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Abstract
The form of the low-temperature interactions between defects in neutral glasses is reconsidered.
We analyze the case where the defects can be modeled either as simple two-level tunneling
systems, or tunneling rotational impurities. The coupling to strain fields is determined up to
second order in the displacement field. It is shown that the linear coupling generates not only the
usual 1/r 3 Ising-like interaction between the rotational tunneling defect modes, which causes
them to freeze around a temperature TG, but also a random field term. At lower temperatures the
inversion symmetric tunneling modes are still active—however, the coupling of these to the
frozen rotational modes, now via the second-order coupling to phonons, generates another
random field term acting on the inversion symmetric modes (as well as shorter-range 1/r 5

interactions between them). Detailed expressions for all these couplings are given.

1. Introduction

One of the most subtle and peculiar problems in condensed
matter physics concerns the nature of the ‘glass’ state and of
the associated glass transition. This problem (described by
Anderson [1] in 1995 as ‘the deepest and most interesting
problem in solid-state theory’) concerns the overwhelmingly
dominant component of the physical world as we experience
it, i.e. non-conducting solids that are not ordered in regular
crystalline arrays. In fact, the glass problem actually involves
two separate features. One is the remarkable universality
displayed in the low-T quantum properties [2, 3] and the
other is the high-T behavior shown in the vicinity of the glass
transition itself [4].

At first glance it seems implausible that these two features
of glasses could be related—they occur at very different energy
scales. Elsewhere we argue that there may be an interesting
connection, which depends on certain novel features of the
interactions in these systems. The purpose of the present
paper is to investigate the form of these interactions in some
detail. We derive a number of new interaction terms, which are
presented in the form of two new effective Hamiltonians for
neutral glasses, one valid for higher temperatures, the other in
the low-T limit.

We begin with a brief introductory review of the physics
of neutral glasses, particularly in the low-T quantum regime.

We then derive the form of the defect–phonon interaction terms
(section 2), including both a direct linear coupling to the lattice
displacement field and a coupling to the gradient of this field.
We then calculate, in sections 3 and 4 the effective coupling
between defects induced by these interactions. It is shown
in section 3 that the linear coupling not only gives the well-
known Ising coupling between the rotational tunneling modes,
but also a random field acting on these modes. However,
there is no such linear coupling between phonons and the
‘inversion symmetric defects’ (ones which are symmetric with
respect to inversion about the local lattice site). In section 4
we calculate the coupling of these defects to gradients of the
phonon field and show that this coupling produces another
weaker coupling to a random field generated by the now frozen
rotational modes, as well as a short-range coupling between the
inversion symmetric tunneling defects.

The main point of the present paper is to find the
correct quantitative form of the effective Hamiltonian for
these systems, after integrating out the phonons. We end up
with an effective Hamiltonian at high T which involves only
the rotational defects, and then another quite different low-
T Hamiltonian which describes a set of tunneling inversion
symmetric defects, coupled to each other and to the random
field generated by the frozen rotational modes; this includes a
number of new terms. It turns out that these results have very
interesting implications for the physics of glasses, which are
discussed in detail in [5].
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1.1. Universalities in the low-T quantum state

The first glass conundrum, strongly emphasized by Leggett [2],
is the apparent universality in the low-T properties of a huge
variety of disordered systems below a temperature TQ ∼
1–3 K, regardless of the amount of disorder. The most striking
universalities are seen in

(i) the Q factor, Q(ω, T ), for torsional oscillations of the
system, which is related to the phonon mean free path
l(ω, T ) and the phonon thermal wavelength λ(ω, T ) by
Q = 2πl/λ. One finds [3] that Q(ω, T ) shows a
pronounced plateau for T < TQ (down to a lower
temperature which decreases with ω), and that the value
Q = Q0 ∼ 600 varies over only a factor ∼2–3 between
many different materials, even though the intrinsic
disorder (measured by, for example, defect concentration
x) may vary over several orders of magnitude.

(ii) The ‘Berret–Meissner ratio’ c⊥/c‖ between longitudinal
and transverse sound velocities in the same low-T regime.
A remarkable linear relationship is found [6] between c⊥
and c‖ for a variety of materials including amorphous
oxide, semiconducting, polymer, metallic and electrolyte
glasses, in which c‖ varies by a factor of 5.

These are only the most striking of the low-T
universalities—there are others [3, 6]. In recent years the
experimental groups of Osheroff [7, 8], Hunklinger [9] and
Enss [10] have pushed experiments to very low temperatures
[∼O(1 mK)] and found a host of interesting new results,
including intrinsic dipolar ‘hole-digging’ in the many-body
density of states [7], and a remarkable spin coherence
phenomenon [9, 10] which comes from nuclear quadrupolar
interactions in neutral glasses. The dynamical hole-digging
persists to the lowest temperatures, giving ever sharper features
in the density of states; it is associated with non-exponential
relaxation and ‘aging’ behavior of the dielectric constant of the
system. It would be of interest to continue these measurements
well into the μK regime, if possible.

Although we are clearly dealing here with a resonant
tunneling phenomenon [11], qualitatively similar to that in
tunneling spin systems [12, 13] the glass problem apparently
involves cooperative tunneling of at least coupled pairs of
tunneling systems [8, 11], and the resulting low-T ‘universal’
state apparently involves some fundamental new physics.
Although a number of theoretical scenarios have been
proposed to describe this universal physics [3, 11, 14, 15], most
of which argue that it must involve strong coupling between
the relevant low-T modes, there is no complete consensus
at the present time. We note in passing that, although the
universalities occur in the same temperature range as the well-
known regularities [16] in thermal and transport properties in
glasses (such as the specific heat CV (T ) ∼ AT or the thermal
conductivity K (T ) ∼ BT 2), these latter can all be understood
in terms of the well-known picture [17] of non-interacting
two-level systems (TLSs). On the other hand, the dynamics
of dipolar hole-digging certainly requires interactions for its
explanation, between whatever modes are exhibiting low-T
quantum fluctuations, whether these be pairs of TLSs [11] or
some more complicated set of modes [2, 14].

