Semi-linear response of energy absorption

Doron Cohen, Ben-Gurion University

Collaborations:

Tsampikos Kottos (Wesleyan)
Holger Schanz (Gottingen)
Michael Wilkinson (UK)
Bernhard Mehlig (Goteborg)
Swarnali Bandopadhyay (BGU)
Yoav Etzioni (BGU)
Alex Stotland (BGU)
Rangga Budoyo (Wesleyan)
Tal Peer (BGU)
Nir Davidson (Weizmann)

Discussions:

Yuval Gefen (Weizmann)
Shmuel Fishman (Technion)

ISF, GIF, DIP, BSF
Diffusion and Energy absorption

Driven chaotic system with Hamiltonian $\mathcal{H}(X(t))$

$X = \text{some control parameter}$

$\dot{X} = \text{rate of the (noisy) driving}$

$\sim \text{diffusion in energy space:}$

$D = G_{\text{diffusion}} \overline{\dot{X}^2}$

$\sim \text{energy absorption:}$

$\dot{E} = G_{\text{absorption}} \overline{\dot{X}^2}$

[Ott, Brown, Grebogi, Wilkinson, Jarzynski, D.C.]

There is a dissipation-diffusion relation.

In the canonical case $\dot{E} = D/T$.

Below we use for G scaled units.
Models

\[\mathcal{H} = \{E_n\} - X(t)\{V_{nm}\} \]

with:
- Stotland
- Davidson
- deformed boundary
- or point scatterer
- or Gaussian bump

with:
- Wilkinson
- Mehlig
- Metallic grain

with:
- Stotland
- Budoyo
- Peer
- Kottos
- Flux
Some results

Cold atoms in vibrating traps:

Metallic rings driven by EMF:
Digression: size distribution

Given a matrix that looks random \{V_{nm}\},

Consider the \textit{size distribution} of the elements.

Histogram of $\log(x)$ where $x = |V_{nm}|^2$

\begin{align*}
\text{Algebraic average:} & \quad \langle \langle x \rangle \rangle_a = \langle x \rangle \\
\text{Harmonic average:} & \quad \langle \langle x \rangle \rangle_h = [\langle 1/x \rangle]^{-1} \\
\text{Geometric average:} & \quad \langle \langle x \rangle \rangle_g = \exp[\langle \log x \rangle]
\end{align*}

$\langle \langle x \rangle \rangle_h \ll \langle \langle x \rangle \rangle_g \ll \langle \langle x \rangle \rangle_a$
Digression: random walk

$w_{nm} =$ probability to hop from m to n per step.

$$\text{Var}(n) = \sum_n [w_{nm} t] (n - m)^2 \equiv 2Dt$$

For n.n. hopping with rate w we get $D = w$.

The diffusion equation:

$$\frac{\partial p_n}{\partial t} = -\frac{\partial}{\partial n} J_n = D \frac{\partial^2}{\partial n^2} p_n$$

Fick’s law:

$$J_n = -D \frac{\partial}{\partial n} p_n$$

If we have a sample of length N then

$$J = -\frac{D}{N} \times [p_N - p_0]$$

$$D/N = \text{inverse resistance of the chain}$$

If the w are not the same:

$$\frac{D}{N} = \left[\sum_{n=1}^{N} \frac{1}{w_{n,n-1}} \right]^{-1}$$

Hence

$$D = \langle \langle w \rangle \rangle_n \quad \text{for n.n. hopping}$$
Digression: Fermi Golden rule

The Hamiltonian in the standard representation:

\[\mathcal{H} = \{E_n\} - X(t)\{V_{nm}\} \]

The transformed Hamiltonian:

\[\tilde{\mathcal{H}} = \{E_n\} - \dot{X}(t) \left\{ \frac{iV_{nm}}{E_n - E_m} \right\} \]

The FGR transition rate for \(\omega \sim 0 \) driving:

\[w_{nm} = 2\pi \left| \frac{V_{nm}}{E_n - E_m} \right|^2 \frac{|\dot{X}|^2}{\Gamma} \delta(\omega - (E_n - E_m)) \]

Note that the spectral content of the driving is

\[\tilde{S}(\omega) = |\dot{X}|^2 \delta(\omega - (E_n - E_m)) \]
Semi Linear Response Theory (SLRT)

\[\mathcal{H} = \{E_n\} - X(t)\{V_{nm}\} \]

\[\frac{dp_n}{dt} = -\sum_m w_{nm}(p_n - p_m) \]

\[w_{nm} = \text{const} \times g_{nm} \times \dot{X}^2 \]

\[g_{nm} = 2\varrho^{-3} \frac{|V_{nm}|^2}{(E_n - E_m)^2} \delta \Gamma(E_n - E_m) \]

\[\langle\langle |V_{mn}|^2 \rangle\rangle \equiv \text{inverse resistivity of the network} \]

\[D = \pi \varrho \langle\langle |V_{mn}|^2 \rangle\rangle \times \dot{X}^2 \equiv G \dot{X}^2 \]
Example: cold atoms in vibrating trap

