically, in the
semiclassical region.

On the other hand, the conventional RMT can not de-
scribe important phenomena such as localization of eigen-
states, neither can be directly applied to obtain spectra
of realistic models. For this reason, much attention has
been recently paid to the so-called Wigner Band Ran-
dom Matrix (WBRM) model which is characterized by
the free parameter b, that represents the effective band-
width of a Hamiltonian matrix. Among the important
applications of the WBRM model we mention the study

of localization in quasi-one-dimensional disordered sys-
tems. Also the WBRM model has been applied to the
analysis of either chaotic or complex conservative quan-
tum systems that are present in nuclear physics as well
as in atomic and molecular physics.

Despite its success, the standard WBRM model has
severe limitations in modeling realistic systems. We ex-
plain these limitations in section II, and further motivate
the introduction of a new RMT ensemble to which we re-
fer as the Winger Lorentzian Random Matrix (WLRM)
model. In Sec. III, the WLRM model is shown to have
a “parametric invariance” property which is characteris-
tic of any realistic system but is missing in the standard
WBRM model. The analysis of the local density of states
of the WLRM model is done in Sec. IV. The multifrac-
tal properties of the eigenstates of the WLRM ensemble
are analyzed in Sec.V. Our conclusions are summarized
in Sec. VI.

II. RMT MODELING

The pioneering work in this field has been done by
Wigner [1], who has motivated the studies of RMT mod-
els of the type

H = E + xB . (1)

Both E and B are real symmetric matrices of size N×N .
The elements of the diagonal matrix E are the ordered
energies {En}, with mean level spacing ∆, while B is a
banded random matrix which is characterized by a band
profile C(r). Namely, the entries of B are random num-
bers that are drawn from a normal distribution with zero
mean and variance given by

〈|Bnm|2〉 = C(n − m) . (2)

For the study of spectral statistics of the energy levels it
turns out that full matrices (C(r) = 1), say of the Gaus-
sian Orthogonal ensemble (GOE), are enough in order
to capture the universality which is found in quantized
chaotic system. But for the study of parametric evolu-

tion of the eigenstates it is essential to take into account
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the band profile, which is dictated by semiclassical con-
siderations. Namely, C(r) is merely the scaled version of

a classical power spectrum C̃(ω) which is obtained via a
Fourier transform of the classical correlation function of
the generalized force F(t) = −∂H/∂x.

A. The standard WBRM model

The standard WBRM model assumes a rectangular
band profile:

C(r) =

{

1 r ≤ b
0 r > b

. (3)

For this model Wigner has found that the eigenstates
undergo a transition from a perturbative Lorentzian-type
line shape to a non-perturbative semicircle line-shape. It
should be clear that the Wigner Lorentzian can be re-
garded as the outcome of perturbation theory to infinite
order, while the semicircle line-shape is beyond any order
of perturbation theory.

The existence of a transition from a perturbative to a
non-perturbative line shape is a generic feature of any

realistic (quantized) Hamiltonian. In the latter case the
semi-circle line-shape is replaced by a semi-classical line
shape.

B. The modified WBRM model

The WBRM model suffers from a serious drawback.
Unlike generic canonically quantized Hamiltonians, the
statistical properties of its Hamiltonian matrix are not in-
variant under x → x+const. In fact there exists two wise
modified versions of the WBRM model [12, 13] which are
manifestly x invariant by construction. For example we
cite one of them:

H = E + cos(x)B1 + sin(x)B2 (4)

Here B1 and B2 are uncorrelated banded matrices. It is
quite easy to be convinced that this model is x invariant.
One simply has to set x → x+const, to expand the sin()
and the cos(), to define B

′
1 and B

′
2, and to observe that

they are uncorrelated with the same band profile as B1

and B2.
However there is a “price” for using such modified

model. It is not difficult to prove that the parametric
nature of this model is essentially perturbative: The as-
sociated local density of states does not exhibit the non-
perturbative crossover that has been highlighted in the
previous subsection!

