Horovitz Baruch : Interference in presence of dissipative environments

The research studies quantum systems that are affected in a fundamental manner by dissipative environments. The experimentally relevant systems are of two types: (i) Solid state devices probed by electron transport in confined geometries such as rings, quantum dots and wires. These are controlled by gate electrodes that form inevitably a dissipative environment. (ii) Cold atoms and ions as well as condensates trapped by electric or magnetic fields created by surface currents on a chip. These chips necessarily generate noise that limits the visibility of quantum interference of the atoms or ions. E.g., Fig. 1 shows the absorption image of Rb atom cloud with its reflection from a superconducting chip [Nirrengarten et al. PRL 97, 200405 (2006)].

Our theoretical study considers a well known interference phenomena -- the Aharonov-Bohm oscillations of a particle on a ring due to a magnetic flux through the ring. The chip or gate produce noise, inducing dissipation on the particle and affecting the oscillation amplitude; the geometry is shown in Fig. 2. This connection between interference and dissipation is an essential aspect of all quantum information devices. Our system allows one to learn a variety of methods of theoretical physics, such as renormalization group and nonequilbrium Keldysh methods, and apply these to the front edge of research on mesoscopic devices and cold atoms.

hbaruch1.png
Figure 1
hbaruch2.png
Figure 2
ALL HIGHLIGHTS