The Hamiltonian in the $\mathbf{n} = (n_x, n_y)$ basis:

$$\mathcal{H} = \text{diag}\{E_n\} + u\{U_{nm}\} + f(t)\{V_{nm}\}$$

The matrix elements for the wall displacement:

$$V_{nm} = -\delta_{n_y,m_y} \times \frac{\pi^2}{M L_x^3} n_x m_x$$

The Hamiltonian in the E_n basis:

$$\mathcal{H} = \text{diag}\{E_n\} + f(t)\{V_{nm}\}$$

$$\langle\langle |V_{nm}|^2 \rangle\rangle_a \approx \frac{M v_E^3}{2\pi L_x^2 L_y}$$

$$\langle\langle |V_{nm}|^2 \rangle\rangle_g \approx \frac{4M^2 v_E^4}{L_x^3 L_y \omega_c^2} \exp \left[-M^2 v_E^2 (\sigma_x^2 + \sigma_y^2)\right] \times u^2$$

The SLRT result:

$$G_{\text{SLRT}} = q \exp \left[2\sqrt{-\ln q}\right] \times G_{\text{LRT}}$$
SLRT vs LRT

\[X = \text{some control parameter} \]
\[\dot{X} = \text{rate of the (noisy) driving} \]

The definition of the "conductance":
\[D = G \dot{X}^2 \]

LRT implies
\[D = \int G(\omega) |\dot{X}_\omega|^2 d\omega = \int G(\omega) \tilde{S}(\omega) d\omega \]

Within the framework of LRT
\[\tilde{S}(\omega) \mapsto \lambda \tilde{S}(\omega) \implies D \mapsto \lambda D \]
\[\tilde{S}(\omega) \mapsto \sum_i \tilde{S}_i(\omega) \implies D \mapsto \sum_i D_i \]

But there are circumstance such that e.g.
\[D = \left[\int R(\omega) \left[\tilde{S}(\omega) \right]^{-1} d\omega \right]^{-1} \]
Simplest illustration

\[S(\omega) \]

\[\omega_1 \]
\[\omega_2 \]

\[E \]

\[D \gg D_1 + D_2 \]
Example: energy absorption by metallic grains

Linear response theory:

\[
D = \sigma^2 \hbar \rho \int_0^\infty \text{d} \omega \omega^2 R_2(\hbar \omega) \tilde{S}(\omega)
\]

Semi-linear response theory:

\[
D = \sigma^2 \hbar \rho \int \frac{\text{d}x}{(2\pi)^{N/2}} e^{-x^2/2} \left[\int_0^\infty \text{d} \omega \frac{P_2(\rho \hbar \omega)}{\tilde{S}(\omega)} \right]^{-1}
\]

Level spacing statistics:

\[
P_2(s) \approx a_\beta s^\beta \exp(-c_\beta s^2) \quad \text{with } \beta = 1, 2, 4
\]

The LRT result of Gorkov and Eliashberg:

\[
G = C_\beta \sigma^2 (\hbar \rho)^{\beta+1} T^{\beta+2}
\]

Our SLRT result (large \(s \) statistics!):

\[
G = \frac{\sigma^2}{2\hbar \rho (\hbar \rho \omega_0)^{\beta-1}} \exp \left[-\frac{1}{\pi(\hbar \rho T)^2} \right]
\]
The conductance of metallic rings

Non interacting “spinless” electrons in a ring.

\[\mathcal{H}(r, p; \Phi(t)) \]

\[
-\dot{\Phi} = \text{electro motive force (RMS)} \\
G \dot{\Phi}^2 = \text{rate of energy absorption}
\]

\[
G = \pi \left(\frac{e}{L}\right)^2 \mathrm{DOS}^2 \langle \langle |v_{mn}|^2 \rangle \rangle
\]

\[
\langle \langle |v_{mn}|^2 \rangle \rangle_{\text{harmonic}} \ll \langle \langle |v_{mn}|^2 \rangle \rangle \ll \langle \langle |v_{mn}|^2 \rangle \rangle_{\text{algebraic}}
\]

\[\mathcal{M} \text{ mode ring of length } L \text{ with disorder } W \]
Numerical Results

Regimes: ballistic; diffusive; localization

- SLRT (Meso)
- LRT (Kubo)
- Drude

- results for the tight binding model
- results for untextured matrices
- results for log-normal RMT ensemble
- results for log-box RMT ensemble
Linear response theory (LRT)

