
PHYSICAL REVIEW A 99, 033623 (2019)

Many-body adiabatic passage: Quantum detours around chaos
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We study the many-body dynamics of stimulated Raman adiabatic passage in the presence of on-site
interactions. In the classical mean-field limit, explored in A. Dey et al. [Phys. Rev. Lett. 121, 250405 (2018)],
interaction-induced chaos leads to the breakdown of adiabaticity under the quasistatic variation of the parameters,
thus producing low-sweep-rate boundaries on efficient population transfer. We show that for the corresponding
many-body system, alternative quantum pathways from the initial to the target state open up at even slower sweep
rates. These quantum detours avoid the chaotic classical path and hence allow a robust and efficient population
transfer.
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I. INTRODUCTION

Adiabatic passage is a major tool of quantum control
and quantum state engineering. For two-level systems, the
Landau-Zener-Stuckelberg-Majorana (LZSM) linear crossing
[1–4] has been a prominent paradigm. Three-level config-
urations offer, in addition to Landau-Zener-like rapid adia-
batic passage (RAP) schemes, also the possibility of stimu-
lated Raman adiabatic passage (STIRAP) [5,6], in which an
interference-induced dark state allows for the efficient transfer
of population from the source to target state without projection
onto an intermediate (often spontaneously decaying) state.

A. Nonlinear adiabatic passage

Advances in the field of Bose-Einstein condensation of
dilute atomic gases have triggered great interest in generaliza-
tions of adiabatic passage scenarios to many-body interacting
systems. Interactions were shown to have a dramatic effect on
two-mode (Bose-Hubbard dimer) sweep physics, with power-
law dependence of remanent populations on sweep duration
and finite nonadiabatic fractions at slow driving rates be-
yond a critical interaction strength. Interaction-induced effects
were obtained both in the classical nonlinear mean-field limit
[7–13] and in semiclassical or quantum many-body treatments
[11,14–18]. Similar behavior was obtained for coupled atomic
and molecular condensates [19–27]. A common denominator
for all these studies is the connection between the nonlinear
effect and energetic stability. The unique nonlinear behavior
is universally attributed to the emergence of a separatrix,
containing a hyperbolic instability.

The effects of interactions on three-mode adiabatic
schemes [28–32] are not as well studied as their two-mode
counterparts. An attempt to extend the two-mode idea that
nonadiabaticity can be determined from energetic stability
analysis was made in Ref. [28]. Mean-field adiabatic station-
ary points (SPs) for nonlinear RAP and STIRAP were found,
and the appearance of a so-called horn avoided crossing in
the adiabatic energy diagram was consequently linked to the

loss of adiabaticity at low sweep rates. However, as pointed
out in [33], the three-mode system offers richer physics than
its two-mode counterpart due to its inherent nonintegrability.
Specifically, energetic stability of a SP is insufficient to de-
termine its dynamical stability because classical trajectories
can diverge within a single multidimensional energy surface,
containing both chaotic and quasi-integrable domains [34].
Consequently, adiabatic passage efficiency may be affected by
the appearance of phase-space structures which are not mani-
fested in the stationary-point energy diagrams. The analysis of
adiabatic passage involving such structures goes well beyond
the LZSM paradigm or any of its nonlinear extensions.

B. Nonlinear STIRAP through chaos

In Ref. [33], we showed that the loss of adiabaticity during
nonlinear STIRAP with repulsive interaction is not related to
energetic instability. Instead, adiabaticity breaks down at slow
sweep rates due to dynamical instability, which has no trace
in the energy bifurcation diagram. This dynamical instability
corresponds to the embedding of the followed SP in chaotic
strips that emerge within its energy surface. The outcome
of this breakdown mechanism is that classical adiabaticity
may be restored by faster variation of the control parame-
ter to guarantee that the chaotic interval is traversed before
ergodization takes place. Thus, in addition to the standard
upper sweep-rate boundary required to ensure efficient adia-
batic transfer, there exists also a lower sweep-rate boundary
that ensures successful passage through chaos. This lower
boundary increases with the interaction until it coincides with
the higher boundary, thus making efficient population transfer
impossible beyond a critical interaction strength.

C. Quantum detours around chaos

In this work, we go beyond the classical mean-field picture
and study the many-body quantum dynamics of STIRAP
in the presence of interparticle interactions. Similar to the
quantum two-mode case, classical adiabaticity corresponds
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to a series of diabatic transitions through avoided crossings
between the many-body adiabatic eigenstates. This classi-
cally adiabatic path is interrupted during chaotic intervals
when the followed SP becomes dynamically unstable and the
corresponding many-body state loses one-particle coherence.
However, due to a diabatic-to-adiabatic transition through a
single many-body avoided crossing, quantum detours open
up, which avoid the classically chaotic regions in phase space
and reenable efficient population transfer from the initial to
the target mode.

