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Aperiodic structures, order and disorder

S.1. BEN-ABRAHAM
Department of Physics, Ben-Gurion University, 11-84105 Beer-Sheba, Israel

Artificial aperiodic structures based on deterministic algorithms have recently been
the subject of extensive and intensive research, resulting in layered quasiregular
heterostructures, as well as photonic and phononic metamaterials with possible
applications such as optical and acoustic bandpassfilters or photonic waveguides. It is
an experimental challenge to produce a physical realization of the Prouhet-Thue-
Morse structure in one, two and three dimensions and subject it to a diffraction
experiment.

I discuss fundamental questions about determinism, order and "disorder" and their
quantification. Specifically, I study multidimensional generalizations of the standard
substitution sequences. Here | present and discuss some two-dimensional instances of
the Prouhet-Thue-Morse and paperfolding systems. Their rectangle complexities are
at polynomial implying zero entropy. | suggest to concisely characterize the
complexity by the exponent of its leading term. | point out that the perfectly
deterministic Champernowne and Copeland-Erdés sequences have entropy In2
exactly like fair Bernoulli. These examples clearly show that entropy, regardless of
its definition, does not distinguish between deterministic and random systems. There
still remain many unanswered questions.



