Ordering and Freezing Transitions in Classical Geometrically Frustrated Antiferromagnets

John Chalker
Physics Department, Oxford University

Work with Tom Pickles and Tim Saunders cond-mat/0612458 and In preparation

Some Contexts

Highly constrained systems

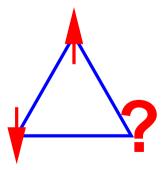
Novel order from degeneracy + constraints

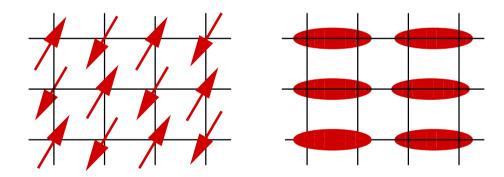
Critical Phenomena

Landau-Ginzburg-Wilson and beyond

Partially filled Landau levels

Deconfined quantum criticality





Power-law correlated states

2D: Kosterlitz-Thouless

3D: Coulomb phases

Outline

Geometrically frustrated antiferromagnets

Frustration in spin systems

Models and lattices

Ground state degeneracy

Correlations within the ground state manifold

Phase transitions within the correlated manifold

Ordering from the Coulomb phase

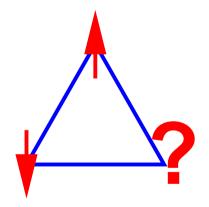
Spin freezing

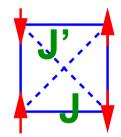
Types of frustration in magnetic systems

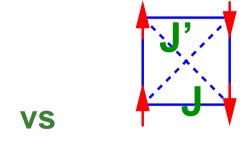
With quenched disorder

- in spin glasses

From competition



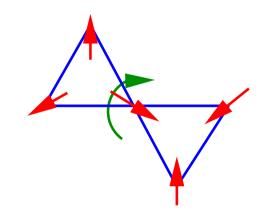




From geometry

 $\textbf{structure} \rightarrow \textbf{degeneracy}$

Anderson 1956, Villain 1977

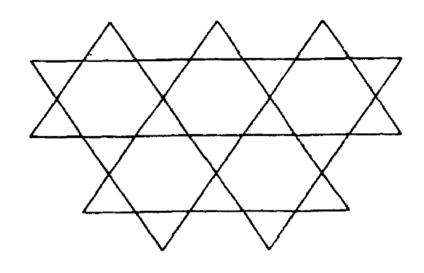


Examples of frustrated lattices

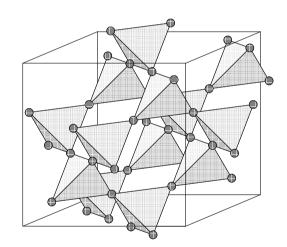
Building block: corner-sharing frustrated units of q spins

2D: kagome lattice

3D: pyrochlore lattice



Triangles: q=3

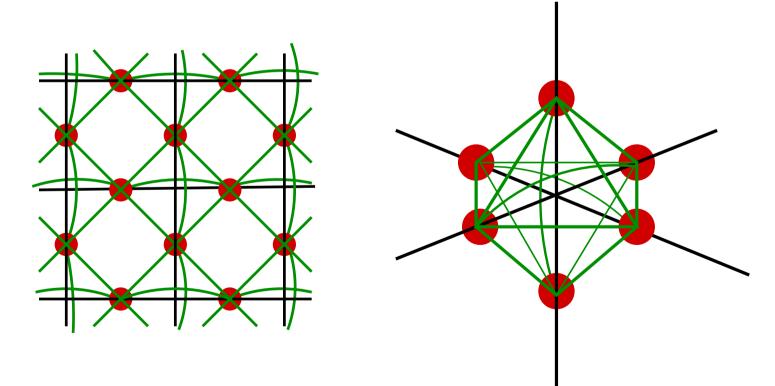


Tetrahedra: q=4

Versions for theorists

In d-dimensions: corner-sharing units of 2d spins on hypercubic lattice

Two dimensions Three dimensions



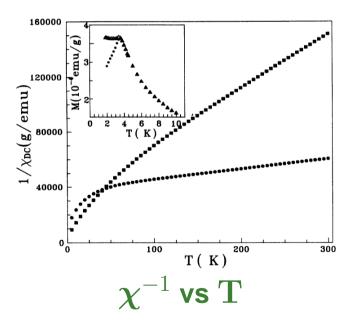
Corner-sharing 'tetrahedra'