Outline. The quantum many-body model is presented in
Sec. II. Numerical many-body simulations are presented and
interpreted in terms of “adiabatic passage through chaos” and
“quantum detours” in Sec. III. Conclusions are provided in
Sec. IV.

II. THE MANY-BODY MODEL

A. The Bose-Hubbard trimer Hamiltonian

The many-body dynamics of STIRAP in the presence of
on-site interaction is modeled by the time-dependent Bose-
Hubbard trimer Hamiltonian [28,35–42] for N particles in
three second-quantized modes that can be either spatial lattice
sites or internal atomic states:

H = E n̂2 + U

2

3∑
j=1

n̂2
i − 1

2
(�p(x)â†

2â1 + �s(x)â†
3â2 + H.c.).

(1)

Here, â j and â†
j are bosonic operators with associated occupa-

tions n̂ j ≡ â†
j â j . The interaction strength is U , while E is the

middle-site bias, equivalent to the one-photon detuning of the
optical scheme [5,6]. The couplings are Gaussian Stokes and
pump pulses

�s,p(x) = Ke−(x−xs,p)2
, (2)

which depend on the dimensionless parameter x. The stan-
dard realization is a simple constant-rate sweep x(t ) = t/τ ,
with a “counterintuitive” sequence xp − xs > 0, as shown in
Fig. 1(a).

The dimensionless characteristic parameters of the trimer
Hamiltonian of Eq. (1) are the interaction u = UN/K , the
couplings κp,s = �p,s/K , and the detuning ε = E/K . We also
define an effective interaction parameter,

ueff(x) = UN√
�2

p(x) + �2
s (x)

, (3)

that reflects the x dependence of the couplings. This quantity
is largest in the early and late stages of the process, when the
linear coupling terms are small [see Fig. 1(b)].

B. Classical stability and chaos

In the classical limit of the trimer Hamiltonian (see
Appendix A) the field operators â j are replaced by c numbers
a j = √

n jeiφ j . The classical motion thus has three degrees
of freedom, with {n j, φ j} j=1,2,3 serving as conjugate action-
angle coordinates. Due to conservation of N , the classical

FIG. 1. Many-body STIRAP: (a) The STIRAP pulse scheme
with the Stokes pulse preceding the pump. Here and below, the
classically chaotic intervals and avoided horn crossings are marked
by shaded regions and vertical dotted lines, respectively. Here, they
are shown for u = 0.2. The detuning here and throughout the paper
is ε = 0.1. (b) The effective nonlinearity ueff(x) for u = 0.1 (dotted
blue line), 0.2 (solid black line), and 0.3 (dash-dotted red line). The
marked region corresponds to the magnitude of the imaginary part
of the characteristic Bogoliubov frequencies around the followed
classical SP, i.e., to the region of dynamical instability: The followed
SP is embedded in chaos when ueff is inside the shaded region.

phase-space reduces to two freedoms (two population imbal-
ances and two conjugate relative phases). Adiabatic classical
motion corresponds to preparing the system near one of the
stationary points in this four-dimensional (4D) phase space
and following it, as it translates due to the slow variation of x,
to the target state. Specifically, in linear STIRAP the followed
SP is

n1 − n3 = N[cos2 ϑ (x) − sin2 ϑ (x)],

φ1 − φ3 = π, n2 = 0, (4)

translating from the first mode to the third mode as the mixing
angle ϑ (x) ≡ tan−1[�p(x)/�s(x)] varies from 0 to π/2.

Similar adiabatic paths from the initial state to the target
state can be found in the presence of moderate interaction
[28,33]. The nonlinearity of the classical equations of motion
with any given u �= 0 means we should study the stability of
the followed SP at any value of x during its evolution. This
can be done using either Bogoliubov analysis (Appendix B) or
numerical simulation (Appendix C). We distinguish between
energetic stability and dynamical stability. The former term
applies if the SP is situated at a local minimum or a local
maximum of the energy landscape. In Fig. 1(a), energetic
stability is lost for the pertinent parameters in between the two
vertical dotted lines. These lines correspond to the avoided
horn crossing of Ref. [28].

By contrast, dynamical instability is indicated by complex
Bogoliubov frequencies. In our case, dynamical instability is
associated with the embedding of the followed SP in chaotic
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strips in phase space (Appendix C). The imaginary part of the
Bogoliubov frequencies thus corresponds to a rate 1/ts, where
ts is a characteristic time for spreading within the chaotic strip.
The marked region in Fig. 1(b) images this rate at various in-
teraction strengths. For any given u, the chaotic interval during
which the SP is embedded in chaos is determined from the x
range where ueff is inside this dynamical instability region.
For example, the shaded interval in Fig. 1(a) corresponds to
the duration where the u = 0.2 solid line in Fig. 1(b) enters
the unstable region. For any given u we denote the width of
this chaotic interval as ξs.

C. Eigenstates and their purity

Due to total number conservation, the Hilbert space of the
quantum many-body system is spanned by the Fock basis
states,

|n, n2〉 = 1√
N!