C. The Winger Lorentzian Random Matrix model

In the present paper we introduce a new RMT ensem-
ble to which we refer as the Winger Lorentzian Random

Matrix (WLRM) model. The Hamiltonian is assumed to
have the standard form of Eq.(1), and it is characterized
by the band profile

C(r) =
1

1 + (r/b)
2 . (5)

There are several good reasons that motivate the intro-
duction and the study of this model, which we are going
to clarify:

(1) There is a major class of quantized chaotic systems
that can be described using this model.

(2) Unlike the standard WBRM model it has the de-
sired x invariance property that characterizes quan-
tized models.

(3) Unlike the common x invariant version of the
WBRM model it exhibits the transition to a non-
perturbative line shape.

(4) The emergence of multifractality, which is absent in
the WBRM model, is a fascinating issue by itself.

Let us expand on the first point. We recall that the
flat band profile of the standard WBRM model is mo-
tivated by the realization that many observables (say
F(t)) of chaotic systems exhibit “white” power spec-

trum: C̃FF (ω) ∼ const. However, in many cases it is

G(t) = Ḟ that has the “white” power spectrum [2, 3].

In the latter case the relation C̃FF(ω) = C̃GG(ω)/ω2 im-
plies Lorentzian tails.

III. PARAMETRIC INVARIANCE

An important feature of a generic canonically quan-
tized Hamiltonian H(Q, P ; x) is its parametric x invari-
ance. Given x∗ we can represent the Hamiltonian by a
matrix

H = E + δxB (6)

where δx = x − x∗. If we take two different values of x∗

we get two different B matrices. But if the two values
of x∗ belong to the same classically small window, then
(by definition) the band profile C(r) comes out the same.
Still from a quantum mechanical point of view a classi-
cally small range of x values is typically regarded as huge.
This means that in general, quantum perturbation the-
ory cannot be used in order to describe the parametric
evolution within this range.

In Fig. 1 we present C(r) for the standard WBRM
model and for the WLRM model. We see that the profile
of the perturbation matrix B of the WBRM model is de-
formed as x is increased, while that of the WLRM model
remains the same. We have found out that this x invari-
ance does not hold for other (non-Lorentzian) power law
profiles. As examples, in Fig. 2 we present the profiles
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FIG. 1: (a) The band profile C(r) of the standard Wigner
model using b = 500 and x∗ = 0, 0.1, 1, 3, 7, 15, 31, and 63.
(b) The band profile C(r) of the Lorentzian Wigner model
with b = 1 and x∗ = 2.5, 27, 277, and 2777. The dashed line
in the inset of (b) with decay ∼ r−2 is plotted to guide the
eye.

of B for increasing x in the case of the power-law profile
C(r) = [1 + (r/b)µ]−1 with µ = 0.5 and 5. We conclude
that the x invariance is a unique property of the WLRM
ensemble.

IV. LDOS ANALYSIS

The local density of states (LDOS) is the major tool
for the characterization of the parametric evolution of
the eigenstates. The overlap of the eigenstates |n(x)〉
for a given value of x with the eigenstate |m(0)〉 of the
x = 0 Hamiltonian is P (n|m) = |〈n(x)|m(0)〉|2. This
can be regarded as a distribution with respect to n. By
averaging over the reference level m we get the line shape
P (n − m). Up to trivial scaling this is the LDOS.

The considerations that are required in order to gener-
alize the calculation of the LDOS line shape for a general
band profile have been introduced in [6, 8]. Here, we ap-
ply such methodology in order to analyze the parametric
evolution of the LDOS for the WLRM model.