1.2. The high-T glass transition

In most glasses there is actually a glass transition at a
temperature TG much higher than the crossover temperature
TQ to the universal quantum regime (typically TG/TQ ∼
40). There are several universal features of this transition
as well [4], amongst which one may single out (i) the
characteristic range of relaxation times τ in the system and
their characteristic T dependence, summarized in the Vogel–
Fulcher scaling law, which shows that the value of TG we use
depends on the timescale of interest; (ii) the ‘entropy crisis’,
in the range TK < T < TG, where TK is the Kauzman
temperature, and where one finds a supercooled glass entropy
lower than that of the crystalline solid; and (iii) the existence of
highly non-exponential relaxation, and characteristic memory
and aging effects, in the vicinity of the glass transition (as
noted above, these effects are also found in the low-T quantum
regime, both in neutral glasses where universality is seen [8]
and in electronic glasses [18]).

At first glance there seems to be no obvious relation
between this high-T behavior, which is characterized by
thermally activated processes of great complexity, and the
low-T behavior. A number of attempts have been made
in the last couple of years to give a general theory of the
glass transition [14, 19, 20]. Two of them [19, 20] made no
connection to the low-T regime, instead concentrating on the
vast number of thermally activated processes coming into play
near TG. The Moore–Yeo theory also makes a very interesting
connection between the critical behavior of supercooled liquids
near TG and Ising spin glasses in a magnetic field.

However, there are several arguments that indicate that
there may be a connection between the physics below TQ

and that near TG. The first two are experimental. It was
already noticed by Berret and Meissner [6] that the low-T
phonon relaxation time τmin shows a systematic connection to
the values of TG across the whole range of glasses, with τmin ∝
T 2.5

G . We have already remarked on the rough proportionality
TG/TQ ∼ 40; and indeed one can argue that the coupling γ

between phonons and the low-T tunneling entities (whatever
they may be) are intrinsically related to both TG and the phonon
velocities [14].

These observations suggest that there may be some kind
of unified theoretical framework which could describe both the
high-and low-T properties of glasses. Such a theory would
not only be of major interest (answering the question posed by
Anderson [1]) but it would also clearly give us a new blueprint
for theories of other complex systems. Such a framework
has actually been proposed very recently by Lubchenko and
Wolynes [14]. In this theory the basic objects are ‘tunneling
centers’ which comprise ∼200 atomic units, and which can be
used to describe both the low-T dynamics and the dynamics
near TG. We note that these ‘tunneling entities’ are very
different from the TLSs that have been used to describe many
of the low-T experiments [8–11, 16], although it is argued that
their behavior will be quite similar [14].

1.3. Nature of interactions in glasses

We now come to the question to be addressed by this paper.
One might think, in view of the generality of the phenomena
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Figure 1. (a) Off-center impurity with four equivalent sites and
(b) orientational impurity in the dumbbell approximation with two
equivalent states. To first order in the displacement, the two opposite
sites in (a) are also equivalent, leading to an effective two-state
impurity.

discussed above, that they ought to be independent of the
detailed nature of the interactions between tunneling entities
in the low-T regime. Actually it is widely assumed in
the glass literature that it is enough to include only dipolar
strain-mediated interactions, with the addition of electric
dipolar interactions where necessary. This assumption rests
on a number of microscopic calculations done over the
years, both for interacting TLSs [11, 21–24] and for the
more complicated systems of discrete rotators that exists in
orientational glasses [25–28]. These calculations (particularly
those for orientational glasses) are very lengthy, and for this
reason have not been attempted with any generality except by
a few authors. Nevertheless, the conclusion has been that the
effective interaction between two tunneling entities a distance
R12 apart is

Hint ∼ g(a0/R12)
3 (1)

where g is a coupling ∼O(1 eV), with both dipolar strain and
electric dipole contributions. The length a0 is a typical lattice
distance and we have suppressed an angular factor which has
roughly dipolar symmetry. We note that all of the principal
scenarios for the low-T behavior of glasses assume (1) to be
true; moreover they rely upon it in an essential way.

But is (1) really correct? In this paper we shall argue that,
in fact, (1) is incomplete and that the correct form contains
extra terms of some importance. These include another term
falling off like 1/R3

12, which, however, leads to a random field
acting on each tunneling rotator. There are also terms which are
weaker and which fall off faster, which would be less important
except that they act on two-level systems that do not see the
first random field. The net result of this is that we derive two
effective Hamiltonians for the system, one which is valid at
higher temperatures around TG and the other at much lower
T , apparently around the temperature TQ which defines the
crossover to the universal properties.

2. Defect–phonon interactions

In what follows we will be dealing with neutral glasses, i.e. we
ignore metallic and superconducting glasses. This of course
still includes the overwhelming majority of materials on earth,

Figure 2. Two nearby impurities, with distorted plaquettes. Filled
small circles denoted occupied impurity sites.

from rocks and minerals to a galaxy of insulating compounds
(based mostly on transition metals), along with a huge variety
of natural and artificial organic systems (including polymers).

In spite of this variety, and regardless of whether one
is dealing with a strongly disordered amorphous systems or
very weakly disordered systems like substitutional electrolyte
glasses, the two interactions of main interest are those
involving strain fields and phonons, and those involving the
interaction of electric fields with local charge distributions.

2.1. Simple model for defects

Our tactic in this paper will be to start with a toy model which
describes a class of very simple systems, and then argue that
the important features of this model can be generalized to a
much wider variety of glassy systems.

Consider the situation depicted in figure 1, in which we
reduce the system to a 2D plane, and look at defects in
this plane. The underlying local symmetry of the system is
assumed to be of square plaquettes, and the defects can either
be substitutional defects, able to occupy one of four states in
the plaquette, or orientational defects, able to rotate between
four orientational states. Under certain circumstances, to be
discussed below, we can make the ’dumbbell approximation,
in which defects rotated by 180◦ are considered to be
indistinguishable—we then treat these two states as identical,
and the four-state system reduces to a two-state system.

Now if the concentration of these defects is low we
can assume that they do not disturb the underlying lattice
symmetry, and interactions between two defects, even if they
are distantly separated, will be between two plaquettes which
are oriented along the same axes. More generally, when
the defect concentration is much higher, one may have the
situation shown in figure 2, where the two plaquettes are
slightly distorted, and also rotated with respect to each other.