(â†
1)

N−n2+n
2 (â†

2)n2 (â†
3)

N−n2−n
2 |vac〉,

where n2 = 0, 1, . . . , N is the intermediate site’s occupation
and n = n1 − n3 = −(N − n2), . . . , N − n2 is the population
imbalance between the outer sites. Representing the Hamilto-
nian in this basis, we find the many-body adiabatic eigenstates
|ν〉 that diagonalize the Hamiltonian at each instant x,

H(x)|ν(x)〉 = Eν (x)|ν(x)〉. (5)

(throughout the manuscript, energy is given in units of K)
The one-particle coherence of any many-body state |�〉 is
quantified by its purity

γ = Tr([ρ (sp)]2), (6)

where ρ
(sp)
i, j ≡ (1/N )〈�|â†

i â j |�〉 is the reduced single-particle
density matrix. The trimer’s coherent states are characterized
by γ = 1, whereas completely incoherent states have γ =
1/3. In Fig. 2(a), we plot the many-body adiabatic energies
as a function of x, color-coded according to the one-particle
coherence of the corresponding eigenstates.

D. The participation number

Given an arbitrary many-body state |�〉, we can expand it
in the many-body adiabatic eigenstate and define

pν = |〈ν|�〉|2. (7)

This is essentially the local density of states with respect to
the reference �. From this distribution one can extract the
participation number,

PN = 1∑
ν p2

ν

. (8)

This quantity corresponds to the number of adiabatic eigen-
states that participate in the wave packet |�〉.

In a strictly adiabatic STIRAP process the time-dependent
state �(t ) is an instantaneous eigenstate of the H(x) Hamilto-
nian at any moment. The time-dependent PN is calculated in
the adiabatic basis. Strict adiabaticity means that PN(t ) ≈ 1
at any moment.

FIG. 2. Quantum vs classical spectra. (a) The many-body adi-
abatic eigenenergies Eν (x) for an N = 8 particle system with u =
2ε = 0.2. Each line is color-coded according to the one-particle
purity γ of the eigenstate. (b) The energies ESP(x) of the classical
SPs. In the absence of chaos the SPs can support coherent many-body
eigenstates.

III. QUANTUM DYNAMICS

A. Numerical simulations

Consider first the case of linear STIRAP (u = 0). The
system is prepared with all particles occupying the first mode,
namely, |�(x = 0)〉 = |N, 0〉. The adiabatic sweep from x =
0 to x = x f transfers the population to the third mode [|�(x =
x f )〉 ≈ | − N, 0〉] by following the coherent dark eigenstate,

|SP〉x = 1√
N!

(cos ϑ (x)â†
1 − sin ϑ (x)â†

3)N |vac〉. (9)

The dark state (9) does not project on the intermediate mode at
any time (〈n2〉x = 0). This state is labeled SP because it corre-
sponds to a semiclassical minimal wave packet, supported by
the classical SP whose energy is E [SP] = 0.

As shown in Fig. 2(b), a similar SP (the classical state
whose energy is initially E [SP] = u/2) is followed in the case
of nonlinear STIRAP with repulsive interaction (u > 0). How-
ever, unlike in the linear case, one-particle coherence is not
maintained when this point becomes dynamically unstable.
Figure 3 shows a close-up of the many-body adiabatic spec-
trum in the vicinity of the followed classical SP’s energy. The
one-particle purity along the classical adiabatic path is close to
unity, except during the classically chaotic intervals. This is so
because when the dynamics becomes chaotic, the phase-space
distribution of the many-body eigenstate is spread nearly
uniformly throughout the chaotic strip and does not resemble a
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FIG. 3. (a) The many-body adiabatic eigenenergies Eν (x) for
N = 30 and u = 0.1. Lines are color-coded as in Fig. 2. Magenta
squares indicate the energy of the followed classical SP. (b) The
one-particle purity of the many-body adiabatic eigenstates along
the classical path (upper blue line) and the participation number of
coherent states corresponding to the followed classical SP (lower red
line).

localized coherent state. Similarly, if we plot the participation
number of a coherent state |SP〉x that corresponds to the
followed classical SP [slightly different from Eq. (9) due to
the nonlinearity], we see that it increases during the chaotic
intervals because this localized state projects equally on all the
|ν〉 eigenstates that are supported by the chaotic strip. Thus,
similar to the classical case, we expect that in order to avoid
spreading over these states, the chaotic intervals would have
to be traversed fast with respect to the spreading time ts.