For x = 0 the LDOS is trivially P (r) = δr,0 due to
orthogonality. As x increases, perturbative tails start to
appear. By employing standard first-order perturbation
theory we get PFOPT(r) ≈ 1 for r = 0, while

PFOPT(r) =
x2|Bnm|2
(En−Em)2

=
x2

∆2

b2

(b2 + r2)

1

r2
(7)

for r 6= 0. In the second equality we have substituted
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FIG. 2: The band profiles for the power law matrix C(r) =
[1 + (r/b)µ]−1 with (a) µ = 0.5 and (b) 5. b = 1. In (a)
x∗ = 2.5, 27, 277, and 2777. In (b) x∗ = 0.13, 1.4, 14, and
144. The dashed line in the inset of (a) [(b)] with decay
∼ r−0.5 [∼ r−5] is plotted to guide the eye.

the matrix elements of B using Eq. (5). The above ex-
pression applies for x < xc where xc is the perturbation
strength needed to mix neighboring levels only.

For x > xc Wigner had found, in the frame of the
WBRM model, that the LDOS line shape can be calcu-
lated using perturbation theory to infinite order. In case
of the WBRM model one obtains a Lorentzian. Assum-
ing the validity of infinite order perturbation theory we
come out with a Lorentzian-type approximation for the
LDOS of the WLRM model:

PPRT(r) =
x2|Bnm|2

Γ2 + (En−Em)2

=
x2

∆2

b2

(b2 + r2)

1

[(Γ/∆)2 + r2]
. (8)

Eq. (8) is an approximation because all orders of pertur-
bation are treated within a Markovian-like approach (by
iterating the first order result) and convergence of the
expansion is pre-assumed. The energy scale Γ defines
the region where a non-perturbative mixing of levels oc-
curs. Inside this region the perturbative profile PPRT(r)
does not describe the actual LDOS lineshape. Γ is de-
termined by imposing normalization of PPRT(r). For the
WBRM model it was found [1] that Γ = x2C(1)/∆. For
the WLRM model we get

Γ =
b∆

2

[
√

1 +
4πx2

b∆2
− 1

]

. (9)
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FIG. 3: The LDOS lineshape P (r) in the (a) standard pertur-
bative, (b) extended perturbative, and (c) non-perturbative
regimes for the WLRM model with b = 1, ∆ = 1, and
N = 5000. For this set of parameters xc ≈ 0.8 and xprt ≈ 1.5.
The first-order perturbation theory profile PFOPT(r) from
Eq. (7) is included in (a). The Wigner-type lineshape PPRT(r)
from Eq. (8), which is expected to be valid in the perturbative
regime, is also included (no fitting parameters) in (b) and (c).
The dashed line in the insets of (a) and (b) with decay ∼ r−4

is plotted to guide the eye. The gray line in the inset of (c)
is a semicircle fitting to P (r).

Obviously, for Γ ≪ ∆ the (infinite-order) LDOS profile
PPRT(r) reduces to the standard first-order perturbation
theory expression PFOPT(r). Therefore xc can be deter-
mined by the condition Γ(xc) ≈ ∆, leading to

xc ≈ ∆√
π

√

1 +
1

b
. (10)

In Fig. 3 we display our numerical results for P (r)
for the WLRM model with b = 1, ∆ = 1, N = 5000,
and various perturbation strengths x. We see that the
agreement with the perturbative expression (8) persist up
to some perturbation strength xprt. Above xprt the LDOS
lineshape P (r) becomes semicircle in complete analogy
with the WBRM model scenario.

We want to find the value xprt up to which the pertur-
bative expression PPRT(r) describes reasonably good the
LDOS lineshape. To this end we compare the dispersion
of PPRT(r),

δEPRT = ∆ ×
√

∑

r

r2PPRT(r) , (11)

to the dispersion of the actual LDOS [6]

δE = x
∑

r 6=0

C(r) . (12)

Expressions for δEPRT and δE in case of our WLRM
model can be obtained by replacing the sums above by
integrals:

δEPRT ≈ x
√

π b(b + Γ/∆)−1/2 , (13)

δE ≈ x
√

2b [π/2 − arctan(1/b)]
1/2

. (14)