\(\mathcal{H} = \{E_n\} - \frac{e}{L} \Phi(t) \{v_{nm}\} \)

\[
\mathbf{G} = \pi \left(\frac{e}{L} \right)^2 \sum_{n,m} |v_{mn}|^2 \delta_T (E_n - E_F) \delta_\Gamma (E_m - E_n)
\]

\[
\mathbf{G} = \pi \left(\frac{e}{L} \right)^2 \text{DOS}^2 \langle \langle |v_{mn}|^2 \rangle \rangle_{\text{algebraic}}
\]

applies if

EMF driven transitions \(\ll \) relaxation

otherwise

connected sequences of transitions are essential.

leading to

Semi Linear Response Theory (SLRT)
Bandprofile, sparsity and texture

\[G = \pi \left(\frac{e}{L} \right)^2 \text{DOS}^2 \langle \langle |v_{mn}|^2 \rangle \rangle \]

\[\langle \langle |v_{mn}|^2 \rangle \rangle \equiv \text{inverse resistivity of the network} \]

Bounds:

\[\langle \langle |v_{mn}|^2 \rangle \rangle_{\text{harmonic}} \ll \langle \langle |v_{mn}|^2 \rangle \rangle \ll \langle \langle |v_{mn}|^2 \rangle \rangle_{\text{algebraic}} \]

Analytical estimates:

- Mixed average scheme
- Variable range hopping scheme
Naive expectation (assuming $\Gamma > \Delta$):

$$G = \frac{e^2}{2\pi\hbar} \mathcal{M} \frac{\ell}{L} + \mathcal{O}\left(\frac{\Delta}{\Gamma}\right)$$

L = perimeter of the ring

ℓ = mean free path $\propto W^2$

ℓ_∞ = localization length $\approx \mathcal{M}\ell$

Ballistic regime: $L \ll \ell$

Diffusive regime: $\ell \ll L \ll \ell_\infty$

Anderson regime: $\ell_\infty \ll L$
Strategy of analysis

Given W ...

Characterization of the eigenstates:

- participation ratio (PR)

Characterization of v_{nm} and RMT modeling

- bandwidth
- sparsity (p)
- texture

Approximation schemes for G

- Mixed average
- Variable range hopping estimate
Ergodicity of the eigenstates

- **Weak disorder** (ballistic rings): Wavefunctions are localized in mode space.
- **Strong disorder** (Anderson localization): Wavefunctions are localized in real space.

The PR of eigenstates of a ring with a single scatterer. The horizontal axis is the reflection of the scatterer.

The PR of eigenstates of a ring with disorder. The horizontal axis is W.

The sparsity (p) of the perturbation matrix is related to the ergodicity of the eigenstates.
\{ |v_{nm}|^2 \} as a random matrix \{ X \}

The fraction of "large" elements:

\[p \equiv F(\langle X \rangle) \]

Sparsity: \(p \ll 1 \).

Histograms of \(X \):

Ballistic:

\(X \sim \text{LogNormal} \)

Localization:

\(X \sim \text{LogBox} \)
RMT based prediction for $G_{\text{SLRT}}/G_{\text{LRT}}$

RMT implied dependence on p

Log-normal distribution:

![Graph showing log-normal distribution](image1)

Log-box distribution:

![Graph showing log-box distribution](image2)
The VRH estimate

\[
G = \pi \hbar \left(\frac{e}{L} \right)^2 \sum_{n,m} |v_{mn}|^2 \delta_T (E_n - E_F) \delta_\Gamma (E_m - E_n)
\]

\[
G = \frac{1}{2} \left(\frac{e}{L} \right)^2 \varrho_F \int \tilde{C}_{qm}(\omega) \delta_\Gamma (\omega) \, d\omega
\]

\[
\tilde{C}_{qm}\text{-LRT}(\omega) \equiv 2\pi \varrho_F \langle X \rangle
\]
\[
\tilde{C}_{qm}\text{-SLRT}(\omega) \equiv 2\pi \varrho_F \overline{X}
\]

where by definition: \(\left(\frac{\omega}{\Delta} \right) \text{Prob}(X > \overline{X}) \sim 1 \)

For strong disorder we get:

\[
\overline{X} \approx v_F^2 \exp \left(-\frac{\Delta}{\omega} \right)
\]

\[
G \propto \int \exp \left(-\frac{\Delta}{|\omega|} \right) \exp \left(-\frac{|\omega|}{T} \right) \, d\omega
\]
LRT, SLRT and beyond

$-\dot{\Phi} = \text{electro motive force (RMS)}$

$G\dot{\Phi}^2 = \text{rate of energy absorption}$

Semi linear response theory

Beyond (semi) linear response theory

Conclusions

(*) Wigner (~ 1955):
The perturbation is represented by a random matrix whose elements are taken from a Gaussian distribution.

Not always...

1. Ballistic ring \implies log-normal distribution.
2. Strong localization \implies log-box distribution.
3. Resistors network calculation to get G_{SLRT}.
4. Generalization of the VRH estimate
5. SLRT is essential whenever the distribution of matrix elements is wide ("sparsity") or if the matrix has "texture".
6. Other applications of SLRT...