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We consider the quantum magnet LiHoxY1�xF4 at x � 0:167. Experimentally the spin glass to
paramagnet transition in this system was studied as a function of the transverse magnetic field and
temperature, showing peculiar features: for example, (i) the spin glass order is destroyed much faster by
thermal fluctuations than by the transverse field; and (ii) the cusp in the nonlinear susceptibility signaling
the glass state decreases in size at lower temperature. Here we show that the hyperfine interactions of the
Ho atom must dominate in this system, and that along with the transverse inter-Ho dipolar interactions
they dictate the structure of the phase diagram. The experimental observations are shown to be natural
consequences of this.
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LiHoxY1�xF4 is widely considered to be a model quan-
tum Ising magnet. The strong easy axis crystal field gives
the large spin Ho ion an Ising character, behaving as a two-
level system when temperature T � 10 K; quantum fluc-
tuations between the two Ising states are induced by a
tunable transverse magnetic field H?. If one then neglects
both hyperfine (hf) and transverse dipolar (TD) interac-
tions, the system is described by a transverse field Ising
model (TFIM). Experimentally, for x � 1 the system or-
ders ferromagnetically at low T and H? [1]; when x < 1
the longitudinal dipolar interactions become random and
frustrated, and for x � 0:167 it was observed that the
system orders in a spin glass (SG) state [2,3]. Much of
the recent theoretical interest in quantum spin glasses [4–
6] has been driven by these experiments [2,3], and both
general theories on quantum spin glasses (see, e.g.,
Ref. [7]) and specific models of the quantum Ising SG
[8,9] are commonly checked against their results.

However, for x � 0:167 the hf interaction is larger than
the mean dipolar interaction, and in part (i) of the Letter we
show that it actually dominates the low-energy physics in
this system. The longitudinal hf term forces the two ground
doublet states to have a definite, and opposite, nuclear spin
[10,11]. Low transverse magnetic fields (�BH? � �0,
where �0 is the gap to the first excited electronic state)
cannot then couple or induce quantum fluctuations be-
tween these Ising-like states, but only renormalize their
effective spins (and hence the effective dipolar interaction).
Transverse hf interactions can induce fluctuations between
these states; however, when �BH? � �0 we see that
these fluctuations are very weak. Therefore, at low trans-
verse fields, the low-energy effective Hamiltonian is given
by the classical Ising model, with renormalized parame-
ters. We thus explain why g�BHc � kTc in the experi-
ment [3], i.e., why the transverse field coupling required to
destroy the glass is so much larger than the thermal energy
required to do the same: While Tc at zero field is given by
the mean dipolar interaction, the temperature dependence
of the transition line on H? is dictated by the larger hf
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interaction that controls the renormalization of the effec-
tive spin, and the critical transverse field is controlled by
the even larger energy scale of �0.

To completely understand how fluctuations are switched
on by transverse fields, we show that TD terms must be
included. By doing this in a simple way, we obtain a
satisfactory quantitative agreement with the experimental
phase diagram. We then consider the diminishing of the
cusp in the nonlinear susceptibility �3, found in the ex-
periment [3] as temperature is reduced. A natural conse-
quence of our theory is that this may be a result of the
renormalization of the effective spin, rather than a first
order phase transition.

The Hamiltonian describing the LiHoxY1�xF4 system is
given by a sum of crystal field [10,12], Zeeman, hf, and
inter-Ho interaction terms:

H � Hcf �HZ �Hhf �Hint: (1)

The Ho atom has a total angular momentum of J � 8,
and nuclear spin I � 7=2. The Zeeman term HZ �

�
P
igJ�B

~H � ~Ji, and Hhf � AJ
P
i
~Ii � ~Ji is the hf interac-

tion. Hint � �
P
ijU

��
ij J

�
i J

�
j is dominated by the dipolar

interaction [12]. The interaction of the external magnetic
field with the nuclear spins is small and is neglected here.

The crystal fieldHcf leaves only three electronic states at
low energy; a low-energy doublet, denoted j"i and j#i here,
and an excited state j�l2i roughly �0 � 10:5 K above
these. Because of the strong crystal anisotropy the TD
and hf terms are usually neglected. Neglecting the longi-
tudinal hf interactions as well, and in the presence of
transverse magnetic field H?, the low-energy effective
Hamiltonian for the system would then be the simple
TFIM [1]:

H � �
X
i;j

Vzzij �
z
i �
z
j � �0�H?�

X
i

�xi ; (2)

where ~�j is a Pauli vector describing the two-level effec-
tive electronic spin at spatial position r � rj, the jth site,
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ij (with jVzzij j 
 0:3 K for nearest-neighbor Ho

spins), and �0 is the transverse field-induced coupling
between the eigenstates j"i and j#i of �̂z. For small fields
�0 / H

2
? coming from the second-order coupling, mainly

via the state j�l2i [so that �0 
 9��BH?�2=�0]. In this
simple model quantum fluctuations are already important
at fairly small transverse fields, and we expect a T � 0
quantum phase transition (QPT) when �0 
 V0, where
V0 � h

P
jV

zz
ij i is the average dipolar interaction.