It might be objected that the situation depicted in figure 2
is not very realistic, in that a high defect concentration would
so severely disrupt the square symmetry that the plaquettes
themselves would not only be rotated, but that their shapes
would be severely distorted, so that no clear local lattice
structure could be defined. Actually this is not the case—quite
surprisingly, the situation in even rather strongly amorphous
glasses does not conform to the common caricature in which
they look like frozen liquids. Instead, at short length scales

3



J. Phys.: Condens. Matter 20 (2008) 244136 M Schechter and P C E Stamp

the underlying lattice structure is still quite recognizable, and
the system more resembles a ‘frozen liquid’ of very small
polycrystals [29] (actually the instantaneous state of quite a few
liquids also looks like this!).

A good tutorial example of systems like our toy model
is provided by substitutional electrolyte glasses, where the
defects can be characterized very precisely. Canonical
examples are KCl1−x Lix , KCl1−x(OH)x , KBr1−x(CN)x ,
etc [27, 30]. Many experiments in these systems have been
done in the very dilute regime, with concentrations in the
range 10−6 < x < 5 × 10−5, where one can ignore the
interactions between the widely spaced impurities [31–33].
However, there are also many studies of concentrations up to
x ∼ 0.1 or even higher. When x > 2 × 10−4, interactions
between the impurities clearly dominate the physics in most
of these systems [30, 33–35]. This is shown in, for
example, the saturation in the dielectric response for higher
concentrations [33].

In real three-dimensional systems like (KCl)1−xLix ,
(KCl)1−x(OH)x or (KBR)1−x(CN)x , one has either off-center
point-like impurity states (as in (KCl)1−x Lix , with eight
available positions for the Li impurity inside a given KCl
lattice ‘cage’) or else orientational (as in (KBR)1−x(CN)x ,
where the CN impurity can lie in one of the eight directions
along (1, 1, 1) and its equivalents). Previous treatments of
the microscopic interactions in these systems have taken one
of two routes. Michel and collaborators [25, 27] have used
a detailed microscopic description of the orientational and
translational degrees of freedom (and the coupling between
the two of these) with the goal of describing systems where
orientational impurities like CN can rotate inside their host
‘cages’. Sethna and collaborators [28, 36, 37] have used
a somewhat more general phenomenological description in
terms of TLS impurities.

The great advantage of beginning with these simple
systems is that one can set up a well-controlled theory
beginning with the case of dilute defect concentration x . There
are good arguments, based on the experiments on electrolyte
glasses [30–35] and other amorphous systems [3, 7–11, 16],
that the theory must, when x is larger, flow towards the strong-
coupling regime (and perhaps to some universal quantum
regime). But it makes no sense trying to explore the strong-
coupling limit until the form of the interactions has been
established in weak coupling. The key question of interest
here (namely, what are these interactions?) can only rigorously
be addressed by starting from a system where x � 1.
Later we will argue that our main results will survive well
into the universal regime, and so are of much more general
applicability.

Returning now to figure 1, we divide the defects into
two groups, namely (i) those in which there is an inversion
symmetry relating pairs of states, where inversion is made with
respect to the relevant lattice position; and (ii) those where
there is no such symmetry. In the square plaquette system
we see that both simple impurities like Li and orientational
impurities like CN or OH can be in one of four different
states, related by 90◦ rotations of the plaquette, and there is
no inversion symmetry. However, in some cases, one can

treat the states related by 180◦ as physically equivalent (either
because they really are equivalent, or because at the energy
scale of interest the difference is unimportant), and then we
can assume inversion symmetry. In this case the state space
on the plaquette is two-dimensional, with states oriented along
one or other of the lattice diagonals.

To describe the system, the simplest representation is just
a four-state one in which the system can hop between any
of the four plaquette sites. However, we will use a slightly
different one, where we begin by defining a set of operators {τ̂i}
such that τ̂ x

i flips the state on the plaquette through 180◦, and
another set of operators {Ŝi } such that Ŝx

i rotates the state on the
plaquette through 90◦ in either direction. This representation is
used because we will see that the impurity–lattice interaction
turns out to depend crucially on whether inversion symmetry is
obeyed, and so this way of setting up the description allows us
to distinguish between operations which are or are not invariant
under inversion symmetry.

In what follows we will first be considering the effect of
phonons on the rotational tunneling degrees of freedom. In
general, before we take interactions with phonons into account,
these will be described by a Hamiltonian

H (S)
def =

∑

j

E j Ŝ
z
j − D j Ŝx

j (2)

where D j is a tunneling matrix element and E j is any stray
field acting on the rotational defect variable Ŝ j . At lower T ,
once the rotational degrees of freedom are frozen out, only the
inversion tunneling processes are left, and these are described
by a bare Hamiltonian

H (τ )
def =

∑

j

ε j τ̂
z
j − � j τ̂

x
j (3)

where again an ‘external’ effective longitudinal field ε j acting
on the j th dipole is allowed.

Often, in the study of the possible phases of the system,
the high-T tunneling is dropped since it is typically too small
to influence the nature of the phase, nor its stability to effective
random fields [38]. We will keep it simply because we wish
to trace how the effective Hamiltonian evolves as we lower the
energy scale.

2.2. Coupled defect–phonon system

Consider now the coupling to the phonon modes in the system.
The Hamiltonian for this system is given by

H = Hdef + Hph + Hint (4)

where Hdef is the bare defect term just discussed and the
phonon system is described by

Hph =
∑

q,μ

( |Pq,μ|2
2M

+ Mω2
q,μ

|Xq,μ|2
2

)
. (5)

Here P and X represent momentum and displacement
operators for phonon modes of wavevector q and branch μ,
and M is the mass of the elementary cell of the medium.
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We split the defect–phonon interaction Hint into two terms,
writing

Hint = H int
1 + H int

2 (6)

where the lowest-order term is linear in the phonon
displacement field:

H int
1 = −

∑

α,β

∑

j

(
η(r j )δ

αβ ∂ X jα

∂x jα
+ γαβ(r j )

∂ X jα

∂x jβ
Sz

j

)
(7)

and the next term is a nonlinear coupling of the defects to the
gradient of this field, of the form

H int
2 = −

∑

α,β,δ

∑

j

ζαβδ(r j )
∂2 X jα

∂x jβ∂x jδ
τ z

j . (8)

The linear coupling term H int
1 contains first a ‘volume

coupling’ with coefficient η, which is independent of the
defect position or orientation, arising because the defect has
a different volume from the host and this locally strains it.
Then there is the usual interaction γαβ(r j ) between the defect
and the strain field in the ‘TLS’ or ‘dumbbell’ approximation,
which changes sign with Sz

j , since the phonon displacement
fields are sensitive to the defect orientation. The size of these
interactions is not easy to calculate—however, γαβ(r j ) can be
measured and is on a typical scale γ ∼ 1 eV. Estimates of
η give similar numbers but the ratio η/γ must certainly vary
from one system to another (calculations are difficult because
the volume change and charge redistributions caused by the
defect will interact with each other).

