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Small metallic grains which satisfy the conditions of the universal Hamiltonian are considered. It is shown
that for such grains the effects of the interactions in the spin channel and in the Cooper channel on their spin
magnetization are well separated, thus allowing the determination of the interaction parameters within this
model. In particular, the existence of pairing correlations in small grains and the sign of the interaction in the
Cooper channel can be uniquely determined.
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I. INTRODUCTION

In general, the problem of disorder and interaction in elec-
tron systems is a very difficult one. However, it was
shown1–4 that for small diffusive metallic grains with large
dimensional conductanceg=ETh/d the problem simplifies
considerably. Hered is the mean level spacing andETh
="D /L2 is the Thouless energy which is the inverse time to
diffuse across the grain.D is the diffusion constant andL is
the grain’s size. The low energy physics of such small grains
is described to leading order in 1/g by the “universal
Hamiltonian,”4 in which only the diagonal matrix elements
of the interaction survive:

H = o
n=1

V/d

o
s

encn,s
† cn,s + EcN̂

2 + JcT̂
†T̂ + JsŜ

2. s1d

The indexn spans a shell ofV /d doubly degenerate time

reversed states of energyen, N̂=on=1
V/doscn,s

† cn,s is the number

operator,Ŝ= 1
2on=1

V/dos,s8cn,s
† ss,s8cn,s8 is the total spin opera-

tor, andT̂=on=1
V/dcn,−cn,+ is the pair annihilation operator.Ec is

the charging energy andJcssd=lcssdd, wherelc andls are the
dimensionless interaction parameters in the Cooper channel
and in the spin channel, respectively.V is of the order of
ETh, and we takeV /d=2g. Recently, a similar problem of a
ballistic grain with chaotic boundary conditions was ad-
dressed using renormalization group approach, and it was
shown5,6 that for weak interactions the low energy physics is
indeed controlled by the universal Hamiltonian.

This relatively simple description of the low energy phys-
ics of diffusive metallic grains provides the opportunity to
consider theoretically, and eventually experimentally, prob-
lems which in bulk systems are much harder to attack. One
interesting problem is the question of whether metals such as
gold, copper, and silver are superconducting or not at very
low temperatures,7 i.e., if their effective interaction in the
Cooper channel is attractive or repulsive. While all these
metals are not found to be superconducting down to cur-
rently accessible temperatures, it may well be that their ef-
fective electron-electron interaction is attractive but small.
SinceTc depends exponentially on the interaction, such weak
interaction will lead to unmeasurableTc. However, small ef-
fective attractive interaction in such metals would affect
other properties, like the proximity effect8,7 and persistent

currents,9,10 which depend linearly on the interaction. Fur-
thermore, the magnitude of the effective attractive interaction
in these metals may be size dependent, as can be inferred
from the apparent size dependence ofTc in many supercon-
ducting materials.11–14 In particular, Platinum, which is not
known to be a superconductor in bulk form, was recently
reported to be superconducting at very low temperatures in
granular form.15

While the determination of the effective interaction in
bulk materials is a difficult task, it was already recognized
that weak pairing correlations can be detected in small “su-
perconducting” grains.16–18 In these works it was shown that
the existence of weak pairing correlations will result in mea-
surable effects in the spin susceptibility16,17 and specific
heat18 of the grains. All these works considered the reduced
BCS Hamiltonian, in which only the pairing interaction ex-
ists. However, in a real system other interactions exist, and in
order to experimentally determine the existence of pairing
correlations one has to show that the measured effect is
uniquely caused by the pairing interaction itself.

