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Inspired by the studies of Shmuel Fishman and followers regarding “Dynamical localization”.





Dynamical localization

The kicked rotor model can be regarded as a 2 dof system with time-independent Hamiltonian, whose

energy surface is a cylinder of infinite length in the n (angular momentum) coordinate. The

observation of Fishman et al was that the eigenstates are n-localized, as in the Anderson model.

Features:

• Classically we have a chaotic sea in the range −∞ < n <∞.

• Classical: the spreading of a wavepacket feature diffusion with coefficient D.

• Quantum: the spreading stops after a breaktime t∗ that reflects the localization length ξ.

Issues:

• Consider generic models that have a finite chaotic sea (how to define localization?).

• Consider generic models that have more than 2 dof.

• Consider specifically thermalization scenario where the reaction coordinate exhibits diffusion.

• Generalize relation between diffusion (D) and localization (ξ).

• Define localization as lack of ergodicity (memory of initial conditions).

• Define localization as opposed to ergodicity in the classical limit (mobility border?).

• Exclude the possibility of localization due to fragmentation of the energy surface.

• Exclude the possibility of localization due to dynamical stability (mixed phase space).

• Exclude the possibility of perturbative localization.



Manifestation of localization in thermalization?
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Rate of energy transfer [FPE version]:

A(x) = ∂xD + (β1 − β2)D

For canonical preparation:
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The reaction coordinate is x:

x = refers to subsystem 1

E−x = refers to subsystem 2

For a Bose-Hubbard system,

the reaction coordinate might be

the occupation of the subsystem.

Hurowitz, DC (EPL 2011) - MEQ version

Tikhonenkov, Vardi, Anglin, DC (PRL 2013)] - FPE version

Bunin, Kafri (JPA 2013) - NFT version

Khripkov, Vardi, DC (NJP 2015) - Resistor network calculation of D(x)

Question: Do we have ξ = g(x)D(x) ?



The Bose Hubbard Hamiltonian

The system consists of N bosons in L sites.

Optionally we can add a gauge-field Φ.
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The two dimensionless parameters have a well defined value also in the GP limit.

L = 2, 3, 4, 5, 6

Bosonic Junction

STIRAP through chaos



Minimal configurations

Bosonic Junction

STIRAP through chaos

Dimer (L=2): Bosonic Josephson junction; Pendulum physics [1a].

Driven dimer: Landau-Zener dynamics [1b]; Kapitza effect [1c]; Zeno effect [1d]; Scars [1e].

Rings (L>2): Superfluidity [2a]; SF-Mott transition [2b].

Driven trimer: Many body STIRAP [3a]; Hamiltonian Hysteresis [3b]; Quasistatic transfer protocols [3c].

Coupled subsystems (L>3): Minimal model for Thermalization [4a,4b].

[1a] Chuchem, Smith-Mannschott, Hiller, Kottos, Vardi, DC (PRA 2010).

[1b] Smith-Mannschott, Chuchem, Hiller, Kottos, DC (PRL 2009).

[1c] Boukobza, Moore, DC, Vardi (PRL 2010).

[1d] Khripkov, Vardi, DC (PRA 2012)

[1e] Khripkov, DC, Vardi (JPA 2013, PRE 2013).

[2a] Arwas, DC (SREP 2015, NJP 2016, PRB 2017, PRA 2019).

[2b] Arwas, DC, Hekking, Minguzzi (PRA 2017).

[3a] Dey, DC, Vardi (PRL 2018, PRA 2019).

[3b] Burkle, Vardi, DC, Anglin (PRL 2019).

[3c] Winsten, DC (SREP 2021).

[4a] Tikhonenkov, Vardi, Anglin, DC, (PRL 2013).

[4b] Khripkov, Vardi, DC (NJP 2015, PRE 2018, PRA 2020).



Reminder about the trimer

The trimer with uL = 18 qualifies as a chaotic subsystem in the range 0.26 < ε < 1.23

• Normalized occupation of the second site (I2), and number of participating orbitals (γ−1)

• Level spacing statistics (r)

• Power spectrum S(ω) of the occupation coordinate



Expected diffusion coefficient

x = εR − εL

Sjk(ω; ε) = FT {〈Ij(t+ τ)Ik(t)〉}
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Agreement with FPE is not always good; Nevertheless D is a way to characterize the coupling.



Saturation profiles

• The inter-trimer coupling is v. Each column is for different v.

• The energy difference is x. Each row is for different x0.