We notice that, when inversion symmetry is preserved,
there is no linear interaction between the τ̂ j and the phonon
field. The second term H int

2 arises when we relax the
assumption of inversion symmetry, so states rotated by 180◦
are distinguishable (either because we relax the ‘dumbbell’
approximation, and consider the dipole moment of the
impurity or molecule, or because we consider tunneling point
impurities). In this case the effective ‘dipole’ represented
by the difference between these states can interact with the
gradient of the phonon displacement field, in the form given
in H int

2 . However, this interaction is much weaker and has
rarely been considered before. Certainly we do not expect
it to affect the physics near the glass freezing temperature.
However, we will see that this interaction is important at lower
temperatures, where other degrees of freedom freeze out. At
the present time we cannot give more than a rough estimate for
the size of the coefficient ζ αβδ of this interaction; noting that
its dimensions are D[ζ αβδ] = E L (i.e. energy times length),
and that the characteristic energy scale of defect interaction
energies is Uo ∼ 1 eV, and the characteristic length scale
ad of defect dynamics is roughly 1 Å, we would expect that
|ζ αβδ| ∼ 1 eV Å. To get an energy from this we need to
divide by the typical distances between impurities, given by
ld ∼ aox−1/3, where ao is a lattice length. Thus we expect
that the energy scale associated with this coupling is less than
γ and η by a factor adx1/3/ao. From now on we will assume
that this energy scale associated with ζ is considerably smaller
than γ, η.

3. Inter-defect effective Hamiltonian: high energies

Let us begin by assuming that we are at a sufficiently high-
energy scale that we can neglect the weaker interaction H int

2 ;
we are then concerned with a set of phonons interacting with
the {Ŝ j } TLS variables, ignoring the {τ̂ j} variables. We wish,
in this approximation, to calculate the effective Hamiltonian
of the system, initially just up to second order in the defect–
phonon coupling. This is an old problem, but we shall see that
even here there are new things to be discovered. Let’s look
first at the simple problem of two interacting defects in this
dumbbell approximation. We split the interaction term H int

1
into two, to understand the effect of the orientation and volume
parts separately, and consider two defects at positions r1 and
r2. Then the system has the bare Hamiltonian:

H int
1 = Vγ + Vη

= −
∑

α,β

(
γ

αβ

1

∂ X1α

∂x1β

Ŝz
1 + γ

αβ

2

∂ X2α

∂x2β

Ŝz
2

)

−
∑

α

(
η1

∂ X1α

∂x1α

+ η2
∂ X2α

∂x2α

)
. (9)

If we now integrate out the phonons we will generate, at lowest
order in H int

1 , terms of Ising form (proportional to γ1γ2 Ŝz
1 Ŝz

2),
cross-terms giving a local field, proportional to γ η(Ŝz

1 + Ŝz
2),

plus an energy shift ∼η1η2. The Ising form has been known
for a long time. The second term, when summed over all spins
apart from one given spin, simply leads to a random field at
the site of that spin—this term is not usually considered. In
this section we first sketch the derivation of the Ising term,
primarily to establish the notation, and then derive the random
field term.

3.1. Ising interaction term

We define the Fourier transformation to momentum space as

X1α(x) = 1√
N

∑

q,μ

Xq,μeq,μ,αeiqx (10)

where eq,μ,α is a phonon polarization index. Then we have

Vγ = − 1√
N

∑

α,β

γ1αβ

∑

q,μ

Xq,μeq,μ,αiqβeiqx Sz
1 + (1 ↔ 2).

(11)
To find the interaction in second-order perturbation theory

we minimize the potential energy, i.e. the sum of the second
term in equation (5) plus the interaction term. Straightforward
calculation results in energy terms proportional to (Sz

1)
2, (Sz

2)
2

and the Ising interaction term of interest, proportional to Ŝz
1 Ŝz

2 .
Let us define the notation R12 = x1 − x2, and use an acoustic
approximation, in which the longitudinal phonon frequency
ωql = clq , the transverse phonon frequency is ωq⊥ = c⊥q .
We also have the identities:

eqlα = qα/q, eq⊥1 · q = eq⊥2 · q = eq⊥1 · eq⊥2 = 0
∑

μ=⊥1,⊥2

eqμαeqμβ = δαβ − qαqβ/q2.

(12)
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Then the Ising interaction V zz
12 = U zz

12 Ŝz
1 Ŝz

2 , where

U zz
12 = −

∑

q,μ

1

N Mω2
qμ

∑

αβγ δ

eqμαeqμγ qβqδγ
αβ

1 γ
γδ

2

× cos [q(x1 − x2)]. (13)

Summing over polarization indices gives

U zz
12 = − 1

N M

∑

αβγ δ

γ
αβ

1 γ
γδ

2

(
1

c2
l

− 1

c2
⊥

) ∑

q

qαqβqγ qδ

q4

× cos (q · R12) − 1

N M

∑

α,β,δ

γ
αβ

1 γ αδ
2

c2
⊥

×
∑

q

qβqδ

q2
cos (q · R12) (14)

which when the sum over momenta is performed, gives the real
space form

U zz
12 = gzz

12

R3
12

(15)

with the interaction

gzz
12(n) = −1

4πρc2
⊥

γ
αβ

1 γ αδ
2 (δβδ − 3nβnδ) − 1

4πρ

(
1

c2
l

− 1

c2
⊥

)

× γ
αβ

1 γ
γδ

2

(− [
δαβδγ δ + δαγ δβδ + δαδδβγ

]

