Eichler David: Manifestations of Exotic and New Physics in Nature

We examine astrophysical consequences of extreme, exotic, and new physics.

In Gamma Ray Bursts, for example, general relativistic effects , especially the event horizon of the black hole, may play a crucial role. We examine whether observations can reveal these effects and the existence of the event horizon. Preliminary results suggest that general relativity may be crucial to understanding the qualitative nature of gamma ray bursts.

In magnetars, collapsed stars with extraordinarily high magnetic fields, the strength of the magnetic alters the nature of quantum electrodynamics (The magnetic field-particle spin interaction term in the Langrangian exceeds the elecron rest mass). The vacuum develops an index of refraction that affects the propagation of light. Condensed matter, e.g. the crust of the magnetar, is strongly affected by such a magnetic field. We attempt to understand the effects of the ultrastrong magnetic fields on the observed phenomena.

In cosmology, we attempt to understand dark energy, which is matter with negative pressure, as a field that is generated by dark matter. This hypothesis aims to resolve the present mystery as to why dark matter and dark energy both presently exist in the universe in comparable quantities.