Note that for small x, δEPRT = δE ≈ x(πb)1/2. δE is a
linear function of x for all perturbation strengths while
for large enough x δEPRT becomes sublinear: δEPRT ∝
x1/2. See Fig. 4. The border xprt is identified as the
perturbation strength for which δEPRT(xprt) ≈ γδE(xprt),
where γ < 1:

xprt ≈ ∆
√

b

√

π − 2γ2[π/2 − arctan(1/b)]

2γ2[π/2 − arctan(1/b)]
. (15)

We typically use γ = 0.8.
The validity of Eqs. (8), (13), and (14) is confirmed in

Fig. 4 for b = 100, ∆ = 1, and N = 5000. There, we
observe excellent agreement between the expressions for
δEPRT and δE and the corresponding numerics. To verify
the validity of Eq. (8) we compare the 50% probability
width (defined as the energy width of the central r region
that contains 50% of the probability) of P (r) to that of
PPRT(r) finding reasonable good agreement for x < xprt,
as expected.

Does the LDOS analysis capture all the features of the
eigenstates? The answer turns out to be negative. In
case of the WBRM model there is still another regime
which is not captured by the LDOS analysis. Namely,
for x > x∞ where x∞ = b3/2xc the eigenstates of the
Hamiltonian become exponentially localized. This is the
well known Anderson (strong) localization effect. For
x > x∞ the Hamiltonian is essentially H = B as if the
diagonal E does not exist. Do we have an analogous type
of crossover in case of the WLRM model? The answer
must be positive because we know [14] that in case of the
WLRM model, the Hamiltonian H = B has multifractal
(rather than localized) eigenstates.

V. MULTIFRACTALITY

The multifractal structure of the eigenstates is com-
monly characterized by the fractal dimension D2 which
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line) from Eq. (9). For this set of parameters xc ≈ 0.57 and
xprt ≈ 5.35.

is associated with the scaling of the inverse participation
ratio. Given an eigenstate of H which is represented by
a column vector Ψn we define the participation ratio as

N2 =

[

∑

n

|Ψn|4
]−1

. (16)

The exponent D2 is defined via the scaling relation

N2 ∝ ND2 . (17)

where N2 ≡ exp(〈lnN2〉). The measure N2 constitutes
an estimate for the typical number of non-zero eigen-
function components of the column vector. For a local-
ized state it equals a constant number and hence D2 = 0,
while for an extended non-fractal state it is proportional
to the size of the matrix N and hence D2 = 1. In gen-
eral one finds 0 < D2 < 1. The fractal dimension D2

manifests itself in a variety of physical circumstances.
As examples we mention the conductance distribution
in metals [15, 16], the statistical properties of the spec-
trum [16], the anomalous spreading of a wave-packet, the
spatial dispersion of the diffusion coefficient [17] and the
anomalous scaling of delay times [18].
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FIG. 5: 〈lnN2(x)〉 as a function of x for N = 128, 256, 512,
and 1024. The bandwidth is b = 100(◦), 40(2), 10(3), 4(△),
1(�), 0.4(▽), 0.1(�), 0.04(+), and 0.01(×).

In [14] it was shown that the fluctuations of N2/N2

for H = B are characterized by a universal probability
distribution. A theoretical estimation [19] gives

D2 =

{

1 − (πb)−1 b ≫ 1
2b b ≪ 1

. (18)

We notice that D2 = D(b) gives a global fit for the fractal
dimension, where we define

D(b) =
1

1 + (2.34b)−1
. (19)

Note that (19) is also in agreement with the numerical
found [20] value D2 ≈ 0.7 for b = 1. For sake of later
analysis we have found that the associated proportional-
ity factor in Eq. (17) is exp(−G(b)) where

G(b) ≈ 1

1 + (1.23b)−1
. (20)

Thus, based on the above, we may say that for x = ∞
we expect to have multifractal eigenstates. We turn now
to discuss the more general case of finite x. We want to
see how the multifractality emerges as we increase x form
zero to infinity.