+ 3
[
δαβnγ nδ + δαγ nβnδ + δαδnβnγ + δβγ nαnδ

+ δβδnαnγ + δγ δnαnβ

] − 15nαnβnγ nδ

)
. (16)

Here the reduced variable n = R/|R|, and we suppress
the ‘{12}’ subscript on R12 and n12 to keep things uncluttered.
This interaction has a rather complicated angular dependence,
coming both from the anisotropy of the medium and from the
fact of the strain interaction γαβ(r). If we assume a completely
isotropic medium with degenerate longitudinal and transverse
phonons, and also make the simplification of anisotropic
γαβ(r), so that γαβ(r) → γoδαzδβz , we get the strictly dipolar
form

gzz(n) =
(

γ 2
o

4πρc2
o

)
[3 cos2 θ(n) − 1] (17)

where θ(n) is the angle between the unit radius vector n and
the ẑ axis; the characteristic coupling energy go = (γ 2

o /πρc2
o)

is now evident.
As noted before, these results are well known and were

first derived [21, 22] in the 1970s. The essential result is that
one has derived an effective Ising interaction; since the sites of
the defects are random, the tunneling terms make this system
behave as a quantum Ising model with random interactions and
the Hamiltonian

H =
∑

i

Di Ŝx
i +

∑

i j

U zz
i j Ŝz

i Ŝz
j (18)

where the tunneling amplitudes {Di } are typically much
smaller than the nearest-neighbor Ising interactions. However,
it turns out that this Ising interaction is not the only term that is
important.

3.2. Random field term

We now include the cross-terms ∝γ η, coming from second-
order perturbation theory in the interaction H int

1 in equation (9).
Using similar maneuvers as in the calculation above, one now
obtains another term in the effective interaction of form V z0

12 =
U z0

12 (Ŝz
1 + Ŝz

2), where

U z0
12 (R12) = − 1

N M

∑

αβ

ηγαβ

c2
l

∑

q

qαqβ

q2
cos (q · R12). (19)

We call this a random field term because if we take a given spin
in the system, say Ŝi , and then sum the interaction U z0

i j (Ri j)

between Ŝi and the volume terms coming from all the other
defect sites { j}, we get a field hz

i acting on Ŝz
i at site i

which varies from site to site in a random way, because of the
random positions and orientations of the arguments Ri j . Note,
incidentally, that this effective random field interaction has a
contribution only from the longitudinal phonons.

This interaction is important since, as we show elsewhere,
it actually destroys the bulk glass transition [5]. Let us now
explicitly derive its form. To do this we first evaluate the tensor

Ĩαβ =
∑

q

qαqβ

q2
cos (q · R). (20)

Changing the sum to an integral we get

Ĩαβ = V

(2π R)3

∫
d3q

qαqβ

q2
cos (q · n) ≡ V

(2π R)3
Iαβ (21)

where again n ≡ R/|R|. From symmetry we have Iαβ =
aδαβ + bnαnβ . Consider first

∑
α Iαα . On the one hand this

sum can be written as
∫

d3q cos (q · n) = 0. On the other hand,
the sum equals 3a + b, leading to the identity 3a + b = 0.

Similarly, the scalar

∑

αβ

Iαβnαnβ =
∫

d3q
qαqβnαnβ

q2
cos (q · n). (22)

In calculating the right side we can choose n in any direction,
say in the z direction. This leads to the expression

2π

∫
dqr qr

∫
dqz

q2
z

q2
r + q2

z

cos qz (23)

and then using

q2
z

q2
r + q2

z

= 1 − q2
r

q2
r + q2

z

(24)

and straightforward integration we find that the integral equals
−4π2. On the other hand,

∑
αβ Iαβnαnβ = a + b, leading to

the identity a+b = −4π2, and together with the above identity
(3a + b = 0) to the result that a = 2π2, b = −6π2, and

Iαβ = −2π2(3nαnβ − δαβ). (25)

Thus, one finally obtains

U z0
12 = 1

4πρc2
l R3

∑

αβ

ηγ αβ (3nαnβ − δαβ). (26)
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This result shows a much less complicated angular dependence
than the Ising interaction (16); in general we see that they
depend differently on angle, simply because the Ising gzz(r)
is essentially a dipole–dipole interaction whereas this mixed
term is a dipole–monopole interaction.

If we make the isotropic assumption that γαβ(r) → γo,
then U z0

12 → 0. On the other hand, if γαβ = γzz , then we get
a dipolar interaction:

U z0
12 → gz0(n)

R3
(27)

where

gz0(n) =
(

γzzη

4πρc2
l

)
[3 cos2 θ(n) − 1] (28)

where now the interaction energy is (γzzη/4πρc2
l ). In any case,

both this mixed term and the Ising term end up having the
same 1/R3

i j spatial form, but their characteristic energies are
different.

Thus, as a result of the added volume term in the impurity–
lattice interaction, the effective Hamiltonian in the ‘dumbbell’
approximation is not the quantum Ising model (18) but the
quantum random field Ising model, with Hamiltonian

HRF({Ŝ j }) =
∑

i j

U zz
i j Ŝz

i Ŝz
j +

∑

i

(D j Ŝx
i + Bi Ŝ

z
i ) (29)

where Bi = ∑
j U z0

i j . This random field has mean zero, as by
symmetry there is no preferred direction. Its typical value is
given by B0 ≈ ηγ x/(4πρc2

1), where x is the concentration,
since it is dictated by the typical distance between nearest
impurities. Thus, the typical size of both interactions is rather
similar; we expect that |Bi | ∼ | ∑ j U zz

i j |(η/γ ). In typical
glassy systems this means that they are both ∼xUo, where
Uo ∼ 1 eV. This means that unless x < 10−4, the typical
size of these random fileds |Bi |  Do, where Do is a typical
tunneling amplitude. Note, that the standard deviation of the
distribution of the random fields, B̄ ≈ ηγ

√
x/(4πρc2

l )  B0,
as it is dominated by the rare events of pairs of impurities
occupying nearest neighbour lattice points (see [40], noting the
trivial relations between high and low impurity densities).

The random field quantum Ising Hamiltonian (29) has
very different properties from the simple quantum Ising
system—apart from anything else, the random field can
actually destroy the glass transition [5]. We do not go into these
questions here, but note instead that the most important effect
of the Ising interaction term, for all but very dilute glasses, is to
freeze the tunneling of the Ŝ j variables, except for a very small
fraction ∼Do/xUo of systems that happen to be on resonance.