Small disordered metallic grains withg@1 and not too
strong interactions5,6 are favorable from this point of view, as
they satisfy the validity conditions of the universal Hamil-
tonian model, and therefore the constraints this model dic-
tates on the interaction terms. In this paper we calculate the
ensemble averaged differential spin susceptibilityxs at T=0
of such isolated grains, and show that the effects of the dif-
ferent interaction terms are well separated, thus allowing an
unequivocal determination of the existence of pairing corre-
lations in such grains, and furthermore, a determination of
the sign and magnitude of the effective interaction constants
as they appear in the universal Hamiltonian. Actually, we
consider the determination ofls andlc only. Since the grains
are isolated, the charging energyEc is not relevant, and could
be determined by complementary tunneling experiments. We
consider the regime ofulcu , ulsu !1. Note, that forlc,0
two regimes exist, the perturbative regime and the supercon-
ducting regime, for whichulcu .1/ lnfETh/dg.17 We first con-
sider the former, and then the latter regime.

II. THE PERTURBATIVE REGIME

Using the universal Hamiltonian, we assume that the spin-
orbit interaction is small and neglect it.4 This assumption
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should be verified when comparing our results with experi-
ments, keeping in mind the specifics of spin-orbit interaction
in small grains(see e.g., Refs. 19 and 20). Throughout the
paper we will be interested in the ensemble averaged differ-
ential spin susceptibility at magnetic fieldsH@d/mB. In this
regime we can neglect level statistics and assume that the
energy levels in the grains are equally spaced. Differences
between grains with odd number and even number of elec-
trons can be neglected in this regime as well, and for sim-
plicity we consider grains with even number of electrons.
For detailed considerations regarding the neglect of level sta-
tistics and even-odd effects see Sec. III of Ref. 17. In par-
ticular, ensembles of the order of 106 grains or larger are
required for the shift in the magnetization(see below) to be
larger than the fluctuations due to level statistics. We also
neglect orbital magnetization. This can be achieved in pan-
cake shaped grains(see e.g., Ref. 21), when the field is ap-
plied in the direction of the thin part. Practically, orbital mag-
netization cannot be completely avoided, but its relative
magnitude can be experimentally determined by changing
the direction of the applied magnetic field.

The spin magnetization of a grain is given by

M = mBsn+ − n−d, s2d

wheren+ andn− are the number of electrons with spin par-
allel and antiparallel to the magnetic field, respectively. We
define l as the number of flipped spins, such thatn+−n−
=2l. It can be shown that among all states withl flipped
spins, the one that has the lowest energy has alll states above
EF and l states belowEF singly occupied by electrons with
spin parallel to the magnetic field. The numberl that is real-
ized at a given magnetic field is the one minimizing the total
energy of the grain:

Esld = E0 + Ekin
l + Eint

l − 2lmBH. s3d

HereE0 is the energy of the noninteracting Fermi state(with
l =0, no singly occupied single particle states), Ekin

l = l2d is
the kinetic energy cost of flippingl pairs,Eint

l is the energy
due to the interaction, and −2lmBH is the Zeeman energy. In
order to calculate Eint

l we use Richardson’s exact
solution.22,23 Although this solution was derived for the re-
duced BCS Hamiltonian, it can be easily generalized to solve

the universal Hamiltonian for isolated grains. TheN̂2 term is
then not relevant, and the only relevant extra term in the
universal Hamiltonian compared to the reduced BCS Hamil-
tonian is the spin term.

Given l flipped spins, levelsg− l +1¯g+ l ;B are singly
occupied, and do not participate in the pairing interaction.24

Denoting U=V \B, and neglecting the spin term, Richard-
son’s solution is given by a set ofk coupled nonlinear equa-
tions, thenth equation of which is given by23

−
1

lcd
+ o

m=1sÞnd

k
2

Em − En

− o
j

U
1

2e j − En

= 0. s4d

Here k is half the number of the “paired” electrons, and in
our casek=g− l. The total energy of the system is given by

EBCS= o
j

B

e j + o
n=1

k

En, s5d

and the many-body wave function is also given in terms of
the k energy parametershEnj which solve the equations(4).
Since the electrons participating in the pairing interaction
have zero total spin, including the spin term and the Zeeman
term does not change Richardson’s equations, energy param-
eters, and orbital wave function. The spin and Zeeman terms
do change the energy of the system, for a givenl by Es
=lsdlsl +1d andEZ=−2lmBH, respectively.

