Counting Statistics in closed mesoscopic devices

Maya Chuchem Ben-Gurion University

Collaborations:

Doron Cohen

Thanks:

Itamar Sela Alexander Stotland Yoav Etzioni \$DIP, \$BSF

Counting statistics for a coherent transition MC and D. Cohen, Phys. Rev. A (2008, in press) Counting statistics in multiple path geometries MC and D. Cohen, J. Phys. A (2008, in press)

2 site system FCS for a coherent transition

 $\frac{3 \text{ site system}}{\text{Var}(\mathcal{Q}) \text{ for quantum stirring}}$

Counting Statistics, the model

The current through one bond operator:

 $\mathcal{I} = \left(\begin{array}{ccc} 0 & ic_1 & \mathbf{0} \\ -ic_1 & 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right)$

The counting operator:

$$= \int_0^t \mathcal{I}(t') dt'$$

 $\langle \mathcal{Q} \rangle = ???$ $\operatorname{Var}(\mathcal{Q}) = ???$ $\operatorname{P}(Q) = ???$

0

Main results

For a half a cycle:

 $p = 1 - P_{LZ}$ $\langle Q \rangle = \lambda p$ $Var(Q) = \lambda^2 (1 - p) p \neq (1 - \lambda p) \lambda p$ $P = -\frac{\pi (c_1 + c_2)^2}{2} \qquad (1 - \lambda p) \lambda p$

 $P_{\rm LZ} = e^{-\frac{\pi (c_1 + c_2)^2}{\dot{u}}}$, $\lambda = \frac{c_1}{c_1 + c_2}$ = splitting ratio

For a full stirring cycle:

$$p \approx \left| e^{i\varphi_{1}} - e^{i\varphi_{2}} \right|^{2} P_{LZ}$$
$$\langle Q \rangle \approx \lambda_{\circlearrowright} - \lambda_{\circlearrowright}$$
$$\operatorname{Var}(Q) \approx \left| \lambda_{\circlearrowright} e^{i\varphi_{1}} + \lambda_{\circlearrowright} e^{i\varphi_{2}} \right|^{2} P_{LZ}$$

Counting statistics for a coherent transition

$$\mathcal{H} = \begin{pmatrix} u(t) & c \\ c & E_1 \end{pmatrix} \qquad \begin{matrix} \mathbf{p} \\ \mathbf{c} \\ \mathbf{l} \\ \mathbf{l} \end{pmatrix} \qquad \begin{matrix} \mathbf{p} \\ \mathbf{c} \\ \mathbf{l} \\ \mathbf{l} \end{pmatrix} \qquad \begin{matrix} \mathbf{p} \\ \mathbf{c} \\ \mathbf{l} \\ \mathbf{l} \end{matrix}$$

Naive expectation:

Given the probability p to make the transition

$$P(Q) = \begin{cases} 1-p & \text{for } Q = 0\\ p & \text{for } Q = 1 \end{cases}$$
$$\langle Q^k \rangle = P(1) \cdot 1^k + P(0) \cdot 0^k = p$$
$$Var(Q) = (1-p)p$$

Quantum result:

$$P(Q) = \begin{cases} p_{-} & \text{for } Q = Q_{-} \\ p_{+} & \text{for } Q = Q_{+} \end{cases}$$

where

$$Q_{\pm} = \pm \sqrt{p}$$
, $p_{\pm} = \frac{1}{2} (1 \pm \sqrt{p})$

hence

$$\langle \mathcal{Q}^k \rangle = p_+ Q_+^k + p_- Q_-^k = p^{\left\lfloor \frac{k+1}{2} \right\rfloor}$$

The measurement of Q, FCS

The distribution P(Q) can be determined using a continuous measurement scheme.

In such setup the current induces (so to say) a "translation" of a Von-Neumann pointer.

$$H_{\text{total}} = H_{\text{system}} - Ix + H_{\text{pointer}}(x,q)$$

One can measure the quasi distribution P(Q; x): $P(Q; x = 0) = \frac{1}{2\pi} \int \left\langle \left[\mathcal{T} e^{-i\frac{r}{2}Q} \right]^{\dagger} \left[\mathcal{T} e^{+i\frac{r}{2}Q} \right] \right\rangle e^{-iQr} dr$

If we ignore time ordering we get:

$$\mathbf{P}(Q) = \frac{1}{2\pi} \int \left\langle e^{+ir\mathcal{Q}} \right\rangle e^{-iQr} dr = \left\langle \delta(Q - \mathcal{Q}) \right\rangle$$

H. Everett, Rev. Mod. Phys. 29, 454 (1957).L.S. Levitov and G.B. Lesovik, JETP Letters (1992).L.S. Levitov and G.B. Lesovik, JETP Letters (1993).Y.V. Nazarov and M. Kindermann, EPJ B (2003).

FCS for a coherent Bloch transition

$$\rho_t(q,x) = \int \mathbf{P}(q-q';x)\rho_0(q',x)dq'$$

 $\begin{array}{rcl}
\mathbf{P}_{cl}(Q) &= \\ \begin{cases} 1-p & \text{for } Q=0 \\ p & \text{for } Q=1 \end{cases}
\end{array}$