Corner-sharing octahedra

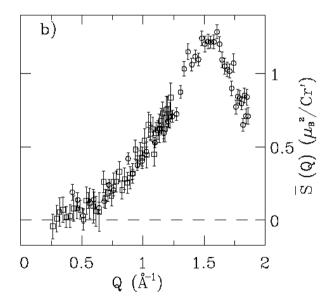
Characteristics of geometrically frustrated antiferromagnets

 $SrGa_{12-x}Cr_{x}O_{19}$ (SCGO) as an example

Paramagnetic even for $T \ll |\Theta_{CW}|$ Strong short-range correlations



Martinez et al, PRB 46, 10786 (1992)



Elastic neutron scattering

S.H. Lee et al, Europhys Lett 35, 127 (1996)

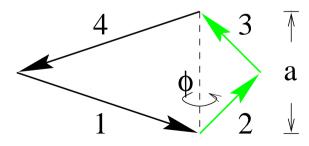
Ground state degeneracy in Heisenberg AFM

Single tetrahedron

$$\mathcal{H} = J \sum_{\text{pairs}} \mathbf{S}_i \cdot \mathbf{S}_j \equiv \frac{J}{2} |\mathbf{L}|^2 + c$$

with

$$L = S_1 + S_2 + S_3 + S_4$$



frustration → accidental degeneracy

Full lattice

$$\mathcal{H} = J \sum_{\text{bonds}} \mathbf{S}_i \cdot \mathbf{S}_j \equiv \frac{J}{2} \sum_{\text{units}} |\mathbf{L}_{\alpha}|^2 + c$$

Total number of degrees of freedom:

$$F = 2 \times (\text{number of spins})$$

Constraints satisfied in ground state:

$$K = 3 \times (\text{number of units})$$

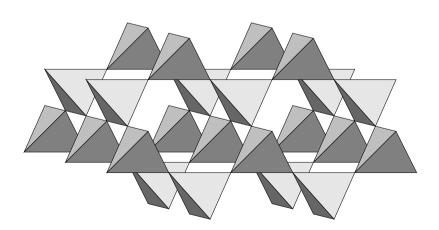
Ground state dimension:

geometric frustration \rightarrow macroscopic D

Correlations induced by ground state constraints

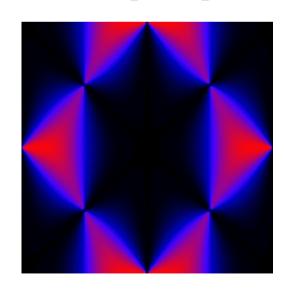
Local constraints

$$\sum_{tet} \mathbf{S}_i = \mathbf{0}$$



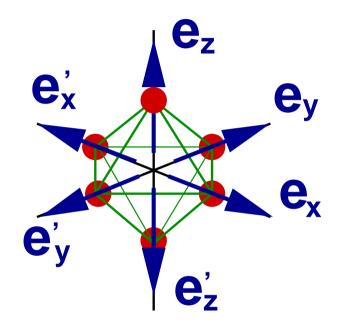
Long range correlations

Sharp structure in $\left\langle S_{-q}\cdot S_{q}\right\rangle$



Gauge theory of ground state correlations

Youngblood et al (1980), Huse et al (2003), Hermele et al (2004); Henley (2004)



Ground state constraint becomes flux conservation law: Construct vector fields ${f B}^a({f r}_i)$

from each spin component S_i^a :

$$\mathbf{B}^a(\mathbf{r}_i) = \hat{e}_i S_i^a$$

$$\sum_{unit} S_i^a = 0 \to \nabla \cdot \mathbf{B}^a = 0$$

$$\mathbf{B}^a = \nabla \times \mathbf{A}^a$$

Coarse-grained distribution:

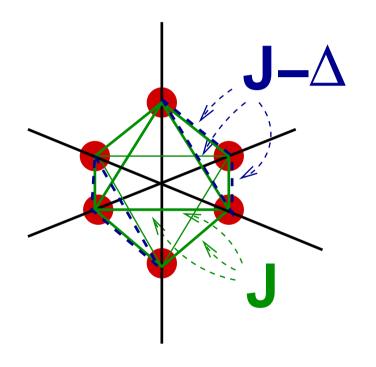
$$P[\mathbf{B}^a(\mathbf{r})] \propto \exp(-\kappa \int |\mathbf{B}^a(\mathbf{r})|^2)$$

Dipolar correlators:
$$\langle B_i^l(\mathbf{r})B_j^m(\mathbf{0})\rangle \propto \delta_{lm} \frac{3r_ir_j-r^2\delta ij}{r^5}$$