The total energy can therefore be written as

Esld = o
j

B

e j + o
n=1

k

En + lsdlsl + 1d − 2lmBH, s6d

or, in accordance with Eq.(3),

Esld = E0 + l2d + o
n=1

k

dEn + lsdlsl + 1d − 2lmBH, s7d

wheredEn;En−2en. Therefore,Eint=lsdlsl +1d+Epair where

Epair ; o
n=1

k

dEn s8d

is the energy due to the interaction in the Cooper channel,
and the problem reduces to findingEpairsld. In Ref. 17 this
was done to second order in the interactionlc. Here we use
Richardson’s exact solution for the determination ofEpairsld.
This formalism allows a rigorous inclusion of the spin term.
It also allows the possibility to give a general expression for
Epairsld, and then obtain the result to second order inlc as an
expansion of the exact result.

Manipulating Eq.(4) one obtains17

dEn =
lcd

1 + lcan

, s9d

where

an = dSo
jÞn

U
1

2e j − En

− o
m=1sÞnd

k
2

Em − En
D . s10d

For the lowest energy solution, we approximatedEn by

dEn
0 ; lnd, where ln ;

lc

1 + lcan
0 , s11d

andan
0;anslc=0d is given by

an
0 = o

jÞn

U
1

2j − 2n
− o

m=1sÞnd

k
1

m − n
. s12d

This approximation is exact to second order inlc, and its
accuracy to higher orders inlc was studied in Ref. 17.Epair
can now be calculated to any order inlc by inserting expres-
sion (12) in Eq. (8). To second order inlc this gives

Epairsld = lcdsg − ld +
1

2
lc

2do
n=1

g−l

lnFg + l + n

2l + n
G . s13d

M. SCHECHTER PHYSICAL REVIEW B70, 024521(2004)

024521-2



Inserting Eq.(13) into Eq. (7) and differentiating with
respect tol we obtain an equation forl that minimizesEsld

2ld + lsds2l + 1d − lcd + lc
2d lnF g

2l
G − 2mBH = 0, s14d

which results in

M =
mBf2mBH/d − lc

2 lnfETh/s2mBHdg + lc − lsg
1 + ls

. s15d

In Eqs.(14) and(15), for the values inside the logarithm, we
assumel !g and replacel with its noninteracting value. The
l that minimizesEsld as obtained from Eq.(14) is given by
the condition that the energy gain from the Zeeman term
when flipping another electron and creating two additional
singly occupied states with spin up electrons is equal to the
energy cost of flipping this electron, resulting from the ki-
netic energy, spin interaction, and pairing interaction. The
kinetic part alone produces the noninteracting result[x0 in
Eq. (16) below for the susceptibility]. The leading contribu-
tion of the spin part to the total energy is proportional tol2,
like the kinetic energy, and this results in an effective renor-
malization of the density of states. The second part of the
spin term, as well as the leading part of the pairing interac-
tion, contribute to the total energy terms which are linear in
l, like the Zeeman term, and therefore result in a constant
shift of the magnetization, and do not affectxs. The field
dependent correction toxs comes from the higher orders of
the pairing term, of which the second order gives the domi-
nant contribution. This part gives a negative correction to the
energy which is monotonically decreasing with increasingl,
therefore contributing a positive, field dependent contribu-
tion to xs.

Differentiating with respect toH we obtain the ensemble
averaged spin susceptibility ford/mB!H!ETh/mB,

xs =
x0

1 + ls
S1 +

lc
2d

2mBH
D . s16d

This is our central result. The interaction in the spin channel
results in anH independent shift of the susceptibility by a
factor of 1/s1+lsd. This gives the possibility to determine
ls, by e.g. the Sommerfeld-Wilson ratio, that comparesxs to
the linear specific heat coefficient. The interaction in the
Cooper channel results in a 1/H correction toxs. This cor-
rection is a finite size effect, as it is proportional to the level
spacing. Moreover,this correction unequivocally signals the
presence of pairing correlations in small metallic grains, as
it does not result from the interaction in the spin channel or
the charging energy, and all other interactions have 1/g
smallness. Interestingly, the 1/H correction does not depend
on the sign of the interaction, and therefore exists for attrac-
tive as well as repulsive interaction in the Cooper channel.
Thus, measuringxs in small metallic grains at magnetic
fields H@d/mB determines the magnitude oflc, but not its
sign. In order to obtain the sign oflc one has to look at
M /H. Unlike the case in the susceptibility, where the first
order term in the interaction is not field dependent, and there-
fore does not contribute, here, to leading order inlc

