BH,PLD, cond-mat/0002037

Disorder Induced Transitions in Layered Coulomb Gases and Superconductors Phys. Rev. Lett. 84 5395 (2000)

BH,PLD, cond-mat/0108143

Freezing transitions and the density of states of 2D random Dirac Hamiltonians Phys. Rev. B 65, 125323 (2002)

A. Morozov, BH, PLD, cond-mat/0211080

Decoupling and decommensuration in layered superconductors with columnar defects Phys. Rev. B67, 140505(R) (2003)

BH,PLD, cond-mat/0410019

Disorder induced transitions in layered Coulomb gases and application to flux lattices in superconductors Phys. Rev. B71, 134202 (2005)

BH,PLD, cond-mat/0602391 Interference in presence of Dissipation

Next ??

Are 2D Ising spin glass domain walls described by a Stochastic Loewner Evolution?

Denis Bernard, PLD, Alan A. Middleton cond-mat/0611433 Christian Hagendorf

Pure 2d critical systems Conformal Invariance (CFT) interfaces SLE

Q: Can some property (interfaces) of a system w. quenched disorder (ising spin glass) be described using conformal invariance (SLE) ??

idea:ISG domains may exhibit Conf.Inv

C. Amoruso, A.K. Hartmann, M.B. Hastings, M.A. Moore

cond-mat/0601711

Date (v1): Tue, 31 Jan 2006 16:59:37 GMT (22kb) Date (revised v2): Wed, 12 Jul 2006 16:49:04 GMT (26kb) Date (revised v3): Sat, 28 Oct 2006 20:45:22 GMT (51kb)

Conformal Invariance and SLE

in Two-Dimensional Ising Spin Glasses

We did several direct tests of SLE

Outline

- what is SLE ?
- 2d Ising spin glass DW
- numerical evidence

Schramm 1999

Probability measure on set of curves in upper half plane \mathbb{H} such that:

- conformal invariant
- Markov property

Is SLE_{κ}

Greg Lawler, Ode Schramm, Wendelin Werner

conformal maps, conformal invariance

Outline SLE

- uniformizing maps
- Loewner equation
- Markov property:SLE
- Critical interfaces

uniformizing map (segment)

map from $\mathbf{H} \setminus [0, ia]$ to \mathbf{H}

Riemann mapping theorem

uniformizing map and growth

Loewner equation

t is capacity

Critical interfaces

Critical Ising model $K = K_c$ $Z = \sum_{S_i=\pm 1} \exp(K \sum_{\langle ij \rangle} S_i S_j)$

 $P_D(\gamma_{ab}) = \frac{Z_D(\gamma_{ab})}{Z_D}$

Critical interfaces

Critical Ising model $K = K_c$ $Z = \sum_{S_i=\pm 1} \exp(K \sum_{\langle ij \rangle} S_i S_j)$

$$P_D(\gamma_{ab}) = \frac{Z_D(\gamma_{ab})}{Z_D}$$

$$P_D(\gamma_{ab}|\gamma_{ac}) = P_{D-\gamma_{ac}}(\gamma_{cb})$$

(Domain) Markov property

Conformal invariance

 $P_D(\gamma_{cb}|\gamma_{ac}) = P_{D-\gamma_{ac}}(\gamma_{cb})$ = $P_{h(D-\gamma_{ac})}(h(\gamma_{cb}))$ = $P_D(h(\gamma_{cb})) \longrightarrow SLE$

SLE and 2D critical models

Lattice model	κ	c_{κ}	$d_f(\kappa)$
Loop-erased random walk	2	-2	5/4
Self-avoiding random walk	8/3	0	4/3
Ising model			
spin cluster boundaries	3	1/2	11/8
Dimer tilings	4	1	3/2
Harmonic explorer	4	1	3/2
Level lines of Gaussian field	4	1	3/2
Ising model			
FK cluster boundaries	16/3	1/2	5/3
Percolation cluster boundaries	6	0	7/4
Uniform spanning trees	8	-2	2

 $d_f = 1 + \frac{\kappa}{8}$

 $c = 1 - 3 \frac{(\kappa - 4)^2}{2\kappa} \qquad \kappa' = 16/\kappa \qquad c_{\kappa'} = c_{\kappa}$ duality: hull boundary ∂K_t of SLE_{κ} Also O(n) and Potts model, ... is $SLE_{\kappa'}$

Probability trace passes left of point

 $\left(\frac{2}{z-\xi_0}\frac{\partial}{\partial z} + \frac{2}{\overline{z}-\xi_0}\frac{\partial}{\partial \overline{z}} + \frac{\kappa}{2}\frac{\partial^2}{\partial \xi_0}\right)p(z,\overline{z},\xi_0) = 0$

can SLE describe other phenomena?

• 2D turbulence inverse cascade

Bernard,Boffetta, Celani,Falkovich,2006

Surface quasi-geostrophic turbulence

nlin.cd/0609069 $\kappa = 4$

FIG. 3: A portion of a candidate SLE trace obtained from the vorticity field. The red curve is a zero-vorticity line in the upper half-plane. The dashed blue line is the "outer boundary" of the red curve, i.e. the boundary of the region that can be reached from infinity without getting closer than L_f to the red curve. The green dots mark the necks of large fjords and peninsulae.