For the undiluted system, x � 1, it was indeed shown
[1,12,13] that the ferromagnetic paramagnetic (PM) tran-
sition line is well described by this model, with a low
temperature correction due to hf interactions. However,
in the dilute case V0 is reduced by a factor x, so the hf
interaction is much larger than V0. The model (2) is then
inadequate, and we must include the hf interactions from
the beginning. We now introduce the interactions neglected
in the model (2) consecutively, emphasizing the signifi-
cance of each on the structure of the phase diagram.

(i) Hyperfine interactions.—We first consider the regime
�BH? � �0 in which the transverse hf interactions are
negligible. The longitudinal hf interaction Hz

hf � AJI
zJz

splits each of the states j "i, j #i into an eightfold multiplet
of nearly equidistant levels, with separation
205 mK [10]
between adjacent levels (Fig. 1). The two lowest energy
Ising states in zero field are now a � j";�7=2i and
�a � j#; 7=2i, and when H? � 0, these become

j�i � c1jai � c2jbi; j�i � c1j �ai � c2j �bi; (3)

with coefficients c1 � ��0, and c2 � ��A�
������������������
A2 ��2

0

q
,

where � � ��2
0 � �A�

������������������
A2 � �2

0

q
�2�1=2 and 2A 	 1:4 K

is the energy difference between the states a� �a� and b �
j#;�7=2i ( �b � j"; 7=2i).

The crucial point here is that the transverse magnetic
fieldH? does not couple the relevant Ising doublet states: a
and �a (it actually couples a to b and �a to �b). This imme-
diately invalidates the TFIM (2), since H? no longer
induces fluctuations. The only effect of the transverse field
is to renormalize the spin: For the state j�i one finds

h�z�i � �h�z��0�i; � � �c2
1 � c

2
2�; (4)

and h�z�i � �h�
z
�i. One can then absorb the renormaliza-

tion into the dipolar interaction, and therefore our system
−7/2

−7/27/2
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FIG. 1. Splitting of the electronic low-energy doublet (" and #)
due to the longitudinal hyperfine interaction. The ground state
doublet, a, and �a have a definite and opposite nuclear spin,
�7=2. Transverse magnetic field couples states with the same
nuclear spin, as is shown by the dashed lines.
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reduces at low transverse fields to the classical Ising
model:

Hkeff � �
X
i;j

~Vzzij s
z
i s
z
j; (5)

where s is a spin half matrix in the space of the states j�i
and j�i and ~Vzzij � �2Vzzij .

As a result, the SG paramagnet transition line is given
(in this model, neglecting the later to be shown significant
TD interactions) by the relation Tc � �2Tc�0�, and the
dependence on the transverse field is through ���0�.
Importantly, this result is independent of the approxima-
tion used to treat the longitudinal dipolar interaction and
relies only on the assertion that Tc scales linearly with the
interaction. For �0 � A one has from (4) that � � 1�
�2

0

2A2 , and defining � � �Tc � T�=Tc one finds that for
�0=A; �� 1 (i.e., small H? and T 
 Tc) the phase tran-
sition line �c�T� obeys the relation �c � A

���
�
p

. For the
initial TFIM (2) one would instead get �c 
 V0

���
�
p

. The
difference arises because the hf energy scale A dictates the
reduction of the effective spin (and equivalently the effec-
tive dipolar interaction). At T � Tc=2 one finds that �c 	

