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Reflectionless tunneling in ballistic normal-metal–superconductor junctions
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Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
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We investigate the phenomenon of reflectionless tunneling in ballistic normal-metal–superconductor~NS!
structures using a semiclassical formalism. It is shown that applied magnetic field and superconducting phase
difference both impair the constructive interference leading to this effect, but in a qualitatively different way.
This is manifested both in the conductance and in the shot noise properties of the system considered. Unlike
diffusive systems, the features of the conductance are sharp and enable fine spatial control of the current, as
well as single-channel manipulations. We discuss the possibility of conducting experiments in ballistic
semiconductor-superconductor structures with smooth interfaces and some of the phenomena, specific to such
structures, that could be measured. A general criterion for the barrier at NS interfaces, though large, to be
effectively transparent to pair current is obtained.
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fu
io
er
ve
nn

th
n
c

m
to

in

on
e

er
ive
b
el
as
g
co
se

is
g
e

t
o
uc
a

id
hy

re
efl

for
in-
the
c
ter-
the
ll,
in a
w.
the
em
th
sti-

ent

ce
ex-

of
y
y
rt

.

th

be-
nd
ero
ting
ro

tor
d by
ept
I. INTRODUCTION

One of the most interesting phenomena in hybrid dif
sive normal-metal–superconductor structures is reflect
less tunneling. This phenomenon manifests itself as a z
bias peak in the differential conductance of a diffusi
normal metal slab connected to a superconductor via a tu
barrier with low transmission probabilityG.1,2 van Wees
et al.3 used a path integral picture to suggest and explain
effect of reflectionless tunneling. They show that the e
hanced conductance at zero bias is due to electron-hole
herence in trajectories that, due to the disorder in the nor
metal, hit the barrier at the normal-metal–superconduc
~NS! interface many times. This results in the barrier be
effectively transparent to pair current.

In this paper we show that the phenomenon of reflecti
less tunneling exists also in ballistic systems, the requirem
being the existence of multiple reflections from the NS int
face due to the geometry of the structure. As in diffus
systems, we find an enhanced NS conductance for zero
and zero magnetic field. We show that the magnetic fi
(H), finite energy and voltage, and superconducting ph
difference (Fs) impair the constructive interference leadin
to the enhanced NS conductance, but applying the super
ducting phase difference has qualitatively different con
quences than applying a finite magnetic field or voltage.

We show that the ballistic nature of the system gives r
to pronounced and delicate features, which are not avera
over as in the case of diffusive systems. This results in n
measurable phenomena, such as sharppeaksin the NS con-
ductance as new channels open and quasiperiodicity of
conductance as a function of magnetic field. We also dem
strate the possibility, specific to ballistic systems, to cond
detailed manipulations such as extracting out a single ch
nel from a normal metal~semiconductor! waveguide or ex-
tracting the current at a given position along the wavegu

The ballistic regime in semiconductor-superconductor
brid structures was investigated recently experimentally.4–10

Unlike the case in normal-metal–superconductor structu
where sharp boundaries are made that enable specular r
tion at the NS interface,11,12 in semiconductor-
0163-1829/2001/64~22!/224513~13!/$20.00 64 2245
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superconductor interfaces specular reflection is sacrificed
the purpose of lowering the barrier at the interface, thus
creasing the Andreev reflection probability. We here raise
possibility to conduct experiments in ballisti
semiconductor-superconductor structures with a sharp in
face and a long elastic mean free path. Though indeed
transmission probability of the barrier would then be sma
the electron-hole coherence over long trajectories results
large Andreev reflection probability, as we show belo
Thus, one can have strong proximity while preserving
ballistic nature of the system. Other systems which se
favorable for the realization of ballistic NS structures wi
specular reflection at the interface are the recently inve
gated organic molecular crystals.13,14In these systems the NS
transition could be realized by applying a space-depend
gate voltage.

The paper is arranged as follows: In Sec. II we introdu
the formalism and the structure we consider, obtain the
pressions for the three-terminal conductances in terms
Rhe(N), the Andreev reflection probability of a trajector
that hits the interfaceN times, and calculate this probabilit
for zero magnetic field. In Sec. III we show that for a sho
slab the NS conductance has sharppeaksas channels open
In Secs. IV and V we calculateRhe(N) and the linear con-
ductances as a function ofH ~IV ! andFs in a similar SNS
structure~V!. In Sec. VI we calculate the shot noise in bo
structures, as a function ofH andFs . In Sec. VII we con-
sider diffusive systems and demonstrate the connection
tween the effect of reflectionless tunneling in diffusive a
ballistic systems. Throughout the paper we consider z
temperature and use the model in which the superconduc
order parameterD is constant in the superconductor and ze
in the normal metal.

II. CONDUCTANCE OF A LONG NORMAL SLAB
ATTACHED TO A SUPERCONDUCTOR

A. Model

We consider a ballistic normal-metal or semiconduc
slab between two normal reservoirs. The slab is separate
an infinite barrier from a region denoted as vacuum, exc
©2001 The American Physical Society13-1
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in a region of lengthL, at which a superconductor is attach
to the slab~Fig. 1!. At the NS interface the barrier is finite
with transmission probabilityG. The opening of the norma
slab to the two normal reservoirs is taken to be adiabatic
the length of the slab between the reservoirs and the
interface to be long enough such that channels are for
with homogeneous distribution in the transverse directio15

We also assume that the change from infinite barrier to fi
barrier of transmissionG at the end points of the NS inter
face is not abrupt, but smeared over a lengths such thatlF
!s!W, whereW is the width of the slab in the directio
perpendicular to the interface. In this way the change is a
batic but the smearing can be neglected in our calculatio
We denote this structure as a vacuum–normal-met
superconductor~VNS! structure, as opposed to a simil
structure with another superconductor attached symm
cally to the other side of the slab, which will be denoted
SNS structure.

The superconductor is connected to a third reservoir
cept when explicitly mentioned otherwise. We consider
case where the electrochemical potentials of the right
superconducting reservoirs are equal, and the left reservo
biased by an infinitesimal voltage, and calculate the thr
terminal linear conductances of the system. Previous wo
concerning similar structures16–19 considered the NS inter
face either as fully transparent or concentrated on effect
channel mixing due to the roughness of the barrier whe
exists. We consider the NS interfaces to have a smooth
rier, so that normal reflection is specular and the Andre
reflected hole retraces the electron’s trajectory. We ass
specular reflection from the VN interface as well.

Our model is two dimensional. While assuminglF!W,
therefore having many channels, we assume for simpli
that the thickness of the slab~the third dimension! is small,
having one transverse mode in this direction. The gene
zation of our treatment to thicker slabs is trivial.