However, this is not the end of the story at all. This is
because, as noted above, the τ̂ j variables do not have a linear
coupling to the phonons, and so to linear order they experience
neither impurity–impurity interactions nor a random field, and
thus they are still free variables. This is why we now have to
go to the higher coupling terms.

4. Inter-defect interactions at low energy

Let us now go to an energy scale very much less than the
putative glass freezing temperature. Now we start from a

Hamiltonian given by

Hint = HRF({S j }) +
∑

j

� j τ̂
x
j −

∑

α,β,δ

∑

j

ζ
αβδ

j

∂2 X jα

∂x jβ∂x jδ
τ z

j

−
∑

j,α,β

γ
αβ

j

∂ X jα

∂x jβ
Sz

j − η j

∑

α

∂ X jα

∂x jα
(30)

where the tunneling amplitude � j describes the 180◦ flip of
defects. The first term in this effective Hamiltonian is just the
random field quantum Ising model derived in (29).

Now let us write an approximate version of (30),
which takes account of the fact that the set of spins {S j}
have almost entirely frozen into some random configuration,
with expectation values {〈S j 〉}, because of the strong Ising
interaction between them (but without long-range glassy
order). Now in this approximation we can simply ignore the
dynamics of the {S j } entirely and replace (30) with another
Hamiltonian, which is approximately valid when T � TG,
given by

Hint =
∑

j

� j τ̂
x
j −

∑

α,β,δ

∑

j

ζ
αβδ

j

∂2 X jα

∂x jβ∂x jδ
τ z

j

−
∑

j,α,β

γ
αβ

j

∂ X jα

∂x jβ
〈Sz

j 〉 − η j

∑

α

∂ X jα

∂x jα
. (31)

This Hamiltonian is only valid to the extent that we can ignore
any tunneling of resonant {S j } variables.

Consider now the interaction terms in equation (31). If
we now integrate over the phonons, one expects the interaction
between τ̂ j and the phonons (the third term in (30)) to give
an interaction ∼ζiζ jτ

z
i τ z

j . But we notice that there will also
be two cross-terms between the two couplings to the phonons,
giving an interaction ∼γiζ jτ

z
i 〈Sz

j 〉 and an interaction ∼ηiζ jτ
z
i .

When summed over the sites { j}, both of these terms must
give random fields acting on the τ̂ j variable. The first of these
random fields comes from the frozen Sj degrees of freedom,
behaving as a quenched impurity distribution coupling to
the τ z degrees of freedom. The second just comes from
summing over all the scalar volume distortions from these
frozen impurities.

4.1. Interactions involving the {τ̂ j} variables

Since γ, η  ζ , it follows that the two random field terms
acting on the {τ z

j } interaction will be much stronger than the
Ising interactions between them (quite different from what
occurs for the {Ŝ j}). We therefore deal with the two random
field terms first and then look at the Ising interaction between
the {τ z

j }.

4.1.1. The Sz
i τ

z
j interaction. The Sz

i τ
z
j interaction is not only

typically the largest (although γ and η are of the same order, γ

is usually a little larger), but also the most tedious to calculate.
To do this we begin by considering the two interaction terms

V Sτ
12 = −

∑

α,β

γ
αβ

1

∂ X1α

∂x1β

Sz
1 −

∑

γ,δ,η

ζ
γ δη

2

∂2 X2γ

∂x2δ∂x2η

τ z
2 (32)

7
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which come into the calculation of this interaction when we
have only two impurities. Using equation (10) we obtain

V Sτ
12 = − 1√

N

∑

qμ

(∑

αβ

γ
αβ

1 Xqμeqμαiqβeiqx1 Sz
1

−
∑

γ δη

ζ
γ δη

2 Xqμeqμγ qδqηeiqx2 τ z
2

)
. (33)

Again, minimizing the sum of VSτ and the potential term in
equation (5) one obtains the interaction energy between the two
impurities, given by

U Sτ
12

= −
∑

qμ

∑
αβγ δη γ

αβ

1 ζ
γ δη

2 eqμαeqμγ qβqδqη sin (q · R)Sz
1τ

z
2

N Mω2
qμ

.

(34)

Notice that this interaction is odd in R! This is because
the first derivative term is imaginary, and the second derivative
term is real, leading to a sin (q · R) interaction. Physically, this
is clear since an impurity variable which is odd under inversion
symmetry, like τ2, must have an interaction which is odd in
R with other impurities, if these are either substitutional (i.e.
causing scalar perturbations), or are even under inversion.

Using again the acoustic approximation, i.e. ωql =
clq, ωq⊥ = c⊥q and the identities in (12), we have an
interaction

U Sτ
12 = − 1

N M

∑

q

1

q2

∑

αβγ δη

γ
αβ

1 ζ
γ δη

2 qβqδqη sin (q · R)Sz
1τ

z
2

×
[(

1

c2
l

− 1

c2
⊥

)
qαqγ

q2
+ 1

c2
⊥

δαγ

]
. (35)

This is a complicated integral, because of the large number of
different components of momentum involved. To evaluate it
we begin by writing it in the form

U Sτ
12 = − 1

N M

∑

αβγ δη

γ
αβ

1 ζ
γ δη

2 Sz
1τ

z
2

[(
1

c2
l

− 1

c2
⊥

)
Fαβγ δη

+ 1

c2
⊥

δαγ Gβδη

]
, (36)

where we have define the fifth and third rank tensors

Fαβγ δη =
∑

q

qαqβqγ qδqη sin (q · R)

q4
(37)

Gβδη =
∑

q

qβqδqη sin (q · R)

q2
. (38)

Let us start by calculating Gβδη. As a first step we write it
in the form

Gβδη = V

(2π)3

1

R4
Gβδη (39)

where we have defined the integral

Gβδη ≡
∫

d3q
qβqδqη sin (q · n)

q2
. (40)

Already here we see that the interaction has a spatial
dependence ∼1/R4. In fact, any interaction involving the τz

impurity will have a 1/R4 or larger power spatial dependence
(we find that the τ zτ z impurity–impurity interaction has a 1/R5

dependence) and must therefore be treated as a short-range
interaction in 3D.