A, and for �0=A� 1 we have � � A=�0, so that �c �

A
���������������
�V0=T�

p
. Thus, as long as the transverse hf interactions

are negligible (�BH? � �0) there is no QPT.
We now turn to the discussion of quantum fluctuations in

this system, and we thus consider the transverse hf cou-
pling H?hf � AJ�I�J� � I�J��=2. This term changes the z
component of the nuclear spin by coupling the electronic
states j "i and j #i with (mainly) the state j�l2i at energy �0,
thus inducing fluctuations between j�i and j�i. However,
unless 	 � h"j�BH?j�

l
2i 
�0 (corresponding to a field

H? 
 2 T), these fluctuations are much smaller than V0,
and cannot induce a QPT. To see this more quantitatively
we diagonalize the single Ho Hamiltonian in a transverse
magnetic field; i.e., we diagonalize H � Hcf �HZ �Hhf ,
in the 136 eigenfunction space (17 crystal field states * 8
nuclear states) using the parameters used in Ref. [12]. We
then plot in Fig. 2 the results for the splitting ~��H?�
between the two lowest levels induced by the combination
of H? and H?hf . For H? & 3 T the two lowest levels are
well separated from the higher energy levels, and we can
replace the classical Ising Hamiltonian (5) by an effective
Hamiltonian

H � �
X
i;j

~Vzzij �H?; A�s
z
i s
z
j �

~��H?; A;�0�
X
i

sxi : (6)

We then expect a zero temperature QPT when ~��H?� !
�c�H?�, such that �c�H?� 	 V0�H?�. From Fig. 2 we
confirm that this happens when H? 
 2 T. Note there are
now three significant energy scales in the problem. Tc is
dictated by V0, while �c is related to both A, which dictates
the renormalization of the effective dipolar interaction, and
to �0. Interestingly, for any practical dilution x the lower
bound for the critical transverse magnetic field is set by
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FIG. 3. Spin glass–paramagnet phase transition line in the
transverse coupling–temperature (�0; T) plane, as calculated
for the Hamiltonian in Eq. (7) (dashed line) and including the
effective field produced by the off-diagonal dipolar interactions
(solid line). Circles denote experimental data taken from Fig. 1
of Ref. [3].
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FIG. 2. The splitting ~��H?; A;�0� between the ground and
first excited states of the single-ion Hamiltonian as a function of
H? (solid line) calculated by exact diagonalization. This mea-
sures the quantum fluctuations between the states j�i and j�i.
The dashed line is the averaged longitudinal dipolar interaction,
taking V0 � 0:13 for H? � 0 to match the experimental Tc at
zero field.
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�0, since only at 	 	 �0 do quantum fluctuations between
the relevant Ising states become appreciable.

We may summarize our analysis so far by saying that the
longitudinal hf interactions invalidate the usual quantum
Ising model for the LiHoxY1�xF4 system, instead creating
a classical Ising model whose energetics is determined by
the longitudinal dipolar interactions, renormalized by lon-
gitudinal hf interactions. Adding in the transverse hf inter-
actions brings back an effective transverse field term
~��H?� into the effective Hamiltonian, but ~��H?� does
not become important until much higher transverse fields
than in the original model (and it switches on with field in a
quite different way from the usual form �0 / H2

?). We
emphasize that ~� should be used instead of �0 in analysis
of the phase transition and, in particular, for the determi-
nation of the critical exponents in the system.

Can our simple model approximation explain the experi-
mental phase diagram? Since according to our analysis up
to now, the position of the phase transition line is mainly
dictated by single atom properties and the hf interaction,
we now derive a phase diagram treating the single Ho
exactly, and the inter-Ho interactions by using a mean-field
(MF) approximation in which each spin feels an interaction
strength proportional to its average Jz, i.e., using the MF
Hamiltonian

HMF�Hcf�
X
j

gJ�BH?Jxj�AJ
X
j

~Ij � ~Jj�
X
j

V0hJ
z
jiJ

z
j :

(7)
In Fig. 3 we plot by dashed line the SG-PM transition
obtained within this approximation. V0 is fixed by the
experimental value of Tc at zero transverse field. In order
to compare our results to Fig. 1 of Ref. [3] we plot the
phase diagram as a function of T and �0, which is given by
the splitting of the electronic levels when the hf interac-
tions are neglected.

This mean-field result does capture two main features of
the experiments, viz., (i) the much larger energy associated
26720
with quantum disordering of the SG state than with tem-
perature disordering, and (ii) the roughly straight transition
line in the �0; T plane in most of the parameter regime.
However, two noticeable differences are apparent, viz.,
(i) the experimental T � 0 quantum critical point occurs
at lower transverse field, and (ii) the shape of the experi-
mental transition line near the zero field transition point is
quite different from the predicted square root behavior.
These differences are not a result of our MF approxima-
tion. As discussed above, the square root behavior at low
transverse fields is a direct consequence of the renormal-
ization of the spin by the transverse magnetic field, and is a
single atom property. Furthermore, the experimental graph
suggests that the quantum fluctuations induced by the
transverse hf interactions are significant already at fields
of the order of 1 Tesla, in contrast with Fig. 2.