We use a semiclassical formalism and consider the pro
gation of electrons in each channel to be described by t
classical deterministic trajectory.3,20 For each channelj we
define kj i5A2mEF /\22 j 2p2/W2 and calculate the angl
u j5tan21@ j p/(kj iW)# between the classical trajectory of a
electron in this channel and the NS interface. We conside

FIG. 1. Vacuum–ballistic normal-metal–superconductor ju
tion with a barrier at the NS interface. Each time the particle hits
NS interface it can be reflected either normally or in an Andre
process. Here 1 and 2 are normal reservoirs and 3 is a supe
ducting reservoir.u is the angle of incidence. Solid~open! arrows
designate electrons~holes!. In Sec. V a similar structure is consid
ered, with a second superconductor attached to the other~lower!
side of the slab, so the structure has up-down symmetry.
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electron entering the normal slab from the left reservoir,
proaching the region of the slab with the NS interface~‘‘NS
region’’! at a given distance from the NS interface and an
u j with respect to it. If the electron is only normally reflecte
from the NS interface, it follows a certain trajectory in th
slab until exiting it to the right reservoir after hitting the N
interfaceN times~‘‘ N trajectory’’!. Due to the finite Andreev
reflection amplitude at each point it hits the NS interface,
electron has a probabilityRhe(N) to be reflected as a hole t
the left reservoir. In this model, due to the interfaces be
parallel and smooth, there is zero probability for an elect
to be reflected back to the left reservoir or to be transmit
as a hole to the right reservoir. Therefore,Rhe(N)1Tee(N)
51, whereTee(N) is the probability of an electron comin
from the left reservoir to be transmitted as an electron to
right reservoir.

For each open channel in the slab the number of time
trajectory hits the NS interface is eitherNj or Nj11, where
Nj equals the integer part ofL tan u j /(2W), with L being
the length of the NS interface. The fraction of trajectories
channelj that hit the NS interfaceNj11 times is given by
pj5L tan u j /(2W)2Nj . The Andreev reflection probability
of an electron in channelj is then given by

Rhe
j [pjRhe~Nj11!1~12pj !Rhe~Nj !. ~1!

We define byI 1 , I 2, and I 3 the currents emerging from
the left terminal, right terminal, and superconducting term
nal, respectively. Due to current conservation,I 152I 22I 3.
We then define the NN, NS, and total linear conductance
the system as

G21[2 lim
V→0

I 2

V
5

2e2

h (
j

Q~kj i
2 !~12Rhe

j !, ~2!

G31[2 lim
V→0

I 3

V
5

4e2

h (
j

Q~kj i
2 !Rhe

j , ~3!

and

GT[ lim
V→0

I 1

V
5G211G315

2e2

h (
j

Q~kj i
2 !~11Rhe

j !, ~4!

whereQ(x) is the Heaviside theta function.

B. Andreev reflection probability of an N trajectory

The calculation of the conductances is therefore redu
to the calculation ofRhe(N)[ur he(N)u2 wherer he(N) is the
corresponding amplitude. For a single hit at the NS bou
ary, we denote byr he (r eh) the amplitude for an electron
~hole! to be Andreev reflected and byr ee (r hh) the amplitude
for an electron~hole! to be normally reflected. By dividing
an N trajectory to anN21 trajectory and a 1 trajectory, w
obtain a recursion formula

-
e
v
on-
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REFLECTIONLESS TUNNELING IN BALLISTIC . . . PHYSICAL REVIEW B 64 224513
r he~N!5r he1r eer he~N21!r hh

1r eer he~N21!r ehr he~N21!r hh1•••

5r he1
r eer he~N21!r hh

12r ehr he~N21!
. ~5!

Using the relations~which are exact atEF) r ee5r hh* ,
r eh5r he , and ur ehu21ur eeu251, we assume, and then sho
by induction, thatr he(N) is imaginary for allN and can be
written as

r he~N!5 i
ur he~N21!u1ur heu

11ur heuur he~N21!u
. ~6!

The solution of this equation is given by

r he~N!5 i tanh@N tanh21~ ur heu!#. ~7!

For a barrier with small transmission probability we find

Rhe~N!'tanh2~Nr !'tanh2~NG/2!, ~8!

where we definer[ur heu5G/(22G).
Using Eq.~7! to obtain the values ofRhe(N) for all the

channel-dependentNj andNj11 in the conductance formu
las @Eqs. ~2!–~4!#, we obtain the linear conductancesG21,
G31, and GT . In this paper we are interested in the ca
whereG!1 and, therefore, in some of the formulas, and
the qualitative discussions, we take this limit.

Before considering further the conductances of the s
tem, we would like to dwell on the physical aspects of E
~8!. This formula reflects the essence of the physics beh
‘‘reflectionless tunneling.’’ It states that electrons in trajec
ries that hit the NS interfaceN@1/G times are Andreev re
flected with probability close to unity, even thoughG!1,
thus making a barrier having a low transmission coeffici
effectively transparent to pair current. This is a result
electron-hole coherence in the normal metal. For an inco
ing electron, the different paths resulting in a hole return
to the reservoir interfere constructively, while the differe
paths resulting in an electron transmitted to the right res
voir interfere destructively. The constructive interference
a returned hole competes with the small Andreev amplit
at each encounter with the interface, which is proportiona
G, and thereforeRhe(N)'1 only for N@G21. This means
that for channels in which tanu@2W/(GL) the barrier at the
NS interface is not effective. In fact, if one considers a s

FIG. 2. Vacuum–ballistic normal-metal–superconductor ju
tion where a part of the normal metal is removed~only the relevant
region is shown!.
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tem in which the superconductor is floating and the abo
condition is fulfilled for all the channels, one can show th
the current between the left and right reservoirs flows ins
the superconductor and a part from the middle of the nor
slab can be taken out~see Fig. 2! without affecting the con-
ductance of the system.

Equations~7! and~8! are far more general than the abo
model and hold in any case where an electron in the nor
metal can hit the NS interface more than once bef
electron-hole coherence is lost. This is true in various geo
etries in ballistic systems, and also in diffusive system
which are considered in Sec. VII. In all these cases, Eq.~8!
results in a criterion for the effectiveness of a barrier w
small transmission probability:Consider a physical property
which is determined by a certain set of trajectories; the c
terion for the barrier at the NS interface not to be effective
that most of these trajectories hit the interface more th
G21 times before electron-hole coherence is lost.In Sec. VII
we will show how this general criterion reduces, in diffusiv
systems, to the known conditions for the barrier, though h
(G!1), not to affect the conductance and the density
states of a diffusive NIS junction.