In the numerics we assume without loss of generality
that the mean level spacing is ∆ = 1. This implies that
for b > 1 the threshold for mixing of levels is xc = π−1/2,
while for b < 1 it is xc = (πb)−1/2. Our main interest
is in the non-trivial regime x > xc. In Fig. 5 we plot
lnN2(x) for several values of b and N . We calculate the
average using 25% of the eigenstates at the middle of the
spectra from a number of realizations of B summing up
a total of 100, 000 data values for each (b, N).

Looking at Fig. 5 we see that for x = 0 we have
lnN2 = 0 because all the eigenstates have only one com-
ponent. We observe that this zero value persists up to a
point x = x0(b). In principle one can argue that x0(b)
should be of the order xc and (for b > 1) not larger than
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xprt ≈
√

bxc. However, from Eq. (19) it is clear that for
b > 100 we already have D2 ≈ D(∞) = 1. Therefore
the b dependence of x0 can be neglected, and in prac-
tice cannot be detected. We shall see below that for any
practical purpose one can take x0 ≈ 0.15.

As x is increased beyond x0 the participation ratio N2

becomes larger. As long as x is not too large the E term
in the Hamiltonian dominates, and therefore the size of
the matrix is of no importance. Indeed, we see that the
curves in Fig. 5 are N independent for small x values.
From this plot we find that the slope of the curves is
given by

F (b) ≈
{

0 b < 0.1
0.57 + 0.2 ln(b) b ≥ 0.1

. (21)

For large enough x, the value of lnN2(x) saturates to
the x = ∞ multifractal result. We call the crossover
point x∞. Using the knowledge of both the x < x∞

behavior (as described in the previous paragraph), and
the x > x∞ behavior (saturation), we deduce that

x∞(N ; b) = x0e
−G(b)/F (b)ND(b)/F (b) . (22)

Putting together all the above findings we end up with
the following global scaling relation for the participation
ratio:

N2(x) =







≈ 1 x < x0

(x/x0)
F (b) x0 < x < x∞(N ; b)

e−G(b)ND(b) x > x∞(N ; b)
. (23)

In Fig. 6 we demonstrate this scaling. We plot
lnN 2(x)/ lnN 2(∞) as a function of the scaled vari-
able F (b) ln(x/x0)/ lnN 2(∞). We see clearly the triv-
ial crossover at x = x0 and the non-trivial crossover to
multifractality at x = x∞.

Possibly it is more instructive to describe the behavior
of N2 as a function of N for a given x. The interesting
case is to have a fixed value of x which is much larger
than x0. As we increase N we have a multifractal growth
N2 ∝ ND2 . This goes on as long as x∞(N ; b) remains
smaller than x. After that N2 reaches saturation, as
implied by Eq. (23). The saturation value is related to
the “width” of the LDOS, and hence has an algebraic
dependence on the dimensional strength (x/x0) of the
perturbation [8]. It is pleasing to note that for b ∼ 1 we
observe F (b) ≈ 2/3 which is related to considerations as
in [8].

VI. CONCLUSIONS

We have analyzed the parametric evolution of eigen-
states for the WLRM model. Both, the standard WBRM
and the WLRM models, exhibit a crossover from a per-
turbative regime where the LDOS is Lorentzian-like to a
non-perturbative regime where the LDOS is semicircle-
like. However, there is in both cases an additional
crossover which is not captured by the conventional
LDOS analysis: In the case of the standard WBRM
model it is the well studied crossover to an Anderson
localization regime, where the eigenstates become expo-
nentially localized; In the case of the WLRM model it is
the emergence of multifractality.

We have also shown that the WLRM model possess
the x invariance property, absent in the standard WBRM
model and in other models that do not have a Lorenzian
band profile. Both the non-perturbative crossover and
the x invariance property characterize realistic quantized
Hamiltonians.
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[18] J. A. Méndez-Bermúdez and T. Kottos, Phys. Rev. B 72,
064108 (2005).

[19] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada,
and T. H. Seligman, Phys. Rev. E 54, 3221 (1996).

[20] I. Varga, Phys. Rev. E 66, 094201 (2002).