(ii) Transverse dipolar interactions.—The differences
just noted suggest that the TD interactions [e.g., ���� �
�zx�], neglected in the Hamiltonian (7), are also significant
in the diluted LiHoxY1�xF4 system. Unlike for x � 1,
where the transverse terms cancel by symmetry, in the
diluted system this is not the case—the TD terms add an
effective magnetic field at each Ho location. This field adds
both an effective random longitudinal term at each site [14]
and a transverse term that can induce fluctuations even in
the absence of H?. We consider the latter effect here, and
the former in connection with the nature of the phase
transition below. For �BH? 	 V0 or larger it would
seem that the induced transverse fields are random and
could enhance or decrease the effective transverse field at
each location. However, the external magnetic field breaks
time reversal symmetry, and the configurations in which
the TD interactions enhance the effective magnetic field at
the Ho sites are energetically favorable, as can easily be
seen by comparing the two Ho states j";!i and j#;!i.
Note that local strain fields result in random effective fields
in the transverse direction as well. However, their magni-
tude can be estimated to be smaller than that of the TD
8-3
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interactions [10], and, more importantly, they are symmet-
rically distributed with zero mean. Their affect on the
effective transverse field is therefore neglected here.

In order to demonstrate the significance of the TD
interaction, we now redo the MF calculation with the
simplified approximation of taking the effective transverse
field as ~H? � H? �H

d
?. The effective field due to the

dipolar interaction Hd
? is the only free parameter in our

calculation. The solid line in Fig. 3 is a plot of the SG-PM
phase transition line including the TD interaction, with
Hd
? � 0:65 T [15]. The experimental transition line is

reproduced satisfactorily, including its shape near Tc and
the critical transverse field at low T, using a value of Hd

?

that is of the order of the typical effective transverse field
produced by the TD interactions in the system. Note that
our analysis suggests that it is not sufficient to treat the TD
interactions in MF, i.e., to replace, e.g., Jzi J

x
j by Jzi hJ

x
j i �

hJzi iJ
x
j . Only the second term potentially adds to the effec-

tive transverse field, but at the transition there is no such
effect in this approximation since hJzi i � 0.

Finally, we consider the reduction of the cusp in the
nonlinear susceptibility �3�T� at low T, found experimen-
tally by Wu et al. (see Fig. 3 of Ref. [3]). This result was
interpreted as evidence of a first order phase transition.
However, the experimental results should be reconsidered
in view of the significance of the hf interactions, leading to
Eq. (6), and of the TD interaction. Within the model (6) the
transition is expected to be second order. However, by
taking into account the electronuclear nature of the Ising
states and the renormalization of the spin, the diminishing
of the cusp is naturally explained: �3�T� is conjugate to the
Edwards-Anderson parameter, and is proportional [16] toP
ijhSiSji

2 � S4
0

P
ijhsisji

2, where S0 is the effective elec-
tronic spin of the state j�i. Experimentally, we assume that
the transition point can be approached with a certain
accuracy, giving a maximum value to

P
ijhsisji

2; this
would result in a maximum value Max��3�T�� / S

4
0. As

T is reduced Hc�T� increases, thereby reducing S0 and
Max��3�T��, until the cusp cannot be experimentally re-
solved from the background. In order to establish a differ-
ent scenario for the phase transition, one must treat
properly the TD interactions. In Ref. [17] it was shown
that a random longitudinal field smears the SG-PM tran-
sition of the quantum Ising model, and we expect the TD
interaction to do the same.

In this Letter we have shown that the usual description of
the LiHoxY1�xF4 system, in which both hf and TD inter-
actions are neglected, is not adequate to explain the SG-PM
phase transition. The large longitudinal hf interactions of
the Ho ion force the relevant Ising doublet to be an elec-
tronuclear state, with definite and opposite values of the
spin-7=2 nuclear spins. If it were not for transverse hf
interactions, the system would then actually behave like
a classical Ising model with renormalized parameters. The
quantum nature of the system is revealed only at large
transverse fields, proportional to the energy gap to the first
26720
excited electronic state, where quantum fluctuations in-
duced by the transverse hf interactions become significant.
The TD interaction serves to enhance the effective trans-
verse field, therefore reducing the critical field of the
transition. A further study of the role of the TD interactions
would be of interest, since our approximate MF treatment
does not incorporate multispin fluctuations [18]. Recently
many interesting phenomena, some connected to the nu-
clear spins in the system, were observed in the
LiHoxY1�xF4 [19–21]. Our approach to the hf interactions
applies to all values of dilution at low T, and we hope it
will help in understanding these phenomena as well.
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