By symmetry the function Gβδη can be written in the form

Gβδη = A(δβδnη + δβηnδ + δδηnβ) + Bnβnδnη. (41)

We wish to find the coefficients A and B . We do this along
the same lines as in our calculation for the random field term
of the Sz impurities. First we note that

∑

αη

Gααηnη =
∑

η

∫
d3q qηnη sin (q · n) (42)

is a scalar. Thus the integral can be taken for η = ẑ, and is zero.
On the other hand the sum on the left-hand side is 5A + B and
therefore we get

5A + B = 0. (43)

We now consider
∑

βδη

Gβδηnβnδnη =
∑

βδη

∫
d3q

qβqδqηnβnδnη

q2
sin (q · n).

(44)
The left-hand side equals 3A + B . On the other hand, since the
expression is a scalar the integral can be calculated for n = nz ,
i.e.∫

d3q
q3

z sin (qz)

q2
= 2π

∫ ∞

0
dqr qr

∫ ∞

−∞
dqz qz sin (qz)

×
(

1 − q2
r

q2
z + q2

r

)
= −12π2. (45)

Thus we find that 3A + B = −12π2, and since 5A + B = 0
we find that A = 6π2, B = −30π2, and therefore finally we
have

Gβδη = π2[6(δβδnη + δβηnδ + δδηnβ) − 30nβnδnη] (46)

and hence

Gβδη = V

4π R4
[3(δβδnη + δβηnδ + δδηnβ) − 15nβnδnη]. (47)

Let us now calculate Fαβγ δη . We first define

Fαβγ δη = V

(2π)3

1

R4
Fαβγ δη (48)

where

Fαβγ δη =
∫

d3q
qαqβqγ qδqη sin (q · n)

q4
. (49)

From symmetry, one can write

Fαβγ δη = a Fa
αβγ δη + bFb

αβγ δη + cFc
αβγ δη (50)

where
Fa

αβγ δη = δαβδγ δnη + δαγ δβδnη + δαδδβγ nη

+ (η ↔ α + η ↔ β + η ↔ γ + η ↔ δ)

Fb
αβγ δη = δαβnγ nδnη + all distinguishable permutations

Fc
αβγ δη = nαnβnγ nδnη.

(51)

8
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We now need to evaluate the three coefficients a, b and c.
To do so let us first consider the term

∑

αβη

Fααββηnη =
∫

d3q(q · n) sin (q · n). (52)

The equality results because the sum gives q4qη in the
numerator. This expression is a scalar, which therefore equals∫

d3q qz sin qz = 0. A careful evaluation of the sum on the
left-hand side gives 35a + 14b + c and therefore we obtain as
a first relation for a, b, c that

35a + 14b + c = 0. (53)

To obtain a second relation we look at the scalar∑

αβγ δη

Fαβγ δηδαβnγ nδnη

=
∑

γ δη

∫
d3q

qγ qδqηnγ nδnη

q2
sin (q · n). (54)

Since the expression is a scalar, we can choose n = nz , and
the integral becomes

∫
d3q q3

z sin qz/q2 = −12π2, as was
calculated above. Summation of the left side gives 21a +
12b + c and we thus have a second relation between a, b and
c, namely

21a + 12b + c = −12π2. (55)

To get a third relation we consider

∑

αβγ δη

Fαβγ δηnαnβnγ nδnη =
∫

d3q q5
z sin qz/q4, (56)

where we have used, as above, the fact that the expression is a
scalar and took n = nz . The integral can be calculated using
again the identity q2

z /q2 = 1 − q2
r /q2, and is found to equal

zero. The sum on the left side then gives the relation

12a + 10b + c = 0 (57)

If we now take these three relations together, we find the
desired results for a, b and c:

a = 24π2/5

b = −138π2/5

c = 1092π2/5.

(58)

which can then be inserted into equation (50) to get a final
result for the interaction U Sτ

12 in the form given in (36).
Now we can write the form of the effective random field

term that this leads to, after noting again that almost all the
{S j} are frozen, and sum over all sites apart from a given site
i . Then we must get a term in the low-T effective Hamiltonian
of form

H τ
(γ ) =

∑

i

b(γ )

i τ̂ z
i (59)

where the random field b(γ )

i is given by summing over sites in
the interaction we have just derived. One gets

b(γ )

i = − V

2π3 N M

∑

j

1

R4
i j

∑

αβγ δη

γ
αβ

j ζ
γ δη

i 〈Sz
j 〉

[(
1

c2
l

− 1

c2
⊥

)

× Fi j
αβγ δη + 2π2

c2
⊥

δαγ Gi j
βδη

]
, (60)

where the tensor function Fi j
αβγ δη is just

Fi j
αβγ δη =

∫
d3q

qαqβqγ qδqη sin (q · ni j)

q4

= [
a Fa

αβγ δη(ni j ) + bFb
αβγ δη(ni j) + cFc

αβγ δη(ni j )
]

(61)

with the three tensors in the second form given by substituting
the unit ni j = Ri j/|Ri j | for n in (51); and the tensor Gi j

βδη is
given by the form in (46) after the same substitution has been
made, i.e.

Gβδη

i j = π2
[
6
(
δβδnη

i j + δβηnδ
i j + δδηnβ

i j

)− 30nβ

i j n
δ
i j n

η

i j

]
. (62)

This is the first random field term acting on the {τ̂ j}. We
see that the order of magnitude of the interaction is given by

∣∣∣b(γ )

i

∣∣∣ ∼ γ ζ

ρc2

∑

j

1

R4
i j

. (63)

where γ and ζ are typical values of the corresponding tensors.

4.1.2. The volume interaction term. Now let us consider the
other source of random fields acting on the {τ̂ j}, coming from
their interaction with the volume term of other impurities. This
is calculated by considering the cross-term arising from the
interaction

Vητ = −
∑

α

η1
∂ X1α

∂x1α

−
∑

γ,δ,η

ζ
γ δη

2

∂2 X2γ

∂x2δ∂x2η

τ z
2 (64)

between the volume interaction at site r1 and τ̂ z
2 . Similar

maneuvers to the ones used above then lead, in the acoustic
approximation, to an interaction term

Uητ = −1

N M

∑

q

1

q2

∑

αγ δη

η1ζ
γ δη

2 qαqδqη sin (q · R)τ z
2

×
[(

1

c2
l

− 1

c2
⊥

)
qαqγ

q2
+ 1

c2
⊥

δαγ

]
, (65)

which reduces to

Uητ = −1

N Mc2
l

Gγ δηη1ζ
γ δη

2 τ z
2 ≡ −1

8π3ρR4c2
l

Gγ δηη1ζ
γ δη

2 τ z
2 ,

(66)
where the definitions of G and G are the same as above (cf
equations (46) and (47)). Note that, since the volume term
couples only to the longitudinal phonons, Uητ depends only
on cl.