C. Comparison to an incoherent structure

In order to show that Eq.~8! is a result of constructive
interference, which is due to electron-hole coherence,
compare our result to the case where, due to strong dep
ing, there is no electron-hole coherence, i.e., where the ph
between two consecutive hits of the interface is lost. In t
case the problem is reduced to a random walk problem, w
forward-backward asymmetry. At each hit at the NS interfa
the electron~hole! has a probabilityG2!1 to be Andreev
reflected, in which case the direction of propagation is
versed and the probability to move forward is 12G2. The
size of the step is channel dependent and is given bydj
52W cotuj , the distance between two consecutive point
trajectory in channelj hits the interface. This gives a mea
free path of l j5dj /G2. For L! l j the Andreev reflection
probability is Rhe5L/ l j , and for L@ l j it is 12 l j /L ~the
probability for a transmitted electron isl j /L). Thereforel j is
the saturation length, beyond which the Andreev reflect
probability is close to unity. On the contrary, in the case
coherent scattering, using Eq.~8! and the relationNj
5L/dj , we find that the saturation length isdj /G5 l jG. Due
to the scattering being coherent, it is smaller byG compared
to the noncoherent case. Moreover, for short slabs,L! l jG,
Rhe'L2/(4l jdj ), larger by L/(4dj ) than the non-
coherent case. For long slabs (L@ l jG) one obtainsRhe

'12 exp(2L/A2l jdj ), and the probability for a transmitte
electron is exponentially small, and not linear inl j /L as in
the noncoherent case. The difference between the two c
is most notable for slabs with intermediate lengths betw
the two saturation lengths,l jG!L! l j , which corresponds to
1/G!N!1/G2. Without coherenceRhe!1, and with coher-
enceRhe'1.

It is instructive to compare Eq.~8! to a similar system, in
which the superconductor is not attached to the slab on
side, but part of the slab itself, of lengthL, is superconduct-

-

3-3
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FIG. 3. ~a! The conductance~in units of 4e2/h) between the left normal reservoir and the superconductor is plotted as function ofEF @in
units of \2/(mW2)] for LG/(4W)50.1. ~b! Enlarging the first peak we see that the conductance at the peak is unity, and the width
peak is approximately@LG/(4W)#250.01 of the value ofEF at the peak.
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ing. In this case and assuming no barrier at the NS interfa
the Andreev reflection probability of an incoming electron
given by tanh2(DL/2\vF)[tanh2(L/2js).

21 Here it isjs , the
ballistic superconducting coherence length, which is
length scale for pairing. In our system, Eq.~8! can be written
as

Rhe~L !'tanh2@LG/~2dj !#, ~9!

with the saturation lengthdj /G as the length scale for pairin
in the normal slab due to the proximity to the attached
perconductor.

III. CHANNEL OPENING

Using Eqs.~3! and ~7! the NS linear conductance can b
calculated as function ofEF , G, L, andW. We now concen-
trate on a special case of these parameters, which resu
sharp resonances of the NS linear conductance as a fun
of the Fermi energy. While in all the other cases conside
in this paper we are interested in the emergence of cons
tive interference that leads to enhanced Andreev reflec
and therefore consider cases in which electrons in at l
some of the channels hit the interfaceN@1/G times, we are
now interested in a different limit, in whichGLAkF /W!1.
The generic behavior in such a structure would be that
current flow to the superconductor is small, since the num
of times an electron in any transverse channel hits the ba
is smaller than 1/G. However, if we change the Fermi energ
~e.g., by a back gate! such that the channel of the highe
transverse mode has just opened, then the trajectory
particle in this channel is almost perpendicular to the int
face. As a result, the number of times a particle in this ch
nel hits the interface is much larger than 1/G and the contri-
bution of this channel to the NS conductance is signific
and given by

G31
sing5

4e2

h
Q~kj i

2 !tanh2
j pLG

4W2kj i
. ~10!

In this equation we assumed thatG!1 and neglected the fac
that a fraction of the trajectories hit the barrierNj11 and not
22451
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Nj times, since as the channel opensNj@1. Defining e j

5\2(kj i)
2/(2m) and ẽ5@LG/(4W)#2EF we find that for 0

,e j! ẽ

G31
sing5

4e2

h
tanh2A ẽ

e j
'

4e2

h
@124e22Aẽ/e j #. ~11!

While in a normal quantum point contact connected to
superconductor in series the linear NS conductance as f
tion of the Fermi energy in the slab would show steps,22 in
our case, where a superconductor is attached to the p
contact on its side, with a barrier at the interface, the
conductance as a function ofEF has sharppeaksat the en-
ergies where channels open. The magnitude of these pea
4 times the quantum conductance, and the scale of their
ergy width is ẽ. With the condition given above
GLAkF /W!1, these peaks are narrower than the energy
ference between the opening of adjacent channels. FoL
'W this condition reduces toG!AlF /W. Under the semi-
classical approximation we make the conductance peaks
nonanalytical as a function of Fermi energy at energ
where transverse channels are opened, as can be seen b
Eq. ~11! and Fig. 3. This is due to the fact that the number
times an electron hits the interface diverges ase j→0. These
nonanalyticities are a consequence of the semiclass
model, and one has to take into account that the validity
the semiclassical approximation is limited by the conditi
kj i@1/L* , whereL* is the range of the potential variation
We estimateL* by k' /¹k'5W* s/(lFAG), taking into ac-
count the variation ofk' with the spatial variation ofG. The
conditionkj i@1/L* is equivalent toe j@@GlF

4/(W2s2)#EF ,

which is consistent with the conditione j! ẽ given thatG
@lF

4/(L2s2). One can therefore expect that with this cond
tion fulfilled, going beyond the semiclassical approximati
would smoothen the above nonanalyticities, but will not al
the other features of the peaks~height and width!. For e j

@ ẽ the contribution of thej th channel to the NS conduc
tance is proportional to 1/e j and is given by
3-4
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FIG. 4. Rhe(N,FH) as obtained from Eq.~17! for ~a! N510 trajectory and~b! N550 trajectory in a VNS system~Fig. 1! for a barrier
transmission probabilityG50.2. Notice the narrow large peaks periodic inFH and the small oscillations between each such peaks, ha
in ~a! N2159 nodes. In~b! the magnitude at the high peaks is approximately unity, and the oscillations between them are hardly
in
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G31
j 5

4e2

h

ẽ

e j
. ~12!