In Fig. 4, we plot the results of numerical propagation of
the many-body system with the Hamiltonian (1) at different
sweep rates. In the first row we plot the mode populations:

Pi(t ) = 1

N
〈�(t )|a†

j a j |�(t )〉, (10)

while in the second and third rows we plot the instantaneous
many-body population distribution pν and the corresponding
participation number PN. All quantities are plotted against
x(t ). Looking at columns Figs. 4(a)–4(c) we see that slower
sweep results in enhanced spreading of population between
many-body eigenstates during the chaotic intervals, accom-
panied by the corresponding increase in the participation
number. However, as shown in Figs. 4(d) and 4(e), further
slowing recovers efficient transfer and unit participation. This
recovery is absent in the classical simulations and is thus a
pure quantum many-body effect.

The dependence of STIRAP efficiency P3(∞) and the
corresponding PN(∞) on the sweep rate ẋ is summarized in
Fig. 5. We now turn to provide a detailed explanation for the
observed ẋ dependence. The fastest sweep on the right-hand
side of Fig. 5 corresponds to the sudden limit, where no popu-
lation is transferred and PN ∼ 1 simply because the system re-
mains in the initial state. The large participation number hump
is the standard sudden to adiabatic transition, with unit partici-
pation attained again when there is classical adiabatic passage
[see Fig. 4(a)]. However, interesting features emerge at lower
sweep rates, where the transfer efficiency decreases and the
final participation increases as the sweep becomes slower.
This enhanced spreading at moderately slower sweep rates
is equivalent to the semiclassical “passage through chaos”

FIG. 4. Site population dynamics Pi(t ) (top), many-body population distribution pν (t ), and the corresponding participation number PN(x)
for an N = 30 system with u = 0.1 and ε = 0.1. The plots are against the time-dependent parameter x(t ). The sweep rate is (a) ẋ/K =
8.6 × 10−3, (b) 6 × 10−3, (c) 1.2 × 10−3, (d) 2 × 10−4, and (e) 6 × 10−6. Shaded regions and vertical lines mark the chaotic intervals.
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FIG. 5. The dependence of STIRAP efficiency on the rate of
the sweep: (a) classical, with the predicted boundaries of Eq. (13)
marked by vertical dotted and dash-dotted lines, (b) quantum, and
(c) PN of the final quantum pν distribution. Arrows mark the loca-
tions of the simulations shown in Figs. 4(a)–4(e). The vertical dashed
lines in the inset mark the expected detour thresholds of Eq. (14).
The red circle marks the classical adiabatic dynamics of Fig. 9(a),
whereas the magenta square and green triangle mark, respectively,
the quantum detours of Figs. 9(b) and 9(c).

analysis of Ref. [33]. We review the main results in Sec. III B.
By contrast, the quantum recovery at the slowest presented
sweep rates [left-hand side of Figs. 5(b) and 5(c); see also
Fig. 4(e)] has no classical equivalent [compare the left-hand
side of the quantum Fig. 5(b) and the classical Fig. 5(a)]. Its
explanation by the emergence of quantum detours around the
classically chaotic regions is provided in Sec. III C.

B. Passage through chaos

The Bogoliubov transformation (Appendix B) approxi-
mates the Hamiltonian in the vicinity of the SP by a quadratic
form, namely,

H =
d∑

j=1

ω j ĉ
†
j ĉ j, (11)

where d is the number of degrees of freedom. For the two-
freedom Bose-Hubbard trimer, there are two nonvanishing
frequencies ω1,2. Their real part is plotted in Fig. 6 for all x
throughout the STIRAP evolution at different values of the
interaction parameter u. The imaginary part of ω1,2 for the
same parameters is plotted in Fig. 7. The chaotic interval,
within which the SP is dynamically unstable, is identified as
the range where the latter is nonzero.
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FIG. 6. Real part of the Bogoliubov frequencies for (a) u = 0.1,
(b) 0.2, (c) 0.3, (d) −0.1, (e) −0.2, and (f) −0.3. Dotted vertical
lines mark the horn crossings (if they exist), where one of the
frequencies changes sign, indicating that energetic stability is lost.
Dashed vertical lines indicate the borders of the dynamically unstable
interval, where the frequencies are complex.

Energetic stability is stricter than dynamical stability. It
is determined by the signs of ω1,2 when they are real. If
both frequencies are positive (negative), the SP is an energy
minimum (maximum). Opposite signs indicate a saddle point
in the energy landscape, but note again that this does not
imply that the followed SP is a hyperbolic point in phase
space because the motion within a single multidimensional
[three-dimensional (3D) in our case] energy surface can still
be elliptic [Im(ω j ) = 0] or hyperbolic [Im(ω j ) �= 0].