Black line - ergodic dis-

tribution (DOS)

Black dots - based on

classical simulation

Blue squares - based on

quantum eigenstates

P∞(x) =
∑
n

| 〈E, x|En〉 |2 | 〈En|E0, x0〉 |
2

Note mirror symmetry

”by construction”

Boxed number = f∞



Ergodicity and localization regimes

Classically we have localization in the self-trapping region.

Quantum mechanically - in the periphery of the chaotic sea.

(gray region - both trimers are not chaotic)

f∞

〈|x|〉∞



Classical exploration of space

Inspired by Montroll and Weiss (1965): random walk on a lattice.

Spreading of a cloud:
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Exploration by a single trajectory:
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Example:

Random walk in 3D

t = 100 steps

explored volume ∼ 99

spreading radius ∼ 10

spreading volume ∼ 1000

Classical exploration for random walk on a lattice

N (t) ∼
√
D0t for d = 1

N (t) ∼
v0t

log(t)
for d = 2

N (t) ∼ v0t for d > 2



The breaktime concept

• Stationary view of strong localization: interference of trajectories.

• Scaling theory of localization: the importance of dimensionality.

• Dynamical view of strong localization: breakdown of quantum-classical correspondence.

tH [volume] =
2π

∆0
∝ volume

t � tH [N (t)] ; t∗ d=3d=1

N (t) =
√
D0t for d = 1 ; always localization

N (t) = c0 + v0t for d > 2 ; mobility edge

For diffusion in quasi-1D we get ξ = gD, where g is the DOS per length.

Chirikov, Izrailev, Shepelyansky [SovSciRevC 1981]; Shepelyansky [PhysicaD 1987];

Dittrich, Spectral statistics for 1D disordered systems [Phys Rep 1996];

DC, Periodic Orbits Breaktime and Localization [JPA 1998].



Phase space exploration

We propose a generalized QCC condition for the purpose of breaktime determination:

N cl(t) = Fqm
erg

[
NE

ΩE

]
Ωcl(t)

NE = total number of states within the energy shell (r0 dependent)

Fqm
erg = filling fraction for a quantum ergodic state, say = 1/3

ΩE = number of cells that intersect an energy-surface

Ωcl
t = explored phase-space volume during time t (starting at r0)

phase−space cells

E−surfaces

|〈rj|Eα〉|2

It is unavoidable to use in the semiclassical analysis

improper Planck cells. Namely, a chaotic eigenstate is

represented by a microcanonical energy-shell of thick-

ness ∝ ~d and radius ∝ ~0. For some preparations it

is implied that NE � ΩE rather than NE ∼ ΩE .

Cartoon: ΩE = 8, while NE = 5.

Proper Planck cell: ∆Q∆P > ~/2 for each coordinate.



Phase space formulation of the breaktime phenomenology

Quantum spreading follows classical spreading as long as

N qm(t) < N cl(t)

where
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[converted to Planck-cell units in the classical case]
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t
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Definition of N cl(t) inspired by Montroll and Weiss (1965)

Definition of N qm(t) follows Heller (1986)

Heller’s observation: the quantum exploration can be determined semiclassically
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∝ t [for short times]



Demonstration for trimer-monomer system

Red line - Semiclassical spreading

Green line - Quantum spreading

Blue line - classical exploration

Black line (dashed) - quantum exploration (scaled)

The breaktime is determined by the intersection of N qm(t) with N cl(t)
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erg Ωsc
t∗



Localization measures
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Chaos-assisted depletion

One should not under-estimate the importance of having mixed-chaotic phase-space...
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Φ < Φmts mtsΦ > Φ

ε ε

Quasistatic transfer protocols for atomtronic superfluid circuits, Yehoshua Winsten, DC (SREP 2021).



Main messages

• Dynamical localization is a generic effect for Hamiltonians, due to the appearance of a chaotic

sea. It manifest itself also for a many dof systems in regions of slow dynamics. Such regions are

generic, because mixed chaotic phase-space (rather than hard-chaos) is the general case.

• The breaktime picture provides a way to relate localization to slow phase space exploration. We

use the term ”exploration” in the sense of Montroll and Weiss. Quantum dynamics can follow

classical dynamics as long as N qm(t) < N cl(t).

• Dynamical localization typically manifests itself in the periphery of the chaotic sea. Given Planck

cell (”hbar”), we have demonstrated that the mobility border can be determined from classical

simulations (no fitting parameters).

• Dynamical localization is relevant for the analysis of thermalization. It can be a strong effect

(lack of thermalization), or a weak effect (memory of initial conditions).

• Dynamical localization is possibly relevant for the analysis of chaos-assisted depletion. The latter

requires migration via a chaotic-corridor that is formed during the coalescence of separatrices.