• systems with quenched disorder ?

$\begin{array}{ll} & 2d \ \text{Ising spin glass} \\ H = -\sum_{< ij >} J_{ij} S_i S_j & J_{ij} & \text{i.i.d.} \\ S_i = \pm 1 & P(-J) = P(J) & \text{unit gaussian} \end{array}$

T > 0 disordered

T=0 for given J find ground state pair α $S_i = S_i^0$ β $S_i = -S_i^0$

Ground state and domain walls

 $F_{ij}^0 = J_{ij}S_i^0S_j^0$ bond satisfactions in G.S. flip spins in a block of frontier γ

 $\alpha \left(\beta \right)$

 $\Delta E = 2 \sum_{ij \in \gamma} F_{ij}^0 > 0$ all closed loop γ

 $\begin{array}{l} E_{antiper} - E_{per} = \min_{\gamma} 2 \sum_{ij \in \gamma} F_{ij}^{0} & \text{over all } \gamma \\ \text{study distribution (over J) of } \gamma_{opt} & \text{top to bottom paths} \end{array}$

DW is where bond satisf changed

numerics

Find exact GS (map to matching problem) and DW $t \sim N^2$ A. Middleton

compare with what?

- chordal near origin
- dipolar when $W \gg L$
- radial when $L \gg W$

For SGlass: find SLE only free-free fixing endpoint is bad

SLE tests

- probability DW passes left of point (chordal SLE)
- winding around long cylinder (radial SLE)
- hitting probability of top (dipolar SLE)
- iterated slit maps is driving funct Brownian Motion?

 $\kappa = 8(d_f - 1) = 2.24(8)$ $d_f = 1.28(1)$

free-free BC: find consistent value all tests $\kappa = 2.32(8)$ fixed endpoint BC: tests 1,3,4 give $\kappa \approx 2.8$

reflecting BC: not Markov not SLE

Minimal spanning tree

 $d_f = 1.217(3)$ not conformal inv. (Wilson) fails test 2

probability of passage right

Chordal SLE Schramm

 $P_{\kappa}(\phi) = \frac{1}{2} + \frac{\Gamma(\frac{4}{\kappa})}{\sqrt{\pi}\Gamma(\frac{8-\kappa}{2\kappa})} \cot(\phi)_2 F_1(\frac{1}{2}, \frac{4}{\kappa}, \frac{3}{2}, -\cot^2(\phi))$

Figure 2: Winding probabilities w_n for different large p as a function of the winding number n. The continuous curves are the predictions from the Gaussian model (a guideline for the eyes) with $\kappa = 2.32$.

endpoint distribution on a strip

location of endpoint relative to start

prediction from dipolar SLE Bauer,Bernard

$$P(x) = A(\cosh(\frac{\pi x}{2Y}))^{-\frac{4}{\kappa}}$$

endpoint distribution P(x) residuals

endpoint distribution for various aspect ratio

Figure 1: Log-log-plot for the second cumulant $\langle x^2 \rangle_c = \langle x^2 \rangle - \langle x \rangle^2$ as a function of the modulus p. The straight black lines correspond to the predictions from dipolar and radial SLE with $\kappa = 2.32$ for small and large p respectively.

iterated slit map

Dipolar maps

$$\partial_t g_t(z) = rac{2}{ anh(g_t(z) - \xi_t)}$$

strip height $\pi/2$

driving function

tests of Brownian motion

driving function

Figure 2: Plot of an effective diffusion constant $\kappa_{\text{eff}} = \frac{\xi^2(2t) - \xi^2(t)}{t}$, for $W \ge 4L$. Lines indicate $\kappa = 2.24, 2.32, 2.40, 2.85$, and 3.00. The range $2.24 < \kappa < 2.40$ fits the data for curves with F-AP BCs, while $2.85 < \kappa < 3.00$ describes the diffusion measured from a constrained domain wall end. Inset: Part of a sample conversion of a domain wall in the 2D Ising spin glass to a sequence $\xi(t_i), i = 1 \dots S$. The left curve is the initial domain wall with $\xi(0) = 0$, while the red [lighter] curve is the remainder after 500 applications of the dipolar map, giving $\xi(t_{500} \approx 7239.4) \approx 101.5$.

conclusion

• multiple tests of SLE suggest AP/P domain walls in 2D Ising Spin Glass are SLE_{κ} $\kappa = 2.32(8)$ free-free BC

NOT for fixed endpoints

 $P_D(\gamma_{ab}|\gamma_{ac})$

 $= P_{D-\gamma_{ac}}(\gamma_{cb})$

surprising because:

• exact domain Markov property on lattice

arise in continuum limit ?

no known conformal field theory

correlation of boundary changing operators ?

look at other geometrical observables, numerics in various domains

look for SLE in other 2d systems

Markov property

Figure 3: Plot of C(x), cumulative probability of ranked values for $r(\gamma_1, \gamma_2)$, as defined in the text. Large deviations from r = 1, as clearly seen for R-LERW, indicate a failure of the domain Markov property.

implies conformal Markov property