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Outline

Counting Q =

∫ t

0

I(t′)dt′

I

2 site system

FCS for a coherent transition

I

3 site system

Var(Q) for quantum stirring



Counting Statistics, the model
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The counting operator: Q =

∫ t

0

I(t′)dt′

〈Q〉 =??? Var(Q) =??? P(Q) =???



Main results

For a half a cycle:

p = 1− PLZ

〈Q〉 = λp

Var(Q) = λ2(1− p)p
:::::::::

6= (1− λp)λp

PLZ = e−
π(c1+c2)2

u̇ , λ = c1
c1+c2

= splitting ratio

For a full stirring cycle:

p ≈
∣∣∣eiϕ1 − eiϕ2

∣∣∣2 PLZ

〈Q〉 ≈ λ	 − λ�

Var(Q) ≈
∣∣∣λ	eiϕ1+λ�eiϕ2
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Counting statistics for a coherent transition

H =

 u(t) c
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Naive expectation:

Given the probability p to make the transition

P(Q) =

{
1−p for Q = 0

p for Q = 1

〈Qk〉 = P(1) · 1k + P(0) · 0k = p

Var(Q) = (1− p)p

Quantum result:

P(Q) =

{
p− for Q = Q−

p+ for Q = Q+

where

Q± = ±√p , p± =
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hence
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+ + p−Qk

− = pb
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The measurement of Q, FCS

The distribution P(Q) can be determined using

a continuous measurement scheme.

In such setup the current induces (so to say) a

“translation” of a Von-Neumann pointer.

Htotal = Hsystem − Ix + Hpointer(x, q)

One can measure the quasi distribution P(Q; x):

P(Q; x = 0) =
1

2π

∫ 〈[
T e−i r

2
Q]† [T e+i r

2
Q]〉

e−iQrdr

If we ignore time ordering we get:

P(Q) =
1

2π

∫ 〈
e+irQ〉

e−iQrdr = 〈δ(Q−Q)〉
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FCS for a coherent Bloch transition

ρt(q, x) =

∫
P(q − q′; x)ρ0(q

′, x)dq′

Pcl(Q) ={
1−p for Q = 0

p for Q = 1

Pnaive(Q) ={
p− for Q = Q−

p+ for Q = Q+

Pqm(Q; x = 0)
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Calculation of the variance of a LZ crossing
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leading order adiabatic approximation:
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The LZ transition calculation
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Restricted quantum-classical correspondence

N = occupation operator (eigenvalues = 0, 1)

I = current operator

Heisenberg equation of motion:

d

dt
N (t) = I(t)

leads to

N (t)−N (0) = Q

hence

〈Qk〉 =
〈
(N (t)−N (0))k

〉 ?
= 〈N k〉t = p

for k = 1, 2 only

Restricted QCC



Hamiltonians for 2 and 3 site systems
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Double path adiabatic passage

H =

 u(t) c

c 1

 , I = λ

 0 ic
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with effective coupling and splitting ratio

c ≡ (c1+c2)√
2

, λ ≡ c1

c1 + c2

Accordingly:

〈Q〉 = λp

Var(Q) = λ2(1− p)p
:::::::::

6= (1− λp)λp

Coherent splitting unlike probabilistic splitting of

the wavepacket is “exact”.

λ > 1 ⇒ The driving induces a circulating

current within the ring, and illuminates the fallacy

of the classical peristaltic point of view.



Full stirring cycle
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a sequence of two

Landau Zener crossings

〈Q〉 ≈ λ	 − λ�

Var(Q) =

∣∣∣∣ λ c

∫ ∞

−∞
eiΦ(t)dt

∣∣∣∣2
≈

∣∣∣λ	eiϕ1+λ�eiϕ2

∣∣∣2 PLZ

Due to interference the counting statistics becomes

in general unrelated to the occupation statistics:

p =

∣∣∣∣12
∫ ∞

−∞

(u̇/2c) eiΦ(t)

1 + (u/2c)2
dt

∣∣∣∣2
≈

∣∣∣eiϕ1 − eiϕ2

∣∣∣2 PLZ



Conclusions

Quantum mechanics is a “deterministic” rather

than a “probabilistic” theory. Coherent splitting

unlike probabilistic splitting of a wavepacket is

“exact”.

In a double path adiabatic passage one may find

that (say) 170% of the particle goes via one path,

while −70% goes via the second path, due to a

circulating current induced by the driving.

There is at most restricted quantum-classical

correspondence for the first and second moments.

In contrast to the single path crossing problem

where the two types of statistics are a-priori

related, for a full stirring cycle interference gets

into the counting statistics calculation, so it is not

generally related to the occupation statistics.
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