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Magnetic Response of Disordered Metallic Rings: Large Contribution of Far Levels

M. Schechter,1 Y. Oreg,2 Y. Imry,2 and Y. Levinson2

1The Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
2Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

(Received 14 May 2002; published 17 January 2003)
026805-1
We calculate the orbital linear magnetic response of disordered metallic rings to an Aharonov-Bohm
flux using the BCS model for attractive electron-electron interaction. The contribution of all levels
including those up to a high energy cutoff results in a much larger value than previously obtained using
the local interaction model. The possible relevance of our results to the resolution of the discrepancy
between the experimental and theoretical values for the ensemble-averaged persistent currents in these
systems is discussed.
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even somewhat increases the first order result. However,
the restriction on the bare interaction constant, due to the

related to the superconducting phase of the system, near
and below Tc (such as Tc itself) the two models give
One of the remarkable phenomena of mesoscopic
physics is the existence of equilibrium persistent currents
in small normal metal rings, in the regime where the
elastic mean free path l is much smaller than the ring’s
circumference L. This was both predicted theoretically
[1] and observed experimentally [2–7]. While the phe-
nomenon and the periodicity in the flux are well under-
stood by now, the magnitude of the ensemble-averaged
persistent current found experimentally is much larger
than that obtained theoretically using the model of non-
interacting electrons [8,9]. An attempt [10,11] to account
for this discrepancy by the inclusion of electron-electron
(‘‘e-e’’) interactions [12] indeed increased the theoretical
value, but still came short by a factor of about 5 [13].

Along with the large value of the ensemble-averaged
persistent current observed, its sign poses significant
questions as well. While in the first experiment [2] the
sign of the ensemble-averaged persistent current was
tentatively identified as diamagnetic, it was not deter-
mined definitively (see Ref. [13]). Later experiments re-
ported a predominantly diamagnetic ensemble-averaged
persistent current [5–7]. Theoretically, the paramagnetic/
diamagnetic sign follows for repulsive/attractive effective
e-e interactions (the interplay between the renormalized
[14] repulsive e-e interaction and the phonon mediated
attractive interaction determines the sign of the effective
interaction [13]). Thus, the diamagnetic sign of the per-
sistent currents observed in gold [6], copper [2], and silver
[7] suggests that these materials are very weak super-
conductors [15].

The model used to treat both signs of the interaction
was that of local e-e interaction. The discrepancy be-
tween the theoretical values and the experimental results
exists for repulsive [10], as well as attractive interactions
[13]. For the repulsive case, the higher order renormali-
zation which reduces the first order result is responsible
for this discrepancy. For the attractive interaction case,
the higher order renormalization does not reduce, and
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experimental fact that gold, copper, and silver are not
superconducting in observed temperatures, limits the
value of the theoretical result in this case. For the mag-
netic response (the derivative of the persistent current at
zero flux), there exists a further logarithm in the numera-
tor [10], irrespective of the above renormalization of the
effective interaction. Here we show that the use of the
BCS Hamiltonian to model attractive e-e interaction
gives rise to a much larger cutoff of this logarithm, and
hence to a significantly larger value for the magnetic
response to flux. The enhancement of the magnetic re-
sponse is a result of the contribution of high energy levels
(to be called ‘‘far levels’’) originating from pairing cor-
relations which persist up to the energy of the Debye
frequency !D. Thus, correlations on an energy scale
much larger than the Thouless energy affect the magnetic
response.

The contribution of the far levels was investigated in
connection to superconductivity in small grains [16].
There, the correlations of levels much further than the
superconducting gap from the Fermi energy EF, up to !D

prove to be significant. Using an exact solution of the
reduced BCS Hamiltonian [17,18], it was shown that this
contribution results in a much larger condensation energy
than that given by the BCS value, in a wide parameter
regime in which superconducting correlations are well
developed. The far levels also affect single particle prop-
erties of a superconducting grain [19], such as the
Matveev-Larkin parameter [20].

The difference between the local interaction model and
the BCS Hamiltonian lies in the q dependence of the
interaction in each, where q is the sum of the incoming
(outgoing) momenta of the pair scattering. While the
local interaction model assumes that the bare interaction
does not depend on any momenta, and specifically on q,
the BCS Hamiltonian assumes a sharp cutoff at small
total momentum, and considers the interaction to be a
delta function at q � 0. While for physical properties
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similar results, we show that for the magnetic response in
the perturbative regime (equivalent to T � Tc) the results
in the two models differ substantially. We discuss the
relation between the two models, and the effect of relax-
ing the BCS assumption by taking the interaction to have
finite width in q.