In this section we described the effect of channel open
on the NS conductance of the system. The behavior ofGT is
similar, only the peaks at the energies where channels o
are half the magnitude and are on top of the step functio
magnitude 2e2/h ~sinceGT is similar toG31, only 2Rhe

j is
replaced by 11Rhe

j ). The NN conductance is given by th
complementary of half the NS conductance to a step func
(2Rhe

j is replaced by 12Rhe
j ). In the next sections we mostl

considerG31, and analogies toGT andG21 can be made in a
similar way.

IV. MAGNETOCONDUCTANCE OF A LONG NORMAL
SLAB ATTACHED TO A SUPERCONDUCTOR

In this section we consider the same VNS structure a
Secs. II and III with a magnetic field applied perpendicular
the slab. We investigate the effect of the magnetic field
the transmission probability of anN trajectory, as well as on
the linear conductances in the system. Magnetic field p
etration into the superconductor is neglected.

We considerH!F0 /(lF
1/2W3/2) where F0 is the flux

quantum. Under this condition the curving of the trajector
of the particles in the normal slab can be neglected.23 The
number of times,Nj ~or Nj11), a trajectory of an electron in
channelj hits the NS interface stays unchanged, and so
Eqs.~2!–~4!, except that the Andreev reflection probabiliti
Rhe(N) now depend also onFH , the phase acquired by a
electron and a hole moving in opposite directions betw
two consecutive points the trajectory hits the NS interfa
~‘‘trajectory section’’!. This phase is given byFH
54pHA/F0, whereA is the area of the triangle enclosed b
the trajectory section and the interface.

We now turn to the calculation ofRhe(N,FH). Repeating
the same procedure leading to Eq.~5!, but keeping track of
the phase introduced by the magnetic field, we obtain

r he~N,FH!5r he1
r eer he~N21,FH!eiFHr hh

12r ehr he~N21,FH!eiFH
. ~13!
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In order to obtain an explicit formula forr he(N,FH) it is
useful to define

r he~N,FH!5r he

bN

gN
, ~14!

wherebN andgN are alsoFH dependent. Inserting this defi
nition for N and N21 into Eq. ~13! we obtain the matrix
equation

S bN

gN
D 5S eiFH 1

r 2eiFH 1D S bN21

gN21
D 5S eiFH 1

r 2eiFH 1D N21S 1

1D .

~15!

Here we used the fact that at the Fermi energyr he is imagi-
nary. bN and gN are in principal defined up to~the same!
multiplication constant, which we dictate by the choiceb1
5g151. Diagonalizing the matrix and taking it to the pow
N21 we obtain

r he~N,FH!

5
ire2 iFH/2

2 i sin~FH/2!1Ab cothFNtanh21S Ab

cos~FH/2!
D G ,

~16!

where b5r 22 sin2(FH/2). Using the fact that the secon
term in the denominator is always real~also whenb is nega-
tive! we obtain

Rhe~N,FH!5
r2

sin2~FH/2! 1b coth2FN tanh21S Ab

cos~FH/2!
D G ,

~17!

which, for b,0, can be written as
3-5
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Rhe~N,FH!5
r2

sin2~FH/2!1~2b!cot2FNtan21S A2b

cos~FH/2!
D G .

~18!

These formulas hold for anyN, r (G), and H. We now
consider the case ofr !1 and Nr@1. For sin2(FH/2)@r 2

~which holds for most values ofFH when r !1), we see
from Eq. ~18! that Rhe(N,FH)!1. In the opposite limit, of
sin2(FH/2)!r 2, one obtains from Eq.~17! that Rhe(N,FH)
'1. This leads to the conclusion that the Andreev reflect
probability from anN trajectory is small for almost all value
of perpendicular magnetic field, except those special va
that result inuFH22kpu&r ~Fig. 4!. Between every two
such peaks the function oscillates, havingN22 smaller
peaks~andN21 nodes!. These peaks~nodes! correspond to
integer~half integer! flux quanta through an area of an int
ger number of triangles in the trajectory of the specific ch
nel.

The magnetic field not only impairs the constructive
terference leading to large Andreev reflection at zero fie
but causes destructive interference. This can be seen by
sidering FH5F0/2. Then,Rhe(N)50 for evenN and for
oddN it equalsr 2, the Andreev reflection probability from
single hit. Therefore, for any given channelRhe

j is of order
r 2. In the cases discussed in Sec. II C, of no interference
of constructive interference, there were~different! saturation
lengths beyond which the Andreev reflection probability w
close to unity. Here, however, due to destructive interferen
there is no such length scale and Andreev reflection is sm
(r 2) for any length of NS interface.This is true also when the
destructive interference is due to a superconducting ph
difference in an SNS structure, as is discussed in Sec. V

Inserting Eq.~17! in the conductance formulas@Eqs.~2!–
~4!# we obtain the linear conductances as function of m

FIG. 5. The conductance~in units of 4e2/h) between the left
normal reservoir and the superconductor as a function ofH ~in units
of F0 /W2). The plot is given for L/W550, G50.1, and
2mEFW2/\251000, which corresponds to ten open channe
Peaks higher than unity are a result of overlapping resonance
two or more channels. Apparent periods ofH are 0.29, 0.37, 0.48
and 0.65. AtH50 the peak is significantly higher than the othe
(G3155, not shown!.
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netic field for any junction parameters (G,L,W,EF). If the
parameters of the structure are such thatGL/W@1, then at
zero magnetic field the NS dimensionless conductanc
much larger than unity, since there are many channels
which NG@1. We choose such a case and plot in Fig. 5
NS dimensionless conductance as a function ofH. At H50
the conductance has a sharp peak, of magnitude of the o
of the number of channels and width of orderr. As H is
increased, the constructive interference leading to the
hanced Andreev reflection is destroyed in one channel a
the other and the NS conductance becomes small. Howe
the conductance of each channel is periodic inH, with a
period given by the area of the triangle between a traject
section in this channel and the interface. This quasiperio
ity is reflected in the peak spectrum of the NS conducta
as function ofH ~Fig. 5!. Periods of largerH reflect channels
with a smaller triangle, which corresponds to a trajectory
larger N, and therefore@see Eq.~8!# the peak heights are
larger. Using this quasiperiodicity one can obtain ‘‘magne
switching.’’ By choosing the magnetic field such thatuFH

j

52kpu for one channel only, one can remove only electro
propagating in this channel from the normal slab to the
perconductor and have the electrons in all the other chan
propagate to the right reservoir with probability close
unity.