For repulsive interaction, the followed SP at early and late
times where the Hamiltonian is interaction dominated is a
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FIG. 7. Imaginary part of the Bogoliubov frequencies for u =
0.1 (dotted magenta lines), 0.2 (dashed red line), 0.3 (solid orange
line), and −0.3 (dash-dotted blue line). The imaginary part of ω1,2

when u = −0.1 and u = −0.2 is identically zero (not plotted).
The frequencies are complex within an interval of width ξs. The
instability time ts is determined by the maximal value of Im(ω). The
extraction of these two parameters is illustrated for the u = 0.2 curve.
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self-trapped maximum when u > ε (interaction energy is lost
by the transfer of particles from the initial site to either of
the unpopulated sites) or an energy saddle point if 0 < u < ε

(energy is gained by moving particles to the detuned central
site and lost by transfer to the target site). For 0 < u < ε

[Fig. 6(a)] the SP remains a saddle at all times. For u > ε

[Figs. 6(b) and 6(c)] we have horn crossing [28], meaning
that a local maximum becomes a saddle point. By contrast,
for attractive interaction, the SP starts out as a minimum, and
the horn crossing, manifested as a minimum to saddle-point
transition, exists for any u < 0 [Figs. 6(d)–6(f)].

The dynamical instability appears for u > ε/2 [33] due
to the embedding of the followed SP in a chaotic strip (Ap-
pendix C). The implication is a lower threshold for the sweep
rate required to maintain adiabaticity. If the sweep is too
slow, the wave packet has the time to spread over the chaotic
strip, coherence is lost, and the terminal transfer efficiency is
spoiled. We define a characteristic spreading time as follows:

ts = ln 2

max[Im(ω)]
. (12)

It is the time that it takes for the dispersion around the SP
to double. The chaotic interval’s width ξs is determined by
the condition Im(ω) �= 0 (see Fig. 7). The draining of the SP
region can be avoided if ξs is traversed on a shorter timescale
than ts (see Appendix D). Combining the lower-sweep-rate
threshold with the standard upper-sweep-rate adiabaticity
threshold, one concludes that adiabatic transfer is feasible
within the range

ξs

ts
< ẋ <

1

3π
K. (13)

The upper limit is required for 96% efficiency [6] and ensures
a small probability for nonadiabatic transitions in the trans-
verse (energy) direction.

The dependence of the parameters ξs and ts on u was
studied in [33]. As the interaction strength increases, the
chaotic interval’s width grows, while its instability time be-
comes shorter. Thus, the lower adiabaticity threshold in-
creases monotonically with u. When it becomes larger than
the u-independent upper threshold, adiabatic passage is no
longer possible. These predictions are confirmed by numer-
ical classical simulations, as shown in Fig. 8. The range of
effective adiabatic transfer agrees well with the predicted the-
oretical boundaries. Whereas the upper part of the diagram is
just the well-known timescale-separation criterion, the lower
chaotic breakdown region has not been previously considered.

C. Quantum detours around chaos

While the appearance of low-sweep-rate boundaries is
explained by the semiclassical analysis of Sec. III B, the
recovery of STIRAP efficiency at even lower sweep rates
in the many-body results of Sec. III A is a pure quantum
effect. Its mechanism becomes clear by inspection of the pν

distributions in Fig. 9, which are essentially a close-up of the
middle panels of Fig. 4 (note the vertical axis in Fig. 9 is the
energy rather than the level index as in Fig. 4). The STIRAP
process in Fig. 9(a) [zoom in of Fig. 4(a)] follows the classical
SP [i.e., the many-body state traces the classical path in

FIG. 8. Adiabaticity diagram: The shaded blue region corre-
sponds to the range of parameters where the numerically determined
transfer efficiency to the target state P3(∞) is greater than 96%. Solid
lines mark the predicted boundaries of Eq. (13).

Fig. 3(a)] via a series of diabatic hops between the many-body
states. This correspondence between the classical-adiabatic
and the quantum-diabatic paths is also true for the many-
body Landau-Zener crossing in the Bose-Hubbard two-mode
system [16]. In comparison, the quantum STIRAP recovery
shown in Figs. 9(b) and 9(c) [zoom in of Fig. 4(e)] is obtained
when the sweep becomes slow enough to make one of these
crossings (marked by arrows) adiabatic. The evolution then
proceeds diabatically through a series of nonclassical states
until the symmetrically twin transition is encountered on the
exit, and the system returns to the classical path.

FIG. 9. The many-body energy levels Eν (x) are plotted against
x(t ) and color-coded according to pν (t ). (a) and (c) are for the
simulations of Figs. 4(a) and 4(e), respectively, whereas (b) is for
ẋ/K = 3 × 10−4. In (a) the system follows the classically adiabatic
path, formed by a sequence of diabatic many-body crossings. In
(b) and (c), the arrow-marked transitions become adiabatic, leading
to two different quantum detours. The rectangles indicate the levels
that are supported by the chaotic strip in phase space: their vertical
edges mark the chaotic interval as in Fig. 4.
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FIG. 10. The many-body number distribution pn,n2 (t ) of the fol-
lowed states in Figs. 9(a) and 9(c). In the classically adiabatic case
(top) the many-body state remains coherent, while in the quantum
detour case (bottom) it transiently becomes highly nonclassical.