M

H
=

x0

1 + ls
F1 +

slc − lsdd
2mBH

G , s17d

and the 1/H correction does depend on the sign oflc. Once
ls is either known or small, the sign oflc is easily deter-
mined. Note, that in principal the information given byxs
and by M /H is equivalent. However, their high magnetic
field behavior is different, and therefore both the sign and
magnitude oflc can be obtained.(Actually, both can be ob-
tained from the behavior ofM /H. However, the susceptibil-
ity measurement is preferable for the determination of the
magnitude oflc because it is independent of any other inter-
action. It is also a more precise measurement experimen-
tally.) The magnetic field range for which our treatment is
valid is given above Eq.(16), and depends on the specific
metallic grain, as well as its size and its dimensionless con-
ductance. For example, for Copper grains of size 5350
350 nm3 andg=25 the level spacing is roughly 0.06 K, the
Thouless energy 1.5 K, and therefore the magnetic field
range would be between 0.1 and 2.5 T.

III. THE SUPERCONDUCTING REGIME

So far we considered the perturbative regime, which for
attractive interaction corresponds toulcu ,1/ lnfETh/dg
which is equivalent tod.D whereD is the bulk gap in the
mean field BCS approximation. In the crossover regime,
whered<D, the behavior ofxs changes considerably in the
low magnetic field regime,mBH&d. However, the properties
of xs at high magnetic fieldmBH@D2/d are similar to those
in the perturbative regime,17 and the interaction parameters
can be similarly determined. The parameters of the universal
Hamiltonian can also be determined in the “BCS regime,”
where ulcu .1/ lnfETh/dg and the level spacingd!D and
can therefore be neglected. In this regimelc is easy to de-
termine, e.g. by measuring the excitation gap. In order to
determinels in this regime we revisit the spin magnetization
of the system. Forls=0 it is well known25,26 that the spin
magnetization of a superconductor is zero below a value of
H=D / sÎ2mBd, where a sharp step to the value of the spin
magnetization of noninteracting electrons at the sameH oc-
curs. The area between the magnetization curves of the non-
interacting and superconducting systems gives the condensa-
tion energy,D2/ s2dd. We have already shown that finitels

changes the slope of the spin magnetization of noninteracting
electrons[see Eq.(16) with lc=0]. Here we show that it also
changes the value ofH at which the step in the magnetization
of a superconducting system occurs, as to keep the area be-
tween the magnetization curves to equalD2/ s2dd. Thus, one
can determinels in the superconducting regime by the mag-
netic field value of the magnetization step. This value ofH is
where the normal and superconducting states have the same
energy, i.e., when the equation

l2d + Jslsl + 1d +
D2

2d
− 2lmBH = 0 s18d

has one solution. This occurs whenl =D /Î2dsd+Jsd, or
when
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H =
D

Î2mB

Î1 + ls. s19d

The shift in the magnetic field value of the spin magnetiza-
tion step is a direct measure ofls in this regime.

IV. SUMMARY

We have thus shown that the determination of the inter-
action parameters in small metallic grains with not too large
interactions can be done by measuring their ensemble aver-
aged differential spin susceptibility. Such a measurement,
done systematically as function of grain size, can shed light
on the change of transition temperature with grain size in
granular superconductors. Although our theory is valid for

finite size grains, and cannot directly determine if a certain
material is superconducting at low temperatures in bulk
form, a systematic measurement of the interaction param-
eters as a function of grain size can suggest the bulk behavior
as well.
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