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Tunneling two-level systems (TLSs) are believed to be the source of phenomena such as the universal low

temperature properties in disordered and amorphous solids, and 1=f noise. The existence of these

phenomena in a large variety of dissimilar physical systems testifies for the universal nature of the TLSs,

which however, is not yet known. Following a recent suggestion that attributes the low temperature TLSs to

inversion pairs [M. Schechter and P. C. E. Stamp, arXiv:0910.1283.] we calculate explicitly the TLS-phonon

coupling of inversion symmetric and asymmetric TLSs in a given disordered crystal. Our work (a) estimates

parameters that support the theory inM. Schechter and P. C. E. Stamp, arXiv:0910.1283, in its general form,

and (b) positively identifies, for the first time, the relevant TLSs in a given system.
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Introduction.—Amorphous solids and many disordered
lattices show peculiar universal characteristics at low tem-
peratures [1–3]. Below TU � 3 K systems which are oth-
erwise very different have specific heat Cv / T�, with
� � 1, thermal conductivity � / T� with � � 2, and in-
ternal frictionQ � 2�l=� � 103, independent of T, �, and
with only a small variance between materials. Here l is the
phonon mean free path and � is the phonon wavelength. In
an effort to explain this remarkable universality, Anderson,
Halperin, and Varma [4], and Philips [5] suggested a
phenomenological theory, where the existence of tunneling
two-level systems (TLSs) in these materials was postu-
lated, and an ansatz for their density of states was given.
This ‘‘standard tunneling model’’ (STM) has been very
successful in explaining the above mentioned phenomena.
Still, the identity of the tunneling TLSs has remained
unknown. Furthermore, the smallness and universality of
the phonon attenuation, and the energy scale dictating TU

are not accounted for by the STM.
Two-level systems are also believed to be the cause of

1=f noise. Recently, it has been shown that 1=f noise is the
main source for decoherence of superconducting qubits,
and a major obstacle in their ability to perform quantum
computation [6]. Also in these systems the nature of the
TLSs is not known, yet assuming their existence and
applying the STM has resulted in an explanation of the
low frequency 1=f noise and high frequency linear in f
noise on the same footing [7].

Extensive experimental investigations have revealed that
the condition to observe universality is the presence of
tunneling states and strong lattice strain [8,9], and that
the phenomena in amorphous solids and disordered crys-
tals are equivalent [10]. Disordered crystals are advanta-
geous for both experimental and theoretical investigation
[11]. Experimentally, they allow control of the nature and
relative concentration of host material and impurities, and
therefore a detailed study of different universal properties

and their origin. The existence of lattice structure and the
apparent candidates for tunneling states allows a favorable
starting point for theoretical treatment as well.
Indeed, it was argued [12] that, at least in disordered

crystals, tunneling states can be categorized into two types
of TLSs, denoted � and S. The states of a � TLS are related
to each other by inversion. Consequently, the interaction of
a � TLS with the phonon field �w is small, as it results only
from disorder induced local deviations from inversion
symmetry. The S TLSs are asymmetric with respect to
local inversion, with a strong interaction with the phonon
field �s. It was then shown [12] that the S TLSs are gapped
below TU by the � TLSs through an Efros-Shklovskii-type
[13] mechanism, and that below TU the � TLSs are effec-
tively noninteracting, and dictate the phonon attenuation.
Thus, at T < TU the � TLSs fulfil the assumptions of the
STM. The small parameter of the theory is g � �w=�s �
E�=EC � ð1�3Þ � 10�2, where E�, EC are the typical

elastic and Coulomb energies in the system. This small
parameter gives the universality and smallness of the pho-
non attenuation. Defining TG as the ordering temperature
of the S TLSs, the emerging DOS of the S TLSs at an
energy TU � gTG, dictates TU as the energy scale below
which universality is observed [12].
In this Letter we use DFT and ab-initio calculations to

calculate the interaction of TLSs of types � and S with the
phonon field in the system KBrð1�xÞðCNÞx (KBr:CN,