The many-body dynamics thus offers a quantum detour
that avoids the chaotic potholes. This detour has no classical
equivalent. Its nonclassicality is evident when we compare
the Fock number distribution pn,n2 = |〈n, n2|�〉|2 obtained at
different stages of the classical adiabatic path (Fig. 10, top
row) and of the quantum detour (Fig. 10, bottom row). The
classical distribution corresponds to a coherent state moving
from the initial mode to the target mode. By contrast, the
number distribution of the quantum detour state is highly
nonclassical and projects substantially onto the intermediate
state. Thus, unlike classical nonlinear STIRAP in which the
intermediate-state population remains negligible [see, e.g.,
Fig. 4(a)], quantum detours are less robust to spontaneous
emission losses from this state.

Returning to Fig. 5, the high-efficiency adiabatic region is
classically limited by the boundaries of Eq. (13), as discussed
in Sec. III B. The corresponding quantum process exhibits
another high-efficiency region below the sweep rate for which
the critical many-body crossing becomes adiabatic and the
detour opens up. The threshold for opening a quantum de-
tour is thus obtained from the standard linear curve-crossing
prescription:

ẋ <
�2

ν,ν ′

σν,ν ′
, σν,ν ′ ≡

∣∣∣∣〈ν|∂H
∂x

|ν ′〉
∣∣∣∣, (14)

where |ν〉 and |ν ′〉 are the participating states and �ν,ν ′ is the
energy gap at the avoided crossing. This should be contrasted
with the one-body (“classical”) upper limit of Eq. (13), where
the relevant scales are � ∼ σ ∼ K . In Fig. 11 we plot the
adiabaticity threshold of Eq. (14) for the various avoided
crossings, approximating σν,ν ′ from their slopes. Indeed, the
two crossings with the highest thresholds are the ones for
which quantum detours are opened in Figs. 9(b) and 9(c). In
between the thresholds the PN exhibits an erratic dependence
on the sweep rate, which can be regarded as the time-domain
version of universal conductance fluctuations. It is due to the
interference between the various detour pathways that are
available for the evolution.

IV. CONCLUSIONS

The classical dynamics of nonlinear STIRAP is strongly
affected by dynamical chaos. For repulsive interaction, it
is chaos-induced dynamical instability, rather than energetic

FIG. 11. The adiabaticity threshold �2
ν,ν′/σν,ν′ , with σν,ν′ ap-

proximated as ∂�ν,ν′/∂x, for the avoided crossings between the
many-body adiabatic eigenstates. The two crossings with the highest
thresholds, marked by circles, are the ones for which a diabatic to
adiabatic transition opens up the quantum detours in our numerical
simulations.

instability, that causes the nonlinear failure of adiabatic
passage and sets low-sweep-rate boundaries for efficient
adiabatic transfer. Going beyond the classical picture, the
immense increase in state-space dimensionality from the 4D
classical phase space to the ∼N2/2 dimensional quantum
Hilbert space may open new quantum avenues for adiabatic
passage that do not exist in the restricted classical picture.
Thus, quantum dynamics offers alternative many-body path-
ways that circumvent chaos and reenable adiabatic passage in
regions where it is classically forbidden. These quantum de-
tours have no classical equivalent and are therefore not based
on the classical dark state. They should thus be considered
separate many-body adiabatic passage schemes rather than a
modification of the classical scenario.
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APPENDIX A: THE SEMICLASSICAL HAMILTONIAN

The mean-field limit of the interacting many-body system
is attained as N → ∞ while UN is held fixed. In this limit, the
many-body dynamics may be restricted to the γ = 1 classical
coherent states, so that field operators can be replaced by their
expectation values â j → 〈â j〉 ≡ a j = √

n jeiφ j . The classical
Hamiltonian therefore takes the form

Hcl = En2 − [�p(x)
√

n1n2cos(φ2 − φ1)

−�s(x)
√

n2n3cos(φ2 − φ3)] + U

2

3∑
j=1

n2
j . (A1)

Rescaling the classical amplitudes as aj → a j/
√

N and time
as t → Kt and defining Pj = |a j |2, we obtain the discrete
nonlinear Schrödinger equations:

iȧ = (H0 + uP )a, (A2)
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where

H0 =
⎛
⎝

0 −κp/2 0
−κp/2 ε −κs/2

0 −κs/2 0

⎞
⎠, P=

⎛
⎝

P1 0 0
0 P2 0
0 0 P3

⎞
⎠.

(A3)

The classical adiabatic basis consists of the SPs of the
grand-canonical Hamiltonian Hcl − μN , i.e., the classical
points that satisfy

iȧ = μa, (A4)

where μ is the chemical potential. The classical adiabatic
energies E (SP) are the values of Hcl at these classical SPs.
For u = 0, they are just the three well-known eigenenergies
of the linear STIRAP scenario [5,6]. The followed SP is the
dark state,

asp(x) = ( cos ϑ (x), 0,− sin ϑ (x)), (A5)

whose energy is E (SP) = 0. With nonzero interaction, the SPs
are shifted and bifurcate if the effective interaction ueff(x) is
sufficiently strong, as seen in Fig. 2(b). One such bifurcation
is the horn avoided crossing [28], which appears for u > ε.
More SPs, up to a maximum total of eight, emerge as u is
increased.