Recently it was suggested that the largeness of the
observed current is due to AC noise [21,22] or interactions
of the electrons with two level systems [23], and a relation
to dephasing was suggested (one should also keep in mind
that the latter interactions may lead to an additional
attractive interaction). We, however, consider T � 0, and
do not include dephasing (we consider the dephasing
length L	 to be larger than all relevant lengths). A finite
L	 will result in a suppression of the persistent current,
exponential in L=L	.

We consider a quasi-one-dimensional disordered ring
penetrated by a constant Aharonov-Bohm (AB) flux � in
its middle. We calculate the magnetic response, denoted
by F2, to first order in the e-e interaction, for attractive
interaction using the reduced BCS Hamiltonian.

The result we obtain with logarithmic accuracy is

hF2i �

�
dI
d�

���������0

�
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8�ETh

�2
0

ln
Eco

d
; (1)

where � is the dimensionless pairing parameter [see
Eq. (6)], d is the level spacing, ETh � l2=�s�L2� is the
Thouless energy, which is the inverse of the time to
circulate the ring (s � 1; 2; 3 is the effective dimen-
sion of the ring for diffusive motion), �0 � hc=�2e�
and h� � �i denotes ensemble averaging. The upper loga-
rithmic cutoff Eco � min	!D; 1=�
 represents the fact
that energies (measured from EF) further than ETh, up
toEco (far levels) contribute to the magnetic response (� is
the elastic mean free time). Their contribution enhances
F2 by about an order of magnitude due to the much larger
logarithmic cutoff as compared to ETh of the known
result [10] [for 1=��ETh� � 104 the ratio of the logarithms
is roughly 10].

In order to obtain Eq. (1) we consider the general
Hamiltonian
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X
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Z
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where U�r� is the external potential which includes the
disorder, and Hee represents the e-e interaction. In the

London gauge ~AA � �=�2��	̂	 where � is the distance
from the origin and 	̂	 is in the clockwise direction of the
ring. The free energy of the system and the persistent
current are flux dependent, and related by I��� �
dF=d�. By time reversal symmetry I�0� � 0, and for
small flux
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We now turn to the calculation of F2 to first order in
the interaction. Perturbative analysis of the reduced BCS
attractive interaction [Eq. (6) below] is valid, at T � 0, for
� < 1= ln�!D=d� [16] and at finite temperature (T > d)
for T � Tc. We take as the unperturbed Hamiltonian
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and the magnetic field together with the e-e interaction as
perturbation
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X
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We calculate perturbatively the energy to third order in
HI, and consider only the terms which are second order in
the flux and first order in the interaction.

We denote by jii the eigenstates of the noninteracting
electrons in the disordered ring without magnetic field. In
this basis, within the reduced BCS model, we obtain

HBCS
I � 

X
ij�

e�
mcL

Pijc
y
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X
ij

0
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y
i#cj#cj": (6)

Here ci destroys an electron in the state jii with wave
function #i�r� and Pij � hijPkjji is the matrix element of
the momentum parallel to the ring’s direction. The second
sum is restricted to levels within !D of EF. Note that
contrary to the usual convention, � is negative for attrac-
tive interaction. We assume that the width of the ring is
much smaller than its radius [24]. The A2 term is then
interaction independent.We choose the #i’s to be real, and
then Pij is pure imaginary and Pii � 0.

Using third order perturbation theory [25] we find that
for T � 0 to first order in �

F2 � 8

�
e

mcL
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2
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ij
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where 0< i < !D represents states whose energy is be-
tween EF and EF �!D, and !ij � $i  $j. Performing
disorder averaging over jPijj2 we obtain

hjPijj
2i �

p2
Fd�

�1�!2
ij�

2�s
; (8)

which is roughly constant for !ij < 1=� and zero for
!ij > 1=�. In Eq. (7), for energies smaller than !D and
1=� there is a double sum and a second power of energy in
the denominator. The result is therefore a logarithm with
an upper cutoff which is given by min	!D; 1=�
. We
evaluate the sum in Eq. (7) taking for simplicity the
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noninteracting spectrum to be equally spaced, and ob-
tain Eq. (1).