Though the results in this section were given for the line
conductance at finite magnetic field, it is straightforward
generalize our results to be valid for finite subgap volta
thus obtaining the differential conductance as a function
voltage. One can also incorporate a constant phase gra
¹f in the superconductor in parallel to the NS interfac
generated by a constant supercurrent. The Andreev reflec
amplitude from anN trajectory would then be given by Eq
~16! with FH replaced by

F tr5FH1¹fdj1F j
tr~e!. ~19!

HereF j
tr(e)5(kj i

12kj i
2)W/sinuj1arg@r eer hh# is the relative

electron-hole phase accumulated due to finite energy in
triangle, wherekj i

65kj i(EF→EF6e). Note that there is a
complete analogy between applying a perpendicular m
netic field and constant gradient of the superconduct
phase, with the relation¹F52pHW/F0. For H50 and
¹F50, we obtain a zero-bias peak in the differential N
conductance as a function of voltage, similar to the lowH
behavior of the NS conductance as shown in Fig. 5.

V. CONDUCTANCE PARALLEL TO THE INTERFACE
IN AN SNS SYSTEM

We now consider a system in which a second superc
ductor is attached symmetrically to the other side of the s
so the structure has up-down symmetry. We consider the
in which the two barriers between the normal slab and
superconductors have the same transmission probabilityG.
Then, one can apply the same approach we used in the
vious sections, only count the number of hits of each traj
tory at both interfaces. The calculation ofRhe(N,Fs) is
given in Appendix A. It is done in the same spirit as th

.
of
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calculation ofRhe(N,FH), but is more elaborate since on
has to distinguish between even and odd times a trajec
hits the interface, and the recursion relations are more c
plicated. The result for evenN is

Rhe~2N,Fs!

5H z1~12z!

3coth2FN tanh21S 2r cos~Fs/2!A~12z!

11r 2 cosFs
D G J 21

~20!

wherez5r 2 sin2(Fs/2). The result for oddN is similar and is
given in Appendix A. These results are even inFs and,
therefore, the same for a trajectory hitting first either of t
two superconductors. Forr !1 we obtain Rhe(2N,Fs)
5tanh2@2Nr cos(Fs/2)#. For Nr@1 we see that
Rhe(2N,Fs)'1 unless uFs2(2k11)pu&p/(Nr), while
Rhe(2N,Fs)50 for Fs5(2k11)p. As a result, in this
limit, the Andreev reflection probability from a 2N trajectory
as a function ofFs has sharpdipsnearFs5(2k11)p of an
approximate width of 1/(2Nr) ~Fig. 6!. The transmission
probability of electrons to the right reservoir is given by
2Rhe(2N,Fs) and has sharp resonant peaks, which in
cates that there is a transverse Andreev level shifted toEF at
Fs5(2k11)p, similar to the case in standard SN
junctions.24 As in the case of perpendicular magnetic fie
Rhe(2N,Fs) has a maximum atFs50 ~or multiples of 2p),
but there are two major differences between the depend
of Rhe(N) on H and onFs : ~i! In a period of 2pRhe(N,Fs)
has one minima, whereRhe(N,FH) hasN minima.~ii ! while
Rhe(N,FH) exhibits sharppeaksnear FH52pn, and for
most values of magnetic field~generically! constructive in-
terference is lost, and Andreev reflection is small, the sit
tion for Rhe(N,Fs) is opposite. It is close to unity for mos
values of phase difference, and exhibits sharpdips nearFs
5p12pk.

FIG. 6. Rhe(N,Fs) in an SNS structure forN550 andG50.2.
Note the narrow dips, in comparison to the narrow peaks in F
4~b!, which is drawn for the sameN andG, as a function ofH.
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These differences can be understood by examining
two mechanisms of the destruction of the constructive in
ference between different paths of the same trajectory
result in a hole returning to the left reservoir. Indeed, t
phase difference between a hole resulting from an Andr
reflection at the first hit of the NS interface and a hole
sulting from an Andreev reflection at the second hit of t
NS interface is similar in both cases (FH and Fs), but the
phase difference between this hole and a hole resulting f
an Andreev reflection at theNth hit of the NS interface is
very different for the two cases. It is (N21)FH for the case
of a magnetic field andFs or 0 ~depending ifN is even or
odd! for the case of superconducting phase difference. T
introduces a large amplification factor in the electron-h
phase difference introduced by the magnetic field compa
to that introduced by the superconducting phase differen
As a result, the magnetic field is far more efficient in destro
ing the constructive interference leading to the enhanced
dreev reflection.

The linear conductances as function ofFs are calculated
by inserting the results for the Andreev reflection probab
ties @Eqs.~20! and~A10!# in the conductance formulas@Eqs.

~2!–~4!#. Nj in the VNS structure is now replaced byN̂j
which equals the integer part ofL tan u j /W and pj is re-
placed byp̂ j5L tan u j /W2N̂j . In Fig. 7 we plot~solid line!
the NS conductance as a function of the superconduc
phase difference for a system with the same parameter
the one in Fig. 5, for comparison. The NS conductance fo
similar structure with a larger barrier transmission probab
ity (G50.25) is also plotted~dashed line! to demonstrate the
narrowing of the width of the dips asNG grows. Here we see
another marked difference between applying a perpendic
magnetic field in the VNS structure and a phase differenc
the SNS structure. In the case of the applied magnetic fi

.
FIG. 7. G31 ~in units of 4e2/h) as a function ofFs . The solid

curve is given for the same parameters as in Fig. 5 to enable c
parison. In contrast with the case of applied magnetic field,
conductance is periodic inFs , has narrow dips at odd multiples o
p, and the oscillations as a function ofFs are of the order of the
full conductance~giant!. The dashed line is plotted for the sam
parameters, except hereG50.25. The larger conductance and th
narrower dips are both a result ofNG being larger for each channe
3-7
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M. SCHECHTER, Y. IMRY, AND Y. LEVINSON PHYSICAL REVIEW B64 224513
there is a large peak atH50, to which all the channels
contribute due to the constructive interference, but the p
odic peaks at higher fields appear for each channel at a
ferentH. If the parameters of the junction are such that
separations between conductance peaks are smaller than
width, the result will be a smooth oscillatory behavior of t
conductance as function ofH. On the other hand, in the cas
of SNS structure, the dips at allFs5(2k11)p are common
to all the channels, and therefore the conductance oscillat
as a function ofFs show sharp features of magnitude of t
order of the total conductance.

Recently, Petrashovet al.measured large conductance o
cillations as a function of the magnetic field and superc
ducting phase difference in a normal slab connected to ‘
perconducting mirrors.’’25,26 Our results cannot be directl
applied to the experimental structures studied by Petras
et al., since in the experiment the structures are different,
superconductor is floating, and there is finite scattering in
normal slab. However, some features appear to be more
eral and exist both in the experimental results and in
calculations. These are the much larger magnitude and sh
ness of the oscillations as a function of superconduc
phase difference compared to the oscillations as a functio
magnetic field.