APPENDIX B: BOGOLIUBOV STABILITY ANALYSIS

In order to determine the stability of the followed classical
SP asp at any x, we employ the Bogoliubov formalism. Lin-
earizing a = asp + δa in Eq. (A2), retaining only linear terms
in δa, and carrying out the Bogoliubov transformation,

δa = e−iμt (ue−iωt − v∗eiωt ), (B1)

we obtain the discrete Bogoliubov equations,

(H0 + 2uPsp − μ − ω)u − uPspv = 0,

(H0 + 2uPsp − μ + ω)v − uPspu = 0, (B2)

where Psp is the occupation matrix P at a = asp. For a system
with d degrees of freedom, there are d collective modes
{u j, v j} j=1,...,d with corresponding characteristic frequencies
ω j . Our trimer model has, in principle, d = 3 (three nj, ϕ j

pairs serving as conjugate action-angle coordinates). How-
ever, due to the conservation of the total particle number
N , the system is invariant under global phase transforma-
tions, leaving only two degrees of freedom (two population
imbalances and two relative phases serving as action-angle
variables). Accordingly, the Bogoliubov frequencies include
a zero mode ω0 = 0 and two nonvanishing frequencies ω1,2.
Defining the quasiparticle operators

ĉ j = u j · â + v j · â† (B3)

transforms the many-body Hamiltonian of Eq. (1) in the
vicinity of the SP into the approximate quadratic form in
Eq. (11).

APPENDIX C: POINCARÉ SECTIONS

The source of dynamical instability is readily seen by plot-
ting quasistatic (frozen-x) Poincaré sections during the STI-
RAP sequence. The fixed-energy surfaces within the 4D phase

FIG. 12. Poincaré sections for the frozen Hamiltonian at repre-
sentative values of x for u = 2.2ε = 0.22. The energy in all panels is
E = E (SP) of the followed SP. The cross sections are taken through
the n2 = n2[SP] plane of the 3D energy surface. We use polar coordi-
nates z1 = r sin ϕ, z2 = r cos ϕ, where r = [1 − (n/N )]/2. Magenta
dots correspond to a semiclassical cloud, initially localized around
the followed SP. Gray shading marks energetically forbidden regions.
Note that these panels depict the adiabatic sequence up to the middle
point x ∼ 3. The Poincaré sections at later times mirror the presented
panels.

space of the Bose-Hubbard trimer are three-dimensional. For
a given N and E our dynamical coordinates are, accordingly,
n2 and n, and the relative phase ϕ = ϕ1−ϕ3. The Poincaré
section consists of trajectories in the energy surface of the
followed SP, E = E [SP]. A trajectory is sampled each time
that it intersects the plane n2 = n2[SP]. We thus obtain a
section whose coordinates are z = (ϕ, n). These are displayed
as polar coordinates in Figs. 12 and 13. The Poincaré section
map is thus a Lambert conical projection of a sphere, where
the radii are the meridians and the azimuth is the longitude.
The origin corresponds to the initial state (P1 = 1) that lies on
the north pole, and the z = 1 circumference corresponds to the

FIG. 13. Same as Fig. 12 for attractive interaction: u = −2.2ε =
−0.22.
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FIG. 14. Same as Fig. 3 for attractive interaction u = −0.1.

target state (P3 = 1) that lies on the south pole. Note that the
observed structures do not reflect the topography of the energy
landscape but correspond to various periodic orbits, invariant
tori, and chaotic regions on the same energy surface. The
plotted sections contain a single SP that supports the followed
adiabatic eigenstate, while the other fixed points are, in fact,
periodic orbits. In each section, we plot the distribution ob-
tained by classically evolving a cloud of classical trajectories,
initially localized around the followed SP.

The sequence of Poincaré sections in Fig. 12 represents
the case of repulsive interaction. At early times (x = 1.1818),
the followed SP is an energy maximum near (n, n2) = (N, 0)
(the origin), surrounded by a lower-energy forbidden region
(gray). It is degenerate with the other self-trapped maxima
near (n, n2) = (−N, 0) (the circumference) and (n, n2) =
(0, N ) (lying outside the n2 = n2[SP] section). The followed
SP becomes an energy saddle after the horn crossing. Hence,
the forbidden region disappears, and an intermediate non-
linear resonance appears as a “belt” in the Poincaré section
(x = 2.3939). At larger x, the belt expands, and a chaotic
strip is formed along its border (x = 2.6970). The enclosed
“island,” containing the followed SP, shrinks down until the
SP enters the chaotic strip (x = 2.7576). The dynamical insta-
bility thus corresponds to the embedding of the followed SP
in the chaotic strip, resulting in the quasistochastic spreading
of the initially localized distribution over the chaotic region
(x = 2.7879). The entire progression takes place on a single
3D energy surface and has no trace in the adiabatic energy
diagram.