Ordering transitions from the Coulomb phase

Add interactions to select ordered state

Corner-sharing octahedra strained in $\left[111\right]$ direction



Constrain to Coulomb phase: $J \to \infty$ Study statistical mechanics vs T/Δ

Continuum description:

$$P[\mathbf{B}^a(\mathbf{r})] \propto \exp(-\mathcal{H})$$

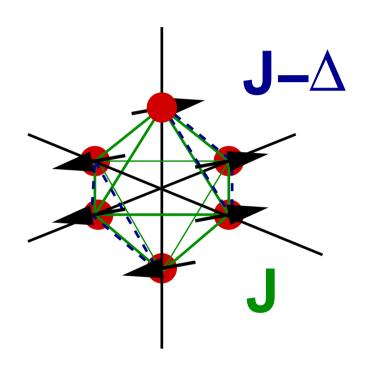
$$\mathcal{H} = \int d^3 \mathbf{r} \left\{ \kappa \sum_a \left[|\mathbf{B}_{\perp}^a(\mathbf{r})|^2 + \mathbf{t} |B_{\parallel}^a(\mathbf{r})|^2 + c |\nabla \times \mathbf{B}^a(\mathbf{r})|^2 \right] + u \left[\sum_a |\mathbf{B}^a(\mathbf{r})|^2 \right]^2 \right\}$$

$$t \propto (T - T_c)$$

Ordering transitions from the Coulomb phase

Add interactions to select ordered state

Corner-sharing octahedra strained in $\left[111\right]$ direction



Constrain to Coulomb phase: $J \to \infty$ Study statistical mechanics vs T/Δ

Continuum description:

$$P[\mathbf{B}^a(\mathbf{r})] \propto \exp(-\mathcal{H})$$

$$\mathcal{H} = \int d^3 \mathbf{r} \left\{ \kappa \sum_a \left[|\mathbf{B}_{\perp}^a(\mathbf{r})|^2 + \mathbf{t} |B_{\parallel}^a(\mathbf{r})|^2 + c |\nabla \times \mathbf{B}^a(\mathbf{r})|^2 \right] + u \left[\sum_a |\mathbf{B}^a(\mathbf{r})|^2 \right]^2 \right\}$$

$$t \propto (T - T_c)$$

Critical behaviour

Flux condensation transition

$$\mathcal{H} = \int d^3 \mathbf{r} \left\{ \kappa \sum_a \left[|\mathbf{B}_{\perp}^a(\mathbf{r})|^2 + t |B_{\parallel}^a(\mathbf{r})|^2 + c |\nabla \times \mathbf{B}^a(\mathbf{r})|^2 \right] + \dots \right\}$$

Reduction to essentials: $\mathbf{B}^a = \nabla \times \mathbf{A}^a$ with $\nabla \cdot \mathbf{A}^a = 0$

Two modes $A^a_{
m crit}$, $A^a_{
m noncrit}$ one critical. Rescale: $qA^a_{
m crit}({f q})=\varphi^a({f q})$

Effective theory

$$\mathcal{H}_{\text{eff}} = \int d^3 \mathbf{q} \sum_a \kappa \left[(1 - t) \frac{q_{\parallel}^2}{q^2} + t + cq^2 \right] |\varphi^a(\mathbf{q})|^2 + u \int \left[\sum_a |\varphi^a|^2 \right]^2$$

Non-analytic dispersion q_{\parallel}^2/q^2 equivalent to dipolar interactions

Long-range forces \rightarrow upper critical dimension is $d_u=3$

— hence critical behaviour (almost) mean field

[cf Larkin and Khemlnitskii, 1969]

Spin freezing in geometrically frustrated antiferromagnets

Freezing in experiment

Observed at low T

$$T_{\rm F} \ll |\Theta_{\rm CW}|$$

Possible source of disorder random strains modulating exchange

$$\mathcal{H} = \sum J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$[J_{ij}]_{av} = J$$
 $[(J_{ij} - J)^2]_{av} = \Delta^2$

— with $\Delta \ll J$

Spin glass order in simulations



$$C(\mathbf{r}) = [\langle \mathbf{S}(\mathbf{0}) \cdot \mathbf{S}(\mathbf{r}) \rangle_1 \langle \mathbf{S}(\mathbf{0}) \cdot \mathbf{S}(\mathbf{r}) \rangle_2]_{\text{av}}$$

Summary

Groundstates with ideal geometric frustration have:

- Macroscopic degeneracy
- Dipolar correlations
 - Constitute a Coulomb phase

Ordering from this manifold of states:

- In clean system: non-standard critical behaviour
- In random system: spin freezing
 - New class of spin glass?