To conclude this section we now apply the results o
tained above to show how one can get controlled curr
withdrawal from an electronic waveguide. Here we use
fact that as long as the phase difference between the su
conductors isp, the electrons move in the slab as in a wav
guide. By replacing the bottom superconductor with a se
of superconductors~Fig. 8!, each with a controllable phas
f i and interface length with the slab,L̃, we can create a
‘‘switch’’ in which we can control the location where th
current is drawn. We setf iÞ ĩ 5p andf ĩ 50. For all iÞ ĩ an
incoming electron from the left in an angle with tanu

@(2W/L̃G) will be normally reflected as in a waveguid
However, when it reaches theĩ th superconductor Andree
reflection occurs, adding a Cooper pair to the superc
ductor. One can therefore inject a current from the left r
ervoir and draw it at any one of the superconducting sla

VI. SHOT NOISE

In this section we calculate the shot noise as a function
H in the VNS structure andFs in the SNS structure, and
show that the differences between applying magnetic fi

FIG. 8. SNS junction where the bottom superconductor is
vided to pieces with controllable phase of the order parameter~only
the relevant region is shown!.
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and superconducting phase difference are reflected rem
ably in the shot noise properties of the systems.

We define the quantitiesPll 852*2`
` dt^D Î l(t)D Î l 8(0)&

~wherel ,l 8 are normal terminal indices!, which give both the
shot noise and the cross correlators between current fluc
tions at the two normal terminals. Anantram and Datta27 con-
sidered the case where an arbitrary number of supercond
ing and normal terminals exist, with the restriction that t
chemical potential in all the superconducting terminals is
same, and obtained general equations for the current cor
tors. Using their equations for our system we obtain

P115P225P125P0(
j

Q~kj i
2 !Rhe

j ~12Rhe
j !, ~21!

where P052euVu(2e2/h). This formula is applicable for
both the VNS and SNS structures, and the specific par
eters of the junction as well as theH and Fs dependence
enter only intoRhe

j . Notice the full positive noise correla
tions between the two normal terminals,28 which is a result
of zero normal reflection to the same reservoir and Andr
transmission to the other reservoir in our model.

Due to the dependence of the shot noise on the funct
Rhe

j (12Rhe
j ), it shows peaks at points where the Andre

reflection amplitude is neither close to zero or unity. For t
SNS structure we consider, this results in a sharp feature
the values ofFs corresponding todips in the NS conduc-
tance@Fs5(2k11)p#, which are common to all the chan
nels. The form of the sharp feature is two double peaks se
rated by a very sharp dip,29 as can be seen in Fig. 9. A
function of H, in the case of one channel, a sharp feat
appears near each value ofH corresponding to apeakin the
conductance. However, these points are channel depen
and as was the case for the conductance, the presenc
many channels smears the sharp features as a functionH.

Our results for the noise are easily generalized to fin
subgap energy~differential shot noise as a function of bia
voltage! and gradient of the superconductor phase in
same manner discussed at the end of Sec. IV.

i-

FIG. 9. P11 in units of P0 as a function ofFs for the geometry
where the normal slab is attached to two superconductors. The
rameters of the system are the same as those in Fig. 7~dashed line!.
3-8
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VII. DIFFUSIVE NS JUNCTIONS

The semiclassical approach, introduced by van Weeset al.
to explain the phenomenon of reflectionless tunneling in
fusive NS junctions,3 was used to analyze numerically oth
experimental results as well~see, e.g., Refs. 8 and 9!. This
approach has proved useful in obtaining a qualitative und
standing of the physical phenomena in various geomet
which make use of the standard methods~quasiclassical for-
malism, BdG equations! difficult. As Eq. ~8! applies to any
NS system, ballistic or diffusive, it can be used to obta
analytical results within this approach. In this section
apply the semiclassical formalism to treat both the pheno
enon of reflectionless tunneling and the reduction of the lo
density of states~DOS! across a diffusive NS junction. W
show that both of these phenomena are a result of the l
transparency of the barrier to pair current~althoughG!1
and under the conditions given by the general criterion at
end of Sec. II B! and thus stem from the same physical
fect. We also demonstrate the connection between the e
of reflectionless tunneling in ballistic systems discussed
this paper, to the one in diffusive systems.

Since we consider the particle’s trajectory in the norm
metal to be deterministic, our approach can be expecte
give correct quantitative results@Eqs. ~22! and ~23!# when
the scattering potential varies slowly on a scale of
wavelength3,30 and the sample is short enough such that c
sical dynamics will not develop phase space structures
scales smaller than\.31 For short-range disorder, this ap
proach is expected to give results which are qualitativ
correct.3

Following the treatment of Ref. 3, but using our analytic
result for the Andreev reflection probability from anN tra-
jectory, Eq.~7!, we obtain the linear conductance of a norm
slab connected via a barrier to a superconducting reser
~see Fig. 10!, which for G!1 is given by

G~V→0,H50!5
4e2n

h (
N50

`

T2~12T!N21 tanh2~NG/2!.

~22!

Heren is the number of channels andT is the average trans
mission probability of the normal slab~the mean free path
divided by its length!. In the two limits whereG!T andG
@T Eq. ~22! reduces to

FIG. 10. Geometry of the model~Ref. 3!, an example of a tra-
jectory with N52.
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G~V→0,H50!55
2e2n

h

G2

T
~G!T!,

2e2n

h S 1

2T
1

1

G D 21

~G@T!.

~23!

Unlike ballistic systems, in this case multiple reflectio
from the interface are enabled by the disorder. For sm
disorderG!T, the conductance is proportional toG2, re-
flecting the fact that Andreev reflection is a two-particle pr
cess. Already in this limit the disorder increases the cond
tance by a factor of 1/T. For T!G the disorder is large
enough to generate, with high probability, trajectories w
N@1/G, as we show below, and therefore the barrier is
effective and the conductance is linear inT. The conductance
has a maximum for T'G, where G'(2e2n/h)G
'(2e2n/h)T.

Equation~23! differs in theG@T,T→0 limit by a factor
of 2 from the analogous formula obtained by Beenak
et al.32 for short-range disorder. A detailed discussion of ho
this discrepancy results from the different assumptions in
two models is given in Appendix B.