 $P_{naive}(Q) =$ $\begin{cases}
 p_{-} & \text{for } Q = Q_{-} \\
 p_{+} & \text{for } Q = Q_{+}
 \end{cases}$

$$\mathcal{P}_{qm}(Q; x=0)$$

Calculation of the variance of a LZ crossing

leading order adiabatic approximation:

$$U(t) \approx \sum_{n} |n(t)\rangle \exp\left[-i\int_{t_{0}}^{t} E_{n}(t')dt'\right] \langle n(t_{0})$$

$$\mathcal{I}(t)_{nm} = \langle n|U(t)^{\dagger}\mathcal{I}U(t)|m\rangle$$

$$\approx \langle n(t)|\mathcal{I}|m(t)\rangle \exp\left[i\int_{t_{0}}^{t} E_{nm}(t')dt'\right]$$

$$\mathcal{Q} \equiv \begin{pmatrix} +Q_{\parallel} & iQ_{\perp} \\ -iQ_{\perp}^{*} & -Q_{\parallel} \end{pmatrix}$$

$$\operatorname{Var}(\mathcal{Q}) = |Q_{\perp}|^{2} \approx \left|c\int_{-\infty}^{\infty} e^{i\Phi(t)}dt\right|^{2}$$

$$\Phi(t) \equiv \int_{0}^{t} \sqrt{(it')^{2} + (2c)^{2}}dt'$$

The LZ transition calculation

 $\mathbf{2}$

$$P_{LZ} \approx \left| c \int_{-\infty}^{\infty} \frac{\dot{u}}{(\dot{u}t)^{2} + (2c)^{2}} e^{i\Phi(t)} dt \right|$$
$$= \left| \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{\cosh(z)} e^{i\Phi(z)} dz \right|^{2}$$
$$Var(Q) \approx \left| c \int_{-\infty}^{\infty} e^{i\Phi(t)} dt \right|^{2}$$
$$= \left| \frac{2c^{2}}{\dot{u}} \int_{-\infty}^{\infty} \cosh(z) e^{i\Phi(z)} dz \right|^{2}$$

??? $\operatorname{Var}(\mathcal{Q}) = (1 - P_{LZ}) P_{LZ}$???

$$P_{\rm LZ} \sim \left(\frac{\pi}{3}\right)^2 \exp\left[-\frac{\pi c^2}{\dot{u}}\right]$$
$$\operatorname{Var}(\mathcal{Q}) \sim \left(\frac{2c^2}{\dot{u}}\right)^{2/3} \exp\left[-\frac{\pi c^2}{\dot{u}}\right]$$

Restricted quantum-classical correspondence

 $\mathcal{N} = \text{occupation operator (eigenvalues} = 0, 1)$ $\mathcal{I} = \text{current operator}$

Heisenberg equation of motion:

$$\frac{d}{dt}\mathcal{N}(t) = \mathcal{I}(t)$$

leads to

$$\mathcal{N}(t) - \mathcal{N}(0) = \mathcal{Q}$$

hence

$$\langle \mathcal{Q}^k \rangle = \langle (\mathcal{N}(t) - \mathcal{N}(0))^k \rangle \stackrel{?}{=} \langle \mathcal{N}^k \rangle_t = p$$

for $k = 1, 2$ only

Restricted QCC

Double path adiabatic passage

$$\mathcal{H} = \left(egin{array}{c} u(t) & c \\ c & 1 \end{array}
ight), \qquad \mathcal{I} = \lambda \left(egin{array}{c} 0 & ic \\ -ic & 0 \end{array}
ight)$$

with effective coupling and splitting ratio

$$c \equiv \frac{(c_1 + c_2)}{\sqrt{2}}, \qquad \qquad \lambda \equiv \frac{c_1}{c_1 + c_2}$$

Accordingly:

 $\langle \mathcal{Q} \rangle = \lambda p$ $\operatorname{Var}(\mathcal{Q}) = \lambda^2 (1-p) p \neq (1-\lambda p) \lambda p$

Coherent splitting unlike probabilistic splitting of the wavepacket is "exact".

 $\lambda > 1 \Rightarrow$ The driving induces a circulating current within the ring, and illuminates the fallacy of the classical peristaltic point of view.

Full stirring cycle

Due to interference the counting statistics becomes in general unrelated to the occupation statistics:

$$p = \left| \frac{1}{2} \int_{-\infty}^{\infty} \frac{(\dot{\boldsymbol{u}}/2c) e^{i\Phi(t)}}{1 + (\boldsymbol{u}/2c)^2} dt \right|^2$$
$$\approx \left| e^{i\varphi_1} - e^{i\varphi_2} \right|^2 P_{\rm LZ}$$

Conclusions

Quantum mechanics is a "deterministic" rather than a "probabilistic" theory. Coherent splitting unlike probabilistic splitting of a wavepacket is "exact".

In a double path adiabatic passage one may find that (say) 170% of the particle goes via one path, while -70% goes via the second path, due to a circulating current induced by the driving.

There is at most restricted quantum-classical correspondence for the first and second moments.

In contrast to the single path crossing problem where the two types of statistics are a-priori related, for a full stirring cycle interference gets into the counting statistics calculation, so it is not generally related to the occupation statistics.

Main results

For a half a cycle:

 $p = 1 - P_{LZ}$ $\langle Q \rangle = \lambda p$ $Var(Q) = \lambda^2 (1 - p) p \neq (1 - \lambda p) \lambda p$ $P = -\frac{\pi (c_1 + c_2)^2}{2}$

 $P_{\rm LZ} = e^{-\frac{\pi (c_1 + c_2)^2}{\dot{u}}}$, $\lambda = \frac{c_1}{c_1 + c_2}$ = splitting ratio

For a full stirring cycle:

$$p \approx \left| e^{i\varphi_{1}} - e^{i\varphi_{2}} \right|^{2} P_{LZ}$$
$$\langle Q \rangle \approx \lambda_{\circlearrowright} - \lambda_{\circlearrowright}$$
$$\operatorname{Var}(Q) \approx \left| \lambda_{\circlearrowright} e^{i\varphi_{1}} + \lambda_{\circlearrowright} e^{i\varphi_{2}} \right|^{2} P_{LZ}$$