This equation differs from the result of Ambegaokar
and Eckern (AE) [10] by the upper cutoff of the loga-
rithm, being min	!D; 1=�
 in comparison to ETh in Ref.
[10]. We now explain the origin of this difference in some
detail. AE consider the same Hamiltonian as in our
Eq. (2), only with local e-e interaction V�r1  r2� �
~��N�0�1(�r1  r2�. In terms of the noninteracting eigen-
states Hee is then given by

Hlocal
ee �

1

2

X
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y
i*c

y
j �**ck �**cl*; (9)

where Vijkl � ~��N�0�1
R
#i�r�#j�r�#k�r�#l�r�dr and

*� �** due to the interaction being local. The dependence
of the energy on flux, to first order in the interaction, can
be written as

�F�
X
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X
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Viiii���: (10)

We now show that the second, diagonal part contribution
to the magnetic response corresponds to the BCS result as
given in Eq. (1). �F can be expanded to second order in
the flux to obtain F2 for the local interaction model by
following the same procedure done above for the reduced
BCS Hamiltonian, withHee given by Eq. (9). The result is

hF2i � 4
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The diagonal contribution to this result is given by the
l� i terms, and since to leading order ViiiiVijji � 2~��d
[26] we obtain for the diagonal contribution in the local
interaction model the same expression as Eq. (7), without
the explicit cutoff at !D. Because of Eq. (8), the diagonal
contribution gives Eq. (1) with Eco � 1=�. Therefore, the
BCS approximation is equivalent to assuming that the
flux dependence of the off-diagonal matrix elements is
small, and can be neglected. In the case of the local
interaction model this is not the case, and the contribution
of the off-diagonal elements to the magnetic response is
significant, and opposite in sign to that of the diagonal
element. This results in a partial cancellation, and there-
fore a reduction of the high logarithmic cutoff in Eq. (1).

Another way to understand the relation between the
two models is to consider the q dependence of the inter-
action in both (where q is the sum of the incoming
momenta). AE derive their result as a sum over all q’s
(see Eqs. [(12)– (14)] of Ref. [10]), and the result within
the BCS Hamiltonian [Eq. (1)] corresponds to their q � 0
term. For the local interaction model, the contribution to
the magnetic response of the high energies, above ETh

exactly cancels between equal magnitude and opposite
signs of the q � 0 term and the sum of all q � 0 terms.
This makes the q independent assumption for the bare
026805-3
interaction crucial. The existence of excess interaction at
small total momentum q would thus significantly affect
the result. The BCS interaction assumes just that, the
existence of excess interaction at q � 0.

A physical motivation for taking a q dependent inter-
action can be obtained, for the attractive phonon medi-
ated interaction, from the usual restriction that all
(incoming and outgoing) scattered states are within !D

of EF (see, e.g., Ref. [27]). This restriction implies a
significant q dependence on the scale of qc � !D=vF.
One can therefore take a q dependent attractive interac-
tion in the form of a step function with width qc. For qc <
2=L one finds that only the q � 0 term survives, and the
BCS result for the magnetic response is recovered.

For metals such as gold, copper, and silver, this con-
dition requires the circumference of the ring to be smaller
than 0:2–0:4 ,m, which is an order of magnitude smaller
than the relevant experimental lengths [2,5,7]. The ef-
fects of relaxing this condition, i.e., having qc * 2=L,
as well as the effect of the q dependence on the persistent
current itself will be considered elsewhere [28].

The central result of this Letter is the large interaction
correction to the derivative of the persistent current at
zero flux, within the BCS model, as is given in Eq. (1).
Physically, this is due to the large contribution of the far
levels, up to min	!D; 1=�
 from the Fermi level.

Our calculations were done for T � 0. At finite tem-
perature T <min	!D; 1=�
 (but neglecting dephasing,
assuming L	 � L) the magnetic response would be given
by Eq. (1) with d replaced by T. Therefore, on top of the
large magnetic response, we predict a weak, logarithmic,
temperature dependence of the magnetic response up to
T � min	!D; 1=�
. The weak temperature dependence is
due to the addition of the many small contributions, all
having the same sign, of the levels up to the large energy
cutoff (see also Refs. [16,29]).

The local interaction model and the reduced BCS
Hamiltonian are two models used to describe the effec-
tive e-e interaction resulting from the retarded electron-
phonon interaction. Though different, these two models
give similar results for many properties of the super-
conductor near and below Tc. The robustness of the
physics near and below the transition temperature makes
the differences between the two models irrelevant.
However, the magnetic response in the perturbative re-
gime is a more subtle property, that distinguishes between
the two models.

Our result for the reduced BCS Hamiltonian also
follows by expanding Richardson’s exact solution [17].
This has the analytical merit of being a first-order ex-
pansion of an exact solution, as well as an additional
viewpoint on the contribution of the far levels, and will
be given elsewhere [30].
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