As the essence of the effect of reflectionless tunneling
the fact that the barrier, though high, is transparent to p
current, the condition for the barrier to be ineffective w
discussed for this phenomenon33,34 as well as for other phe
nomena, as the reduction of the DOS on the normal side
an N-insulator-S~NIS! semi-infinite junction.33 We now
show, using random walk theory, that the criterion stated
Sec. II B, for the barrier to be ineffective, can be reduced
the diffusive case to the different known conditions for ea
phenomenon.

In Appendix C it is shown that the typical length of
diffusive trajectory betweenN consecutive times it hits the
barrier isLN'N2l n , wherel n is the elastic mean free path i
the normal metal~interestingly, there is no average length f
an N trajectory; see Appendix C!. This is also the order of
magnitude of the length of the longest loop in such a traj
tory ~a loop is a part of a trajectory between two consecut
points it hits the interface!. Using this result forLN and since
large contributions to Andreev reflection arise from trajec
ries that hit the interfaceN@G21 times before losing
electron-hole coherence~8!, only when coherent trajectorie
with total lengths larger thanLG[ l n /G2 occur with high
probability will the barrier not be effective. This requires th
electrons and holes to be coherent over a distanceALG* l n
5 l n /G from the interface. Therefore, the general conditi
in diffusive systems for the barrier to be ineffective isj
@ l n /G, wherej is the distance from the interface at whic
electrons and holes are still coherent. The coherence dist
j is determined by the length of the slab, energy of the el
tron, or magnetic field, depending on the physical case c
sidered. When measuring the conductance of an NS junc
then for zero energy and zero magnetic field, the length
the normal metal,d, is what limits the trajectories to length
of orderd2/ l n ~since a particle that reaches a distanced from
the interface enters the reservoir, where phase coheren
lost!. Therefore, the barrier is not effective whenG@ l n /d.
3-9
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Since the transmission probability through the diffusive n
mal part is roughlyT' l n /d, this condition reduces to th
known condition33 for the barrier to be ineffective,G@T @in
accordance with Eqs.~22! and ~23!#.

Following the same considerations one can obtain
condition for the barrier to be ineffective in various cas
noting the different mechanism impairing electron-hole c
herence in each case. We consider, for example, the l
DOS in a semi-infinite NS junction. The reduction of th
local DOS in the normal side of an NS interface is clos
related to the averaged amplitude of an electron near
interface to return to the same point as a hole through
pair amplitude^c↓c↑&.

23 At zero energy and assuming th
normal metal is semi-infinite, there is no mechanism t
limits the length of coherent trajectories. The electron h
the barrier as many times as needed,N@G21, without losing
electron-hole phase coherence, and according to Eq.~8!, it is
finally Andreev reflected. This results in a finite pair amp
tude throughout the normal part, even in the presence
barrier ~at e50 there is no reduction of the pair amplitud
due to phase averaging!, and in a zero DOS at zero energ

At finite energye, the electron and hole moving in oppo
site directions in a trajectory of lengthL accumulate a rela
tive phase ofLe/(\vF), which limits the length of coheren
trajectories to order \vF /e and to distance j5jn

[A\Dn /e from the interface~trajectories that traverse a dis
tance longer thanjn result in phase difference of order 2p).
The condition for having a large Andreev reflection amp
tude is thereforeG@ l n /jn .33 This condition assures that th
total phase accumulated by the ingoing electron and ou
ing hole is less than 2p, and therefore the averaging i
^c↓c↑& results in finite pair amplitude and the local DOS
reduced. Similar considerations result in the width of t
zero-bias anomaly in reflectionless tunneling being prop
tional to the Thouless energy.23

VIII. CONCLUSIONS

We have demonstrated the effect of reflectionless tun
ing in a ballistic NS system in which the multiple reflectio
from the interface are due to the geometry. We considere
normal slab with superconductors attached to its sides, so
normal current flows in parallel to the NS interface. T
barrier at the NS interface was taken to be smooth, so
normal reflection is specular, and with transmission proba
ity G!1. We obtained a formula for the Andreev reflectio
amplitude from a trajectory that hits the barrier at the N
interfaceN times and showed that, whenN@G21, the barrier
is transparent to pair current~thoughG!1), leading to good
proximity.

We have shown that having a smooth rather than ro
barrier at the interface is advantageous in giving rise to m
pronounced and delicate features, which are not avera
over. This results in new measurable phenomena, such a
sharppeaksin the NS conductance as new channels open~in
contrast to the usual step function! and quasiperiodicity of
the conductance as a function of magnetic fieldH. The
smoothness of the barrier also enables one to conduct
tailed manipulations such as extracting out a single chan
22451
-

e
,
-
al

e
e

t
s

a

o-

e
r-

l-

a
he

at
l-

h
re
ed
the

e-
el

from a normal metal~semiconductor! waveguide or extract-
ing the current at a given position along the waveguide.

By obtaining explicit formulas for the three-terminal co
ductances of the system as a function ofH and of the super-
conducting phase differenceFs , we have shown that bothH
and Fs impair the constructive interference leading to t
enhanced NS conductance, but in a qualitative different w
While as a function ofH the enhanced NS conductance
limited to a small range of magnetic field and is chann
specific, as a function ofFs the enhanced NS conductance
generic and is destroyed only near specific values ofFs ~odd
multiples ofp) for all the channels, leading to giant condu
tance oscillations. This difference is also reflected clearly
the shot noise behavior as a function of both quantities.

By demonstrating the possibility to obtain large Andre
reflection in clean semiconductor-superconductor interfa
and the new possibilities such structures open, we hop
encourage experimental work in this regime.

Our results were obtained using a semiclassical form
ism, with which we reduced a two-dimensional nonsepara
problem to an effective one-dimensional problem. We ha
demonstrated the usefulness of this formalism in a few s
ations, and hopefully it can be used in the future to so
other problems which are hard to tackle using the conv
tional techniques.

We used this approach also for diffusive NS systems
demonstrated the connection between the effects of re
tionless tunneling in ballistic and diffusive NS junctions. W
then considered the phenomena of reflectionless tunne
and the reduction in the density of states in diffusive N
junctions and showed that both can be obtained from a g
eral criterion for the barrier, though large, to be transparen
pair current.
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APPENDIX A: ANDREEV REFLECTION FROM
AN N TRAJECTORY IN SNS JUNCTIONS

In this appendix we describe the recursion formalis
leading to Eq.~20! and obtain a similar equation for trajec
tories that hit the NS interfaces an odd number of times.