The situation is quite different for attractive interaction
(see Fig. 13). The early-time SP is a minimum since the
dominant attractive interaction favors the localization of all
particles in one of the three modes. The transition to a
saddle point takes place at the horn crossing (present at any
u < 0), and a chaotic belt appears here too. However, for
u > −2.2ε the followed SP is located away from the chaotic
region at all times and therefore never loses its dynamical
stability. Consequently, chaotic intervals do not exist for
nonlinear STIRAP with attractive interaction in this range,
and the only obstacle to successful adiabatic passage is the
traverse of the horn crossing. From the quantum perspective,
the absence of a chaotic interval is manifested in the one-
particle coherence maintained by the many-body eigenstates

( a )

-0.2 0 0.2
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1

-0.6

-0.55

-0.5

-0.45
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z 2
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-0.6

-0.55
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-0.45

-0.4
( c )

-0.2 0 0.2
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1
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-0.45
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FIG. 15. Close-up of the followed SP region of the Poincaré
sections at x = 3.0454 for (a) u = −2.2ε, (b) −3.5ε, and (c) −3.8ε.

along the entire classical path (see Fig. 14 in comparison
to Fig. 3). The dynamical instability does reappear for suffi-
ciently strong (u < −2.2ε) attractive interaction [see Fig. 6(f),
the dash-dotted line in Fig. 7, and the Poincaré sections
in Fig. 15].

APPENDIX D: SEMICLASSICAL STIRAP EFFICIENCY

For repulsive interaction (u > 0), the cause of slow-sweep
breakdown of adiabaticity in semiclassical simulations is the
dynamical instability (i.e., chaos) rather than energetic insta-
bility [33]. For example, In Fig. 16(a), adiabaticity breaks
down even if no avoided crossing is present, and the followed
SP remains an energy maximum throughout its evolution.
Nonadiabatic population oscillations are clearly boosted dur-
ing the marked chaotic intervals. Moreover, as shown in
Fig 16(c), while for u > ε the horn crossing does appear in
an early stage, adiabaticity breaks down even if it is bypassed
by initiating the system after it.

The situation is entirely different for attractive interaction
(u < 0), as illustrated in Fig. 17. Here, the nonlinear break-

0 2 4 6
0

0.5

1

P

( a )

0 2 4 6
0

0.5

1
( b )

( c )

0 2 4 6
x

0

0.5

1

P

( d )

0 2 4 6
x

0

0.5

1

FIG. 16. Evolution of the site populations for repulsive interac-
tion. (a) Failure of STIRAP in the absence of SP bifurcations: here,
u = 0.8ε is below the critical value for obtaining the horn crossing.
The sweep rate is ẋ/K = 6 × 10−5. (b) Recovery of the adiabatic
passage with increased sweep rate (ẋ/K = 6 × 10−4) during chaotic
intervals. (c) Failure of STIRAP for u = 2ε, with initial conditions
that bypass the horn crossing: The process is launched at the adia-
batic state after the avoided crossing. Sweep rate is ẋ/K = 6 × 10−4.
(d) For the same u, efficiency is recovered due to faster sweep
(ẋ/K = 4 × 10−2).

033623-9



AMIT DEY, DORON COHEN, AND AMICHAY VARDI PHYSICAL REVIEW A 99, 033623 (2019)

0 2 4 6
x

0

0.2

0.4

0.6

0.8

1

P

( a )

0 2 4 6
x

0

0.2

0.4

0.6

0.8

1
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FIG. 17. (a) Site population dynamics for attractive interaction,
u = −ε = −0.1 and ẋ/K = 6 × 10−6. (b) The same as in (a), launch-
ing the system after the first horn crossing and stopping before the
second. (c) The same as in (a) for ẋ/K = 4 × 10−2.

down of adiabaticity takes place immediately at the horn
crossing rather than later [see Fig. 17(a)]. Since no chaotic

intervals are encountered by the followed SP, launching the
system after the horn crossing recovers adiabaticity [see
Fig. 17(b)], in marked contrast to the repulsive interaction
scenario [see Fig. 16(c)]. The cause of failure when the
interaction is attractive is thus the inability of the system to
diabatically traverse the avoided crossing from the prehorn
minimum to the posthorn saddle. Here, too, the remedy
is a faster sweep, allowing for such diabatic crossing [see
Fig. 17(c)].

In principle, a horn-crossing effect exists also for repulsive
interaction. However, to see failure due to the horn cross-
ing with u > 0, the sweep rate needs to be well below the
threshold for chaotic failure, specified in Eq. (13). Thus, for
repulsive interaction, any horn effect is overwhelmed by the
passage through the chaos mechanism. The absence of the
latter for attractive interaction allows for the observation of
the horn-crossing breakdown.
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