The random field resulting from this term is then given in
the form of an interaction

H τ
(η) =

∑

i

b(η)

i τ̂ z
i (67)

where the random field b(η)

i is given by

b(η)

i = − 1

8π3ρc2
l

∑

j

1

R4
i j

Gi j
γ δηηζ

γ δη

i (68)

with Gi j
γ δη given by (62), and where

∣∣∣b(η)

i

∣∣∣ ∼ ηζ

ρc2

∑

j

1

R4
i j

. (69)
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Now we can finally write the random fields acting on the
{τ̂ j}, coming from the gradient phonon term in the defect–
phonon interaction, in the form of an interaction term

H τ
RF =

∑

i

bi τ̂
z
i (70)

where the random field bi is just given by the sum of the two
contributions we have found, i.e.

bi = b(η)

i + b(γ )

i (71)

where the two contributions are given by equations (36)
and (68) respectively, and where |b(γ )

i /b(η)

i | ∼ γ /η.

4.1.3. Ising interaction between the {τ̂ j}. In the same way we
may evaluate the Ising interaction between the {τ̂}. The result
is an interaction

∑
i j Ji j τ̂

z
i τ̂ z

j , where the interaction coefficient

Ji j ∼ ζ 2

ρc2
o

1

R5
i j

. (72)

Now we see that not only is the interaction coefficient here
much smaller than that for the random fields (since ζ � η, γ ),
but this interaction also falls off much faster with Ri j , going
like 1/R5

i j . For this reason we do not calculate the exact
coefficient Ji j here: this calculation is rather lengthy and it
simply multiplies the right-hand side of (72) by a complicated
angular factor ∼O(1). Note that, even though Ji j is so small,
it will still affect the dynamics of the system at low T , since
there will be still resonant {τ̂ j} that can tunnel.

4.2. Effective Hamiltonian: low-energy form

Let us now summarize what we have. After integrating out
the phonons, we can now say that we have ended up with an
effective Hamiltonian which, if we still treat all the variables
as operators, takes the form

Heff = −
∑

j

[D j Ŝx
j + � j τ̂

x
j ] + Veff (73)

where the interaction now contains the following terms:

Veff =
∑

i j

U zz
i j Sz

i Sz
j +

∑

i

Bi S
z
i +

∑

i j

U Sτ
i j Sz

i τ
z
j +

∑

i

b(η)

i τ z
i

+
∑

i j

Ji jτ
z
i τ z

j , (74)

where we have written the terms in decreasing order of their
strength. The two random fields in this effective Hamiltonian
arise from the phonon-mediated coupling of the {Ŝz

i } and the
{τ̂ z

i } variables to the volume distortion caused by the defects.
The above effective Hamiltonian must be used if we want

to analyze the dynamics of these variables. At high energies
∼TG, we can entirely drop all the terms involving the {τ̂ z

i } in
the interaction Veff, since these interactions are all ∼O(ζ ) and
too weak to play a role. If we ignore the small number of spins
Sj that are in resonance, then we can also assume that the {Sz

j}
variables are frozen by the strong Ising interaction U zz

i j . As
discussed elsewhere, the effect of the random field Bi is then
to destroy long-range glassy order [5].

Now suppose we go to low-energy scales. If we
continue to ignore the small quantum fluctuations in the
expectation values {〈Ŝ j 〉} brought about by tunneling of the
small concentration of resonant Sj , then we can treat this
distribution as frozen. Then the low-energy Hamiltonian
simplifies very considerably. We get

Heff → −
∑

j

� j τ̂
x
j + Veff (75)

where now the interaction term has the much simpler form

Veff →
∑

i

bi τ̂
z
i +

∑

i j

Ji j τ̂
z
i τ̂ z

j (76)

in which the random field bi was calculated in the last section
and, as noted before, it is much larger than the Ising interaction
Ji j .

5. Summary and remarks

The purpose of the present paper was to give a detailed
treatment of the phonon-mediated interactions which exist in
a neutral glass, taking into account not only the usual linear
coupling between defects and the phonon displacement field,
but also the coupling to the gradient of the phonon field. The
net result of this was that we found an effective Hamiltonian
for the two sets of variables (the rotational tunneling variables
{Ŝ j} and the inversion tunneling variables {τ̂ j}), which
contained tunneling terms for each, Ising interaction terms for
each, and various effective random fields which act on both
variables. We note that similar issues arise in quantum spin
glasses [38, 41, 42], where random field terms also have a
profound effect (just as they do in classical spin glasses [43]);
however, real spins are, in many ways, quite different from
defects, and this means that there is no simple relation between
the two systems [5].

These calculations were all done in the framework of
second-order perturbation theory in the interactions, and they
were all done assuming that the background lattice could still
be meaningfully defined, at least in local ‘patches’ around each
defect. Thus, at first glance the calculations here are only
rigorously valid for low defect concentration x . Two possible
problems then arise at higher x . First, one might object that the
‘patch’ picture must eventually break down—we have argued
in section 2 that this is not the case, because even rather
strongly disordered glasses still do have local crystalline order.

The second more serious problem is that one expects
higher-order interactions to come in at higher x and these
will mix the various interactions we have derived here. This
problem of higher-order corrections is notoriously difficult,
since a hierarchy of logs is generated once one integrates over
multiple sites [11, 39]. We do not attempt to discuss it here
but simply note that our results inevitably change the results
of these higher-order calculations, because of the new terms
we have found in this paper (in fact, almost all calculations
of these higher-order terms include only the tunneling terms
and the Ising interactions, without any random fields). Thus
we expect the results here to have important consequences for
the discussion of the nature of glasses, and we have developed
some of these elsewhere [5].
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