We choose the phase of the upper superconductor to
Fs/2 and the phase of the lower superconductor to b
2Fs/2. The Andreev reflection amplitude of an electron h
ting the upper~lower! boundary is

r he
1(2)~1!5 ire1(2) iFs/2, ~A1!

and the Andreev reflection amplitude of an incoming hole
given by r eh(1)52r he* (1). Throughout this appendix we
3-10
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consider trajectories that hit the NS interfaces any numbe
times, with the last hit occurring at the top interface. This
done for simplifying the calculation, and since the final res
is even inFs , it does not depend on this assumption. Ho
ever, the treatment for trajectories that hit the interfaces
odd or an even number of times has to be done separa
For an odd trajectory, the recursion relation is

r he~2N21!5r he
1 ~1!1

r ee
1 ~1!r he~2N22!r hh

1 ~1!

12r eh
1 ~1!r he~2N22!

,

~A2!

wherer ee(hh)
1 (1) is the normal reflection of an electron~hole!

from the upper NS interface. For an even trajectory the
cursion relation is

r he~2N!5r he
2 ~1!1

r ee
2 ~1!r he~2N21!r hh

2 ~1!

12r eh
2 ~1!r he~2N21!

. ~A3!

We define

r he~2N21!5r he
2 ~1!

b2N21

g2N21
~A4!

and

r he~2N!5r he
1 ~1!

b2N

g2N
. ~A5!
r,

ve
o
r

e
te
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Using the relations written after Eq.~5!, we obtain

r he~2N21!5r he
1 ~1!

b2N221g2N22

r 2b2N221g2N22

, ~A6!

which we insert into Eq.~A3!, and obtain the equation

S b2N

g2N
D 5S 11r 2e2 iFs 11e2 iFs

r 2~11eiFs! 11r 2eiFs
D S b2N22

g2N22
D

5S 11r 2e2 iFs 11e2 iFs

r 2~11eiFs! 11r 2eiFs
D NS 0

1D , ~A7!

where the last equation is obtained by explicitly finding th

S b2

g2
D 5S 11e2 iFs

11r 2eiFs
D . ~A8!

Following the same route for the odd case, we obtain

S b2N11

g2N11
D 5S 11r 2eiFs 11eiFs

r 2~11e2 iFs! 11r 2e2 iFs
D S b2N21

g2N21
D

5S 11r 2eiFs 11eiFs

r 2~11e2 iFs! 11r 2e2 iFs
D NS eiFs

1 D .

~A9!

Diagonalizing the matrices in Eqs.~A7! and~A9! we obtain
for the odd case
Rhe~2N11,Fs!5H z1~12z!coth2F y1N tanh21S 2r cos~Fs/2!A~12z!

11r 2 cosFs
D G J 21

, ~A10!
al

lab

b is
the
re-

are
where

y5tanh21S rA~12z!

e2 iFs/21 ir 2 sin~Fs/2!
D , ~A11!

and for the even case Eq.~20!. These equations are simila
only in the lattery50.

APPENDIX B: VALIDITY OF THE CONDUCTANCE
FORMULA FOR THE DIFFUSIVE SLAB

In Sec. VII we obtain the linear conductance of a diffusi
NIS junction using the approximation that the electron’s m
tion in the normal slab is deterministic. However, for a no
mal slab with short range disorder Beenakkeret al.32 obtain
a formula which differs in theG@T,T→0 limit by a factor
of 2 from Eq.~23!.

In order to understand the factor of 2 difference betwe
the two cases we use the conductance formula for zero
perature of Beenakkeret al.22
-
-

n
m-

GNS5
4e2

h (
m51

n Tm
2

~22Tm!2
, ~B1!

whereTm is themth transmission eigenvalue of the norm
slab.

The total transmission probability through the normal s
is given byT5Sm51

n Tm . In our approximation of the long-
range scattering potential, each electron entering the sla
predetermined, according to the position and direction at
entrance, to be either transmitted through the slab or
flected back to the normal reservoir~deterministic scatter-
ing!. The transmission eigenvalues of the normal slab
therefore all zero and unity and in this case

(
m51

n Tm
2

~22Tm!2
5 (

m51

n

Tm5T ~B2!

and

GNS5
4e2

h (
m51

n

Tm5
4e2

h
T. ~B3!
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Since GN5(2e2/h)(m51
n Tm , we obtain the relationGNS

52GN . However, in general,Tm
2 /(22Tm)2,Tm for all 0

,Tm,1. In the case of short-range disorder the distribut
of the transmission eigenvalues is such thatSm51

n Tm
2 /(2

2Tm)25 1
2 Sm51

n Tm5 1
2 T,22 and thereforeGNS5(2e2/h)T

5GN . This results in a factor of 2 difference in theT→0
limit between our conductance formula~23! and the formula
obtained by Beenakkeret al.

APPENDIX C: LENGTH OF A DIFFUSIVE N
TRAJECTORY: RANDOM WALK THEORY

We are interested in the question of how long a traject
in the normal metal has to be in order to hit the interfaceN
times. Looking at random walk in two dimensions on a l
tice which is rotated by 45° from the coordinate axes, it
easy to see that, since we are not interested at the exact
the trajectory hits the interface, there is a one-to-one co
spondence between returning to the interface in two dim
sions and returning to the origin in the one-dimensional r
dom walk. The question of return probabilities in on
dimension is addressed in Ref. 35, Chap. 3, using rand
walk path theory. This approach is elementary and very
structive, and here we will just state its main results conce
ing our problem. Using path theory, Feller shows that in
one-dimensional random walk model, the probability of
first return to the origin afterk steps is approximately, fo
. P

d.

.

s,

ys

ev

P

22451
n

y

-
s
int

e-
n-
-

m
-
-

a

large k, f k5(2Apk3/2)21. Therefore, there is no averag
length for the first return ((k50

` k fk diverges!. This peculiar
result leads to a nonlinear dependence of the length of
trajectory on the number of times it hits the interface.~If
there were an average return lengtha, then the average
length of a trajectory that hits the interfaceN times would be
aN.! It is further shown that the probability to hit the inte
face N times in a trajectory of length smaller thanL̂ is a
function of L̂/N2l[w, wherel is the mean free path and i
given by

P~w!5A2

pEw21/2

`

e2s2/2ds. ~C1!

This means that in order to hit the interfaceN times a particle
has to travel a length of orderN2l . A typical trajectory of
length N2l that hits the interfaceN times is not made of
N21 loops of similar length. The main contribution to th
length of such a trajectory comes from one or two of
longest loops, whose lengths are of orderN2l . This arises
from the fact that(k5N2

` f k'1/N, which means that if we
haveN returns to the origin, about one of them is going to
longer thanN2l . As N increases, we have probability of orde
1 to have a loop of lengthN2l , and therefore the length of th
longest loop, as well as the length of the whole trajectory
of orderN2l .
ys.
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