Fig. 1). We find that �w � 0:1 eV, and �s � 3 eV. Our
estimation of �w compares well with the experimentally
measured value for the relevant TLSs at low energies,
of � � 0:12 eV for impurity concentration x ¼ 0:25 and
� � 0:2 eV for x ¼ 0:5 [14,15]. Our results also support
the central arguments of the theory in Ref. [12] in (i) the
categorization of the TLSs according to their symmetry
under inversion, (ii) the ratio of the strengths of their
interactions with the phonon field, constituting the small
parameter of the theory, and (iii) the identification of the
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symmetric TLSs as the relevant TLSs dictating the low
temperature universal properties in disordered solids. In
addition, we reenforce the prediction made in Ref. [12]
for the existence, at higher energies, of a second type of
TLSs (of S type), with a much stronger coupling to the
phonon field. Note, that although we focus here on the
simplest single impurity excitations, our analysis does not
exclude the possibility of symmetric and asymmetric multi-
impurity excitations [16–18]. Such excitations are expected
to be significant especially for systems where single impu-
rity excitations do not produce symmetric TLSs [19,20].

For the specific KBr:CN system, early works have sug-
gested, based on theories quite different from that of
Ref. [12], that CN flips comprise the relevant low energy
TLSs [21,22]. However, for long, advance in this direction
was hindered because of experiments showing that the
substitution of the symmetric N2 molecules for the asym-
metric CO molecules in N2:Ar:CO does not change its
universal characteristics [19,20]. Our results here, in con-
junction with the theory in Ref. [12], positively identify the
180� CN flips as the relevant TLS excitations dictating the
low temperature characteristics in the KBr:CN system.
Reconciliation of our results with the experiment in
Refs. [19,20] stems from the fact that pairs ofN2 molecules
do produce symmetric TLSs in the ArN2 system [23].

Calculation.—KBr:CN is perhaps the most studied dis-
ordered lattice showing universal characteristics. The CN�
impurities have been found to orient either in the direction
of the in-space diagonals, preferred for very low CN�
concentrations [24] and for intermediate concentrations
at high temperatures [25], or in the direction of the axes,
preferred for intermediate CN� concentrations at low tem-
peratures [25]. The six (eight) possible states of each
impurity can be categorized into three (four) inversion
pairs, each having two states related to each other by an
180� flip. Such flips constitute � excitations, whereas
rotations between different axes (diagonals) correspond
to S excitations [12,26].

The interaction of such a system with the lattice can be
described by the Hamiltonian [12,26]

Hint ¼
X

j

X

�;�

½	
�;� þ ���
s Szj þ ���

w �zj�u��ðrjÞ (1)

where 	 is an orientation-independent volume factor and
u��ðrjÞ denotes the phonon field at point rj. Whereas the

central purpose of this Letter is the calculation of �w and
�s, we also calculate the parameter 	 for both CN� and
Cl� impurities. This parameter determines the strain,
and thus the effective random field in the system [26,27].
Usually 	 & �s. In KBr:CN 	 is significantly subdomi-
nant, as the Br� and CN� ions have similar volumes [15].
In KBr:Cl this term is responsible for the strains allowing
for the existence of universal properties upon minimal
CN� dilution [8,9]. This random field term is also central
to the smearing of the glass transition and the peculiar
disordering of dilute glasses [27].
Following the above definition of 	, �s and �w, we

devise a series of numerical calculations to estimate
them. In sum, we choose a number of lattice fragments
and use DFT–ab initio methods to calculate the energy
difference between the effects of phononlike perturbations
of the system with a central CN� impurity in different
states. For simplicity and without loss of generality, we
restrict the excitations of the CN� impurity under study to
two dimensions, thus the possible states are up, down, left
and right. To those possible orientations, we apply vertical
or horizontal phonons. Usually the symmetry is low
enough to allow for several independent estimations for
each parameter.
Our determination of �w and �s is performed as follows:

�w;s ¼ 1

b
j½Ei

phðbÞ � Ei� � ½Ej
phðbÞ � Ej�j (2)

where fi; jg are fup; downg or fleft; rightg for �w and
fup; leftg or fdown; rightg for �s, ph can stand for vertical
or horizontal phonons, Ei is the energy of an impurity i
surrounded by a lattice fragment in its equilibrium geome-
try and Ei

ph is the energy of the same impurity after a lattice

contraction by a fraction b along a given crystallographic
coordinate, mimicking the effect of a longitudinal phonon.
For 	, the same procedure is applied where fi; jg means
presence or absence of impurity, and for CN� impurities
all possible orientations are averaged.
Figure 2 illustrates the detailed procedure of a � calcu-

lation. We describe the position and orientation of the
impurity as (2,0,u), where the numbers refer to the coor-
dinates and the letter to the orientation, in this case the
CN� is lying on the abscise, at 2 interatomic spacings to
the right, and the nitrogen is pointing up. We then proceed
with the following steps: (i) For that particular system, the
atomic positions are found which minimize the energy in
the absence of the TLS under investigation, i.e., when the
central position is occupied by a Br�; that is our definition
of the equilibrium geometry of the lattice. (ii) A CN�
(facing ‘‘up’’, in this case) is substituted for the central
Br�, and, freezing the lattice, only the position of the CN�
is optimized, to obtain Eup. (iii) The atomic positions are
contracted along the vertical axis to obtain Eup

verticalðbÞ. The

FIG. 1 (color online). Three 5� 5 fragments of a KBr:CN
lattice. The up state of the central impurity in fragment (b) is
related by a � excitation to a down state in fragment (a), and by
an S excitation to a left state in fragment (c).
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calculation is done for b2f�5%; �2%; �1%; �0:25%;
0:25%; 1%; 2%; 5%g, and the limit of small b is taken (see
Fig. 3). The repetition of this procedure for the vertical
phonon and the ‘‘down,’’ ‘‘left,’’ and ‘‘right’’ orientations
of the central CN� allows for four nonindependent esti-
mations of both �w and �s (in 3D we also have the ‘‘front’’
and ‘‘back’’ orientations). In the case of 	, the weighted
average for all orientations yields one unique estimation.
Note that in step (ii) we do not relax the whole lattice in the
presence of the TLS. Our procedure is in line with both
processes of lattice relaxation and phonon scattering by
TLSs, which result from the out of equilibrium first order
interaction of the TLS with the lattice.

We use the standard package GAUSSIAN03 [28] to per-
form quantum chemistry calculations on lattice fragments
of different sizes and shapes and at different levels of
sophistication. As we are dealing with a local phenome-
non, and for cost reasons, most of the calculations are

performed on small zero-dimensional squares or cubes,
either 3� 3, 3� 3� 3 or 5� 5. The TLS under evalu-
ation is always in the center, so that any deviation from a
centrosymmetric situation felt by the TLS is due to the
extra impurities and not to border effects. We mainly use
the hybrid DFT–ab initio method B3LYP (three-parameter
Becke–Lee-Yang-Parr functional) with small orbital sets,
either 3-21G or 6-31G. The influence of a better descrip-
tion of the anions is tested by repeating some calculations
with the more flexible basis sets, up to 6-311þG�.
Additionally, we check the relevance of dynamical corre-
lation by comparing plain Hartree-Fock with the Moeller-
Plesset perturbation theory to the second order (MP2),
which includes double excitations as second-order pertur-
bations. Last, we include a limited study of larger samples
with a higher number of impurities, using HFS calculations
with the minimal basis STO-3G on a 7� 7 fragment with
up to 4 extra impurities.
Results.—Figure 3 illustrates some tests of the range of

linearity. One can see that the results are essentially the
same for different fragments and levels of calculations:
the first order approximation is very accurate at least for
phonon amplitudes of 1% or 2% of the interatomic spac-
ing. On a 3� 3 fragment with a central CN� impurity,
at MP2–6-31þG level, Fig. 3 shows the estimation of
	 ¼ 0:6 eV. The same conditions yield a comparable
	 ¼ 0:9 eV for a Cl� impurity. In all cases a noticeable
second-order correction of the order of 5 eV can be fitted.
The central result of this Letter, reported in Table I, is the

