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Counting Statistics, the model
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Counting statistics for a coherent transition
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Nailve expectation:

Given the probability p to make the transition
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D for () =1
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Quantum result:
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The measurement of (), FCS

The distribution P(Q) can be determined using

a continuous measurement scheme.

In such setup the current induces (so to say) a

“translation” of a Von-Neumann pointer.

Htotal — system ],ﬁlj _I_ Hpointer(x7 Q)

One can measure the quasi distribution P(Q); x):

P(Q;x=0) = o ' 29 > e dr

If we ignore time ordering we get:
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FCS for a coherent Bloch transition
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Calculation of the variance of a LZ crossing
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The LZ transition calculation
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Restricted quantum-classical correspondence

N = occupation operator (eigenvalues = 0, 1)

7 = current operator

Heisenberg equation of motion:
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for k = 1,2 only

Restricted QCC




Hamiltonians for 2 and 3 site systems
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Double path adiabatic passage

with effective coupling and splitting ratio
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Accordingly:
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Coherent splitting unlike probabilistic splitting of

the wavepacket is “exact”.

A>1 = The driving induces a circulating
current within the ring, and illuminates the fallacy

of the classical peristaltic point of view.




Full stirring cycle

S~ a sequence of two

Landau Zener crossings
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Due to interference the counting statistics becomes

in general unrelated to the occupation statistics:
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Conclusions

Quantum mechanics is a “deterministic” rather
than a “probabilistic” theory. Coherent splitting
unlike probabilistic splitting of a wavepacket is

“exact”.

In a double path adiabatic passage one may find

that (say) 170% of the particle goes via one path,

while —70% goes via the second path, due to a

circulating current induced by the driving.

There is at most restricted quantum-classical

correspondence for the first and second moments.

In contrast to the single path crossing problem
where the two types of statistics are a-priori
related, for a full stirring cycle interterence gets
into the counting statistics calculation, so it is not

generally related to the occupation statistics.
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