calculation of �s ’ 3 eV and 0 	 �w 	 0:15 eV. The fi-
nite size of our samples, the quality of our calculation
methods, and differences between planar and cubic
samples, all lead to some variance in the parameters. Yet,
the strength of our results lies in the fact that our estima-
tions are fairly consistent in their order of magnitude for
very different lattice fragments and a variety of levels of
calculation. This is true for additional calculations, e.g., for
a noncentral CN� impurity, not reported here. The calcu-
lations using a minimal basis set serve to discard a corre-
lation between �w or �s and the number of impurities.
One should point out that within a given sample and a

given level of calculation, the variance in the values of �s

between different orientations is a result of the small elastic
deviations from symmetry, and are therefore a factor of g
smaller than its typical value. With regard to �w, its values
are dictated by the aforementioned deviation from local
inversion symmetry. Thus, the distribution of all possible
estimations of its values is peaked at zero, with a variance
which equals the typical value. This is displayed in
Table II, for all TLSs in fragment (a). It can also be seen
in the main panel of Fig. 3, where the particular � TLS
chosen for fragment (b) experiences a very symmetric
environment. Note that for each particular combination
of fragment and calculation method, the highest �w values
obtained among the four TLS-phonon combinations are

FIG. 3. Energy response E (in meV) to horizontal phonons of
amplitude U. �w (main graph) and �s (upper inset) as linear fits
on selected fragments on Table I: open circles: (b); filled circles:
(c); squares: (d). Lower inset: second-order fit for 	 (see text);
open circles: EBr � Eup; filled circles: EBr � Eleft; squares:

weighted average for all orientations.

FIG. 2 (color online). Atomic coordinates of a lattice fragment
in three key steps of a sample calculation. (a): all positions are
optimized, without a central TLS, but in presence of an impurity
(2,0,u). (b): a TLS (0,0,u) is substituted in the place of the central
Br�, its position is optimized, yielding Ei. (c): the lattice is
contracted by 2% vertically, yielding Ei

verticalð�2%Þ.
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denoted as our estimate values for �w in Table I. These
values are the most relevant for our purposes, as they are
expected to be the best predictors for a real system with
many impurities.

A noteworthy complication is presented by the in-plane
diagonal orientations of the TLS, because of the small
energy difference with the in-space diagonal states in the
real system. Depending on the fragment, impurities, and
calculation method, the relative order of stability changes
and the energy of one or more of the ‘‘axial’’ orientations
rises above the most stable ‘‘diagonal’’ orientation. Some
examples of these orientations, denoted as {dl, ul, dr, ur},
are shown in Table I. As illustrated in Figs. 1 and 2, in the
perimeter of the fragment, where the CN� suffer from
intense border effects, we even find intermediate orienta-
tions. In the cases where the central TLS is affected by this
problem—noted in Table I as ‘‘tilt’’—the extraction of
the parameters can be technically more difficult, but there
is no fundamental physical difference between axial and

diagonal orientations as in both cases there is a clear
distinction between S TLSs and � TLSs.
Summary.—Our numerical calculations confirm qualita-

tively and quantitatively the results of Ref. [12]; the
existence of weak and strong interacting TLSs in disor-
dered solids, and the corresponding strength of their inter-
action with the phonon field. As TLSs in KBr:CN were
experimentally measured to have a coupling constant of
� � 0:12� 0:18 eV with the phonon field, our calcula-
tions also verify that it is indeed the weak interacting �
TLSs which are the relevant TLSs at low temperatures,
dictating the universal behavior. Thus, we are able to
clearly identify the relevant TLSs in this particular system.
In Ref. [12] the plausibility that the same mechanism
dictates universality in amorphous solids was argued for.
The verification of this argument requires the identification
of nearly inversion symmetric TLSs in amorphous solids,
and the calculation of their coupling to the phonon field.
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v 0.0001

�dr
v 2.83 �lr

v 0:0273

TABLE I. Some estimations, in eV, for �s and �w. Absolute values are